

9 February 2011

Companies Announcement Office Via Electronic Lodgement

COMPANY PRESENTATION

Please find attached a copy of the presentation that will be made by Peninsula Energy Limited's Executive Chairman Gus Simpson at the Indaba Mining Conference in Cape Town, South Africa today.

A copy of the presentation can also be obtained from our website at: www.pel.net.au.

Yours sincerely

Jonathan Whyte Company Secretary

For further information, please contact our office on (08) 9380 9920 during normal business hours.

Peninsula Energy Limited - ABN: 67 062 409 303

INDABA 2011 PRESENTATION

John Simpson (Gus) Executive Chairman

February 2011

Disclaimer

This presentation is provided on the basis that the Company nor its representatives make any warranty (express or implied) as to the accuracy, reliability, relevance or completeness of the material contained in the Presentation and nothing contained in the Presentation is, or may be relied upon as, a promise, representation or warranty, whether as to the past or the future. The Company hereby excludes all warranties that can be excluded by law. The Presentation contains material which is predictive in nature and may be affected by inaccurate assumptions or by known and unknown risks and uncertainties, and may differ materially from results ultimately achieved.

The Presentation contains "forward-looking statements". All statements other than those of historical facts included in the Presentation are forward-looking statements including estimates of resources. However, forward-looking statements are subject to risks, uncertainties and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements. Such risks include, but are not limited to, gold and other metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks and governmental regulation and judicial outcomes. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstances after the date of the Presentation, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws. All persons should consider seeking appropriate professional advice in reviewing the Presentation and all other information with respect to the Company and evaluating the business, financial performance and operations of the Company. Neither the provision of the Presentation nor any information contained in the Presentation or subsequently communicated to any person in connection with the Presentation is, or should be taken as, constituting the giving of investment advice to any person.

Presentation does not relate to any securities which will be registered under the United States Securities Act of 1933 nor any securities which may be offered or sold in the United States or to a US person unless registered under the United States Securities Act of 1933 or in a transaction exempt from registration.

The Exploration and Target Potential described in this presentation is conceptual in nature, and there is insufficient information to establish whether further exploration will result in the determination of a Mineral Resource

Competent Person

The information in this presentation that relates to Exploration Results, Mineral Resources and Ore Reserves is based on information compiled by Mr Alf Gillman. Mr Gillman is a Fellow of the Australian Institute of Mining and Metallurgy. Mr Gillman is General Manager Project Development and is a Competent Person under the definition of the 2004 JORC Code. Mr Gillman has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Gilman consents to the publication of this information in the form and context which it appears.

Note

Disequilibrium Explanatory Statement: eU_3O_8 refers to the equivalent U_3O_8 grade. This is estimated from gross-gamma down hole measurements corrected for water and drilling mud in each hole. Geochemical analysis may show higher or lower amounts of actual U_3O_8 , the difference being referred to as disequilibrium. Disequilibrium factors were calculated using the Peninsula PFN database and categorized by area and lithological horizon. Specific disequilibrium factors have been applied to the relevant parts of the resource based on comparative studies between PFN and gamma data. There is an average positive 11% factor applied. All eU_3O_8 results above are affected by issues pertaining to possible disequilibrium and uranium mobility.

Investment Highlights

- Emerging uranium producer listed on the (ASX:PEN) with established project pipeline
- 33mlbs JORC Compliant Resource and growing
- Exploration potential 185–295mlbs U₃O₈ between Wyoming and Karoo
- Targeting production of 1.5mlbs U₃O₈ p.a. 2012 from Wyoming and targeting 2016/2017 from Karoo
- Low CAPEX (Wyoming) development expenditure US\$53M Y1
- Robust profit projections due to U₃O₈ grades and low operating costs
- Strong supply / demand fundamentals for uranium

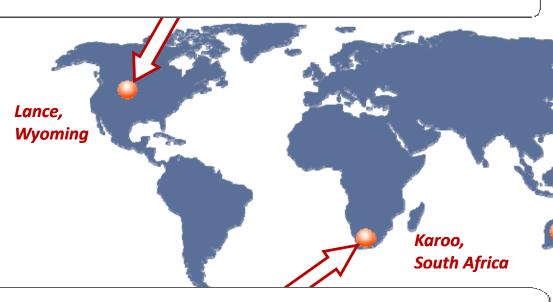
Corporate

	Share Price
Shares on issue	2065m
Share price	\$0.10
Market capitalisation	\$207m
Cash balance	\$33m
Debt	\$0
Enterprise value	\$174m
Equity Facility	\$100m
Shareholding	
Directors & Associates	~ 22%
Top 20 shareholders	27.00%

4700 <u>-</u>					MA AM	Λ,	N V 1	W)	0.100
4600 <u>-</u>	<u> </u>		۸. ۸	\mathcal{M}	1 N.A.	M	\setminus	V /	0.080
1 4500 –	. <i>M</i>	N	~	/ v			100		0.070
4400 -	M/ \	10	WIN			1/2		<u> </u>	0.060
=	₩"Y \	\(\frac{1}{2}\frac{1}{	1		. ~ ^^			Ē	0.050
4300 = 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A.~~>	<u> </u>	-A-N-4	~~				0.030
	PEN - Volume								
								= <u>-</u>	400000

Peer Comparison	Avg EV/Resource Multiple	Market Cap A\$
Uranium Energy Corporation	\$26.30	\$439,255,275
Uranerz Energy Coproration	\$13.77	\$368,980,000
UR Energy Inc	\$12.41	\$332,510,000
Peninsula Energy Limited	\$6.27	\$207,000,000

Options on issue	Number	Strike	Expiry
Listed options [ASX:PENOA]	415,100,863	3c	30-Jun-12
Listed options [ASX:PENOC]	472,676,926	3 c	31-Dec-15
Unlisted options	16,000,000	4c, 5c,10c,12.5c	18-Sep-12
Performance Shares	51,000,000	Class A, B, C	30-Jun-14



Uranium Assets

33mlbs JORC Compliant Resource U₃O₈

13 project areas with drill-defined mineralisation 95 - 145mlbs U_3O_8 Potential

Average project grades up to 1,250ppm eU₃O₈

Established 8mlbs in-situ U₃O₈

3 project areas with drill-defined mineralisation 90 - 150mlbs U_3O_8 Potential

Average project grades up to 1,480ppm eU₃O₈

618 km² land holding 7 project areas Exploration potential in quality uranium provinces

WA, Australia

The exploration and target potential described in this presentation is conceptual in nature, and there is insufficient information to establish whether further exploration will result in the determination of a mineral resource

Business Plan

 Planning to commence ISR production at Ross, Wyoming in 2012 building to 1.5mlbs U₃O₈ p.a. (Plant capacity 3mlbs p.a.)

Underpin balance sheet with profit from Wyoming

- Develop conventional mining and milling operation at Karoo by 2016 / 2017
- Continue to develop the mineral potential at:
 - Wyoming 95-145mlbs U_3O_8
 - Karoo 90-150mlbs U_3O_8
- Look at near production acquisition opportunities in areas of existing operation

Directors and Management

Board of Directors

Executive Chairman

Exec. Director (Finance & Ops)

Technical Director

Non Executive Director

Non Executive Director

Gus Simpson Strong leadership, corporate and project management skills Malcolm James Strong corporate project mgmt. and financing experience

Dr Alan Marlow PhD in economic geology and uranium specialist

Warwick Grigor Experienced mining analyst and corporate director

Mike Barton Charted Accountant with strong background in resources & finance

Executive Management

Chief Operating Officer

General Manager – Project Develop.

Project Manager – DFS

Company Secretary

Tony Simpson Mining engineer, 40+ yrs experience

Alf Gillman Highly experienced uranium geologist

Al Berglund ISR mining engineer, 35 yrs+ experience

Jonathan Whyte CA and experienced Company Secretary

Wyoming Project Team

ISR Mining Expert

Exploration Manager Wyoming

Hydrological Engineers

Mine Permitting Engineers

• ISR Process Design Engineers

Al Berglund ISR mining and extraction engineer, 35 yrs+ experience

Jim Guilinger Highly experienced uranium geologist

Petrotek Engineering Corporation

WWC Engineering Experienced ISR permitting engineers

Lyntek Inc Experienced ISR plant design & feasibility studies

Karoo Project Team

Exploration Manager

Project Manager

• Project Geologist

Henri Lombard Experienced exploration manager

John Simpson Open pit and underground mining consultant

Dr Barry Millstead Experienced sedimentologist

Uranium Demand

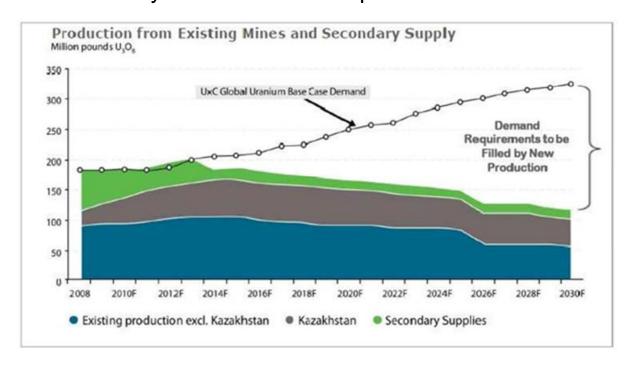
REGION	Reactor Units and Market Demand Forecasts Anticipated by Region							
	# of Reactor Units 20	U ₃ 0 ₈ Demand mlbs pa	# of Reactor Units 20	U ₃ 0 ₈ Demand mlbs pa 15	# of Reactor Units 20	U ₃ 0 ₈ Demand mlbs pa	# of Reactor Units 20	U ₃ 0 ₈ Demand mlbs pa
North America	124	52	126	54	133	59	144	60
Western Europe	130	54	127	55	131	58	123	52
Japan	55	23	56	24	58	26	53	22
Eastern Europe	68	29	76	33	86	38	105	44
Asia & Oceania (Excl Japan)	56	23	101	44	151	67	240	100
Africa & Middle East	2	1	3	1	11	5	23	10
South America	4	2	6	3	6	3	11	5
TOTALS	439	183.9	495	213.1	576	254.5	699	292.8

The number of <u>countries</u> utilising nuclear power

2010, **31**

2020, **40**

2030, **52**


Uranium Supply

Kazakhstan ISL U₃O₈ Production Increases:

2000, 5mlbs 2008, 18mlbs 2009, 36mlbs 2010, 40mlbs

restrained spot price but all production has been purchased

- Megatons to Megawatts program
 - Uranium recovery from nuclear weapons ends in 2013 24mlbs ENDS

Future Uranium Supply Issues

Further Kazak production expansion

UNLIKELY

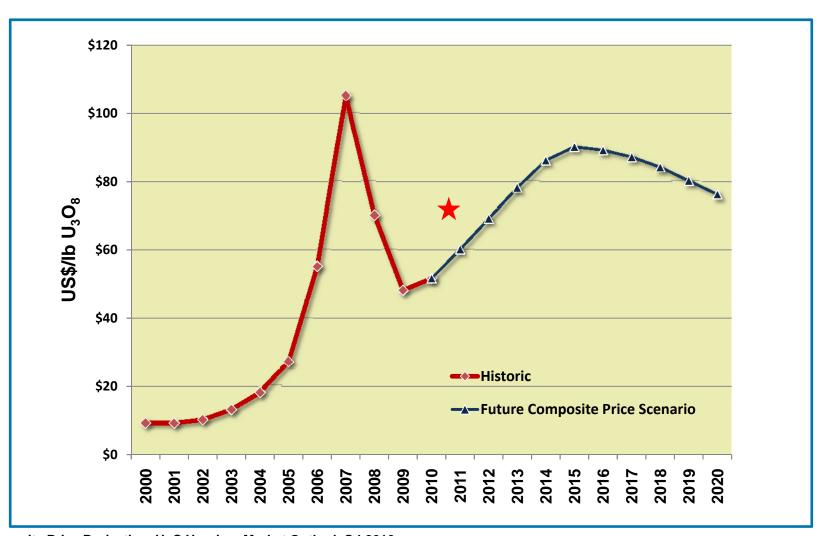
- Cigar Lake development delay due to mine flooding (October 2006 / August 2008); Production was to be 2007, now 2013/2014 at earliest UNLIKELY
- Olympic Dam expansion ~\$9-30Bn

DELAYED INDEFINITELY

- Midwest Mine (McClean Lake) expected start-up 2010 SHELVED
- Rossing expansion

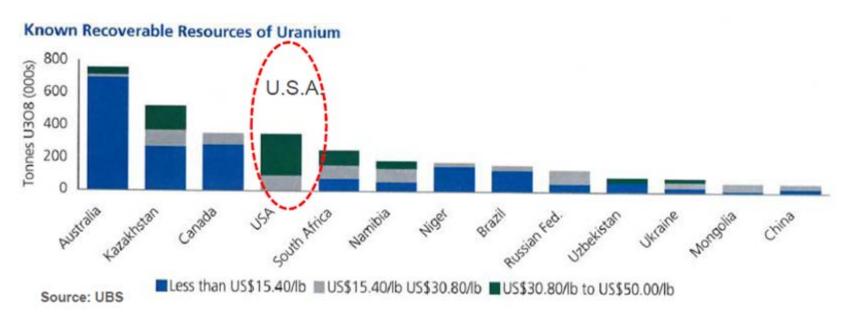
DELAYED

• **Equinox Minerals** uranium recovery plant at Lumwana Project (Zambia) planned 2mlbs p.a. 2010

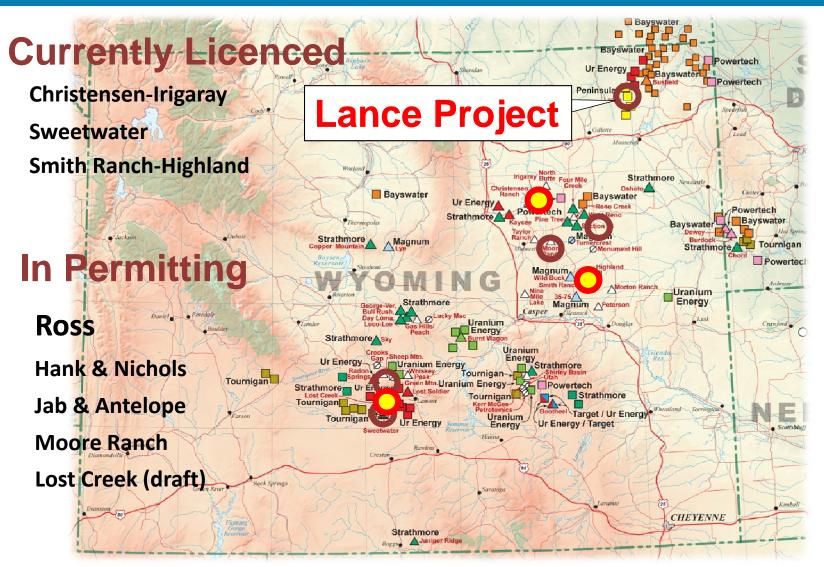

DEFERRED

- Low grade bulk mining production

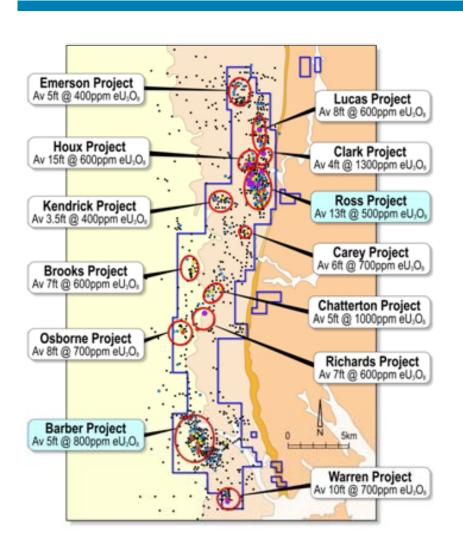
Uranium Price Projections



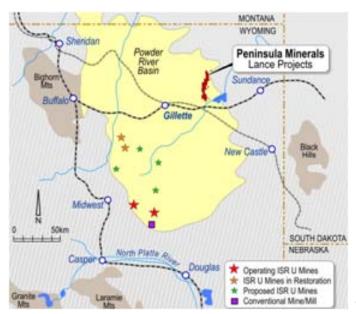
USA Uranium


AMERICA: SIGNIFICANT URANIUM RESOURCE OPPORTUNITY

- * 104 nuclear reactors consume 55mm lbs of U308/year to generate 20% of US electricity grid
- Currently, the US produces approximately 4mm lbs of U308/year
- Down-blended Russian nuclear weapons have supplied the U308 fuel for the U.S. (HEU Agreement)
- HEU agreement expires 2013
- The U.S. holds 4th position globally for known recoverable resources of U308

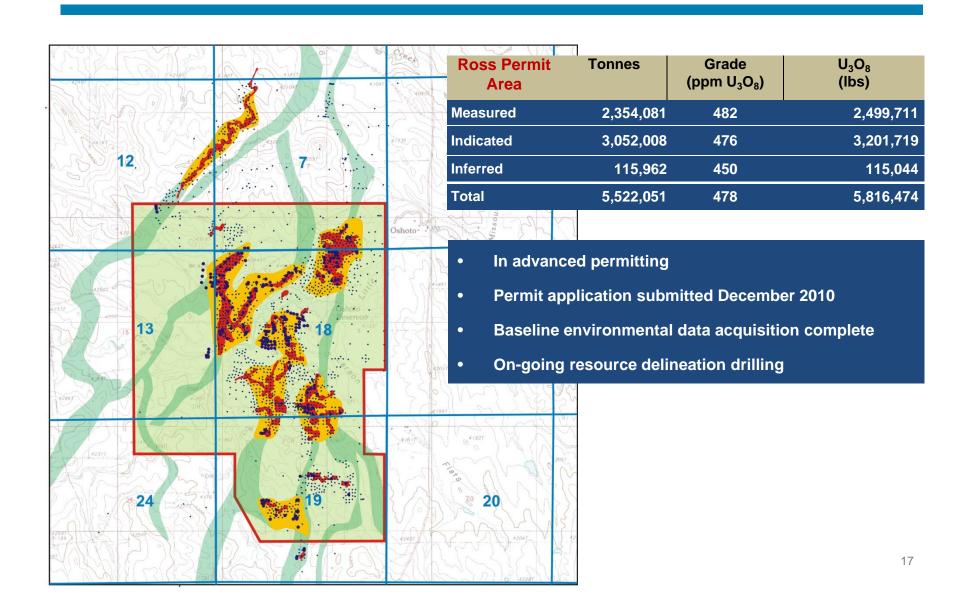


Wyoming Uranium



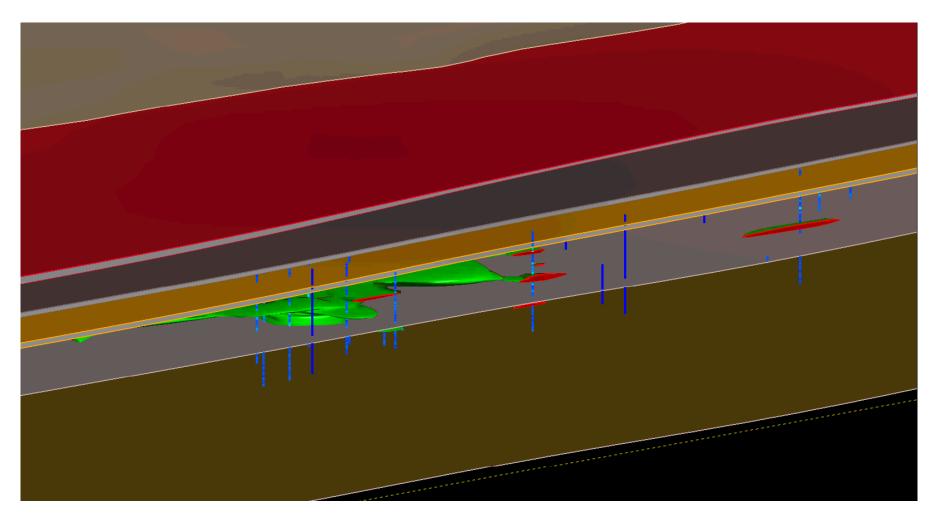
Lance Projects – Mineral Potential

- Explored by Nubeth JV 1971-1984
 - 5,400 drill holes
 - Trial ISR for 8 months
- 22 roll fronts extend for a combined linear strike length of 190 miles (305 km)
- 13 project areas with drill defined mineralisation


Lance Projects – PENINSUL Exploration Potential & JORC Resource

Exploration Potential	Tonn (M)		Gra (ppm l		U ₃ ((mlk	O ₈ os)
Range	From	То	From	То	From	То
Total	117.7	134.7	360	500	95	145

Resource Category	Tonnes (M)	Grade (ppm U ₃ O ₈)	U ₃ O ₈ (mlbs)
Measured*	3.7	472	3.8
Indicated*	7.0	434	6.7
Inferred*	22.6	450	22.5
Total*	33.3	449	32.9



Ross Permit Area

Ross P.A. – Geology Fly Through

Lance Projects – Development Model

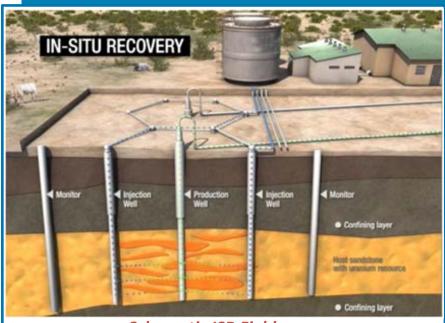
• 32.9mlbs U₃O₈ JORC compliant resource

Resource Category	Tonnes (M)	Grade (ppm U ₃ O ₈)	U ₃ O ₈ (mlbs)
Measured	3.7	472	3.8
Indicated	7.0	434	6.7
Inferred	22.6	450	22.5
Total	33.3	449	32.9

To build a 1.5mlbs per year ISR operation inclusive of:

- Ion exchange facility
- Centralised resin stripping, drying and packaging plant
- Remote ion exchange facility at Barber

Commence production in 2012:


Production expansion target of 3mlbs per year by 2017

• Continue to delineate 95-145mlbs of uranium mineralisation through:

- Exploration within the other 11 project areas
- Exploration in the areas between the 13 projects
- Acquisition of other projects

In-Situ Recovery – Process

Schematic ISR Field

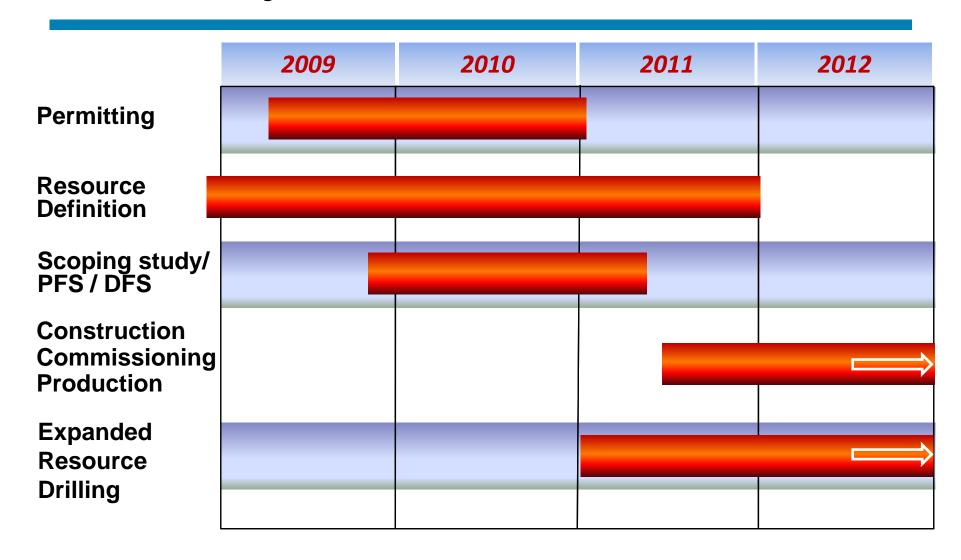
Cameco's Smith Ranch operation

Process

- Groundwater combined with oxygen and bicarbonate and circulated through deposit via injection and recovery wells
- Oxygen enriched water moves through aquifer and dissolves in-situ uranium
- Uranium enriched solution is pumped to surface and precipitated as yellow cake

Advantages

- Low capital cost
- Lower operating cost
- Shorter construction and commissioning periods
- Reduced labor per unit produced
- Low environmental impacts
- Greatly reduced solid waste (no tails)



Worldwide ISR Mining Jurisdiction ENERGY....

Lance Projects - Schedule

Lance – Pre-Feasibility Study

Revenue	US\$ per lb US\$ / Year \$65-\$75 \$112 million
Operating cash cost (C1) Royalties & Tax Total Operating Cash Cost Depreciation & Amort (average) Total Production cost	\$13.5 \$20 million \$7.9 \$12 million \$21.4 \$32 million \$8.6 \$13 million \$30.0 \$45 million
Profit Before tax	\$67 million
Tax (average)	\$20 million
Net Profit after tax	\$47 million
NPV (10%) after tax	\$162 million
IRR	48%

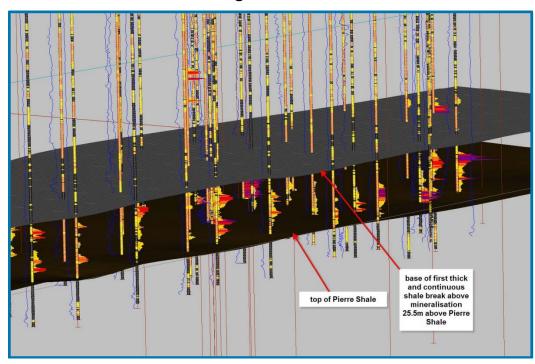
Interest rate 8%

60:40 Debt to Equity Ratio

ASSUMPTIONS

Real discount rate 10%

39% tax


- ISR mining with centralised plant
- 1.5mlbs p.a. U₃O₈
- Uranium grade 507ppm U₃O₈
- Estimated recovery 76%
- Project Cap Ex. \$53M initial & \$26M over Yr2 & Yr3
- Opex. \$13.5/lb
- Recovered resource 15mlbs U₃O₈
- US\$10.9M financing cost over 5 year loan life
- US\$26.7M decommissioning and restoration cost included in C1 costs

Project Status – Met. Testing

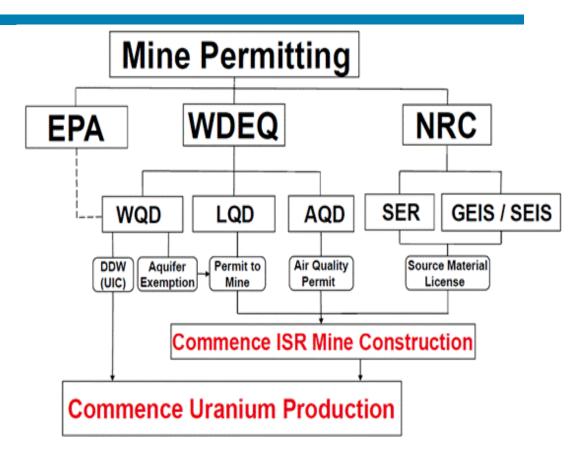
The agitation leach testing shows Ross uranium leaches very well at low concentrations of bicarbonate and oxidant in the lixivant

- An average of all samples resulted in better than 80% leaching of uranium
- Testing of drill core displays high permeability and porosity
- Permeability averaging 2,400 millidarcies (mD)
- Porosity averaging 42%
- Results confirm the applicability of the ISR mining method
- The targeted aquifer is exempt and test work proves its suitability for ISR mining
- Water table at average 150ft (46m) depth

Project Status – Permitting

Mine permitting on schedule

Deep Disposal Wells


- · DDW feasibility study completed
- License application lodged

NRC Source Material Licence

- Technical reports completed
- Environmental reports completed
- License application lodged

WDEQ Permit to Mine

- Technical reports completed
- · Environmental reports completed
- License application lodged

WWC Engineering Services fast tracking the review and issue period for the required permits by:

- Implementing continuous process of review and discussion with all stakeholders
- Regular meetings with the NRC, EPA, WDEQ and BLM to discuss the progress
- Lodgement of composite application with all regulatory agencies

Project Status – DFS

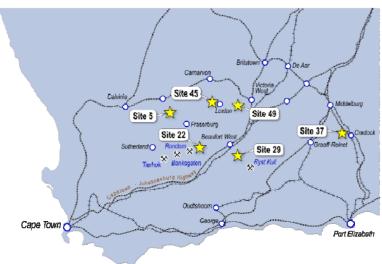
- Colorado-based global mining engineering consultants Lyntek Inc
- The DFS 80% complete and will be finished by March 2011, on schedule
- Lyntek has delivered second iteration of plant design and completing the third round of metallurgical testing
- Process of optimisation continues producing more accurate designs for inclusion in the DFS

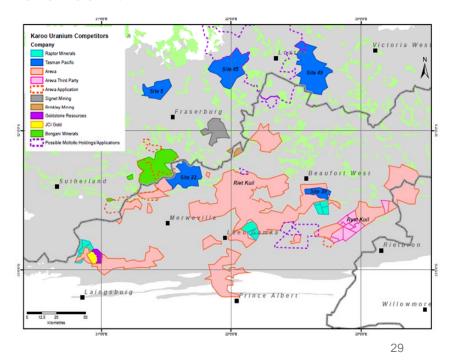
Project Status – Funding

- Appointed Rockbury to coordinate the project funding process – Gerard Holden – past MD Barclays Global
- Debt discussions with banking groups underway
 - likely to involve ~60% debt
- Equity potential involvement of strategic partner discussions advanced



Project Status – Uranium Sales


- Discussions ongoing with utilities, brokers, and trading houses
- Company assessing various EOI from these groups
- Company has responded to RFP's from three US power utilities and is currently negotiating terms
- Sales contracts in final stage of negotiation



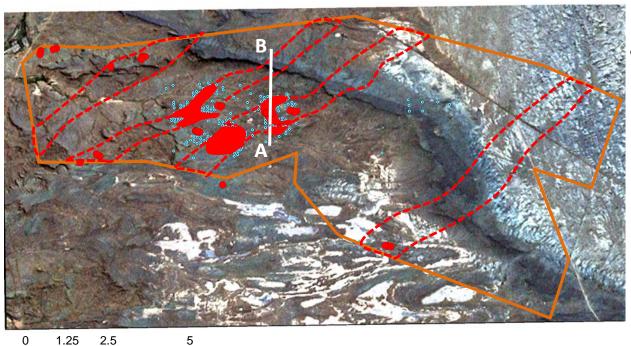
Karoo Projects – South Africa

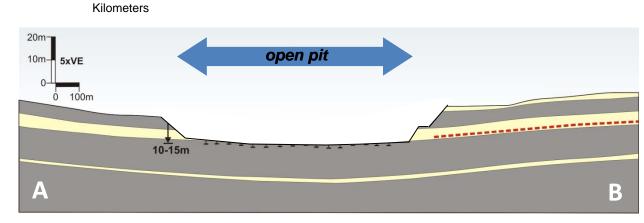

- 6 project areas covering 1,986 km² in the Karoo basin
- The Karoo is one of the main areas of focus for uranium exploration in RSA
- Significant associated molybdenum mineralisation

Karoo – Regional Geology

Karoo Projects – Mineral Discovery ENERGY

- JCI and Union Carbide drilled 1,300 drill holes delineated three mineral deposits on three of the of the projects
- 2008 Radiometric and magnetic survey over 6 sites - 392 uranium occurrences
- 2008 Underlying geology and topography interpreted for areas of high uranium values and large aerial extent of uraniferous rock
- 392 occurrences reduced to 36 high priority for direct geological study 2009
- 2009 The combination of the geological investigations, assay results and historical drilling reduced 36 to the 10 most prospective sites
- 2011 January commenced drilling to expand known mineralisation to 30mlbs U₃O₈ Time frame 12 - 18 months


Karoo Projects -**Exploration Potential and Historic Mineralisation**


Exploration Potential	Tonn (M)		Gra (ppm l		U ₃ (mlk	O ₈ os)
Range	From	То	From	То	From	То
Total	36.0	60.0	1,200	1,400	90	150

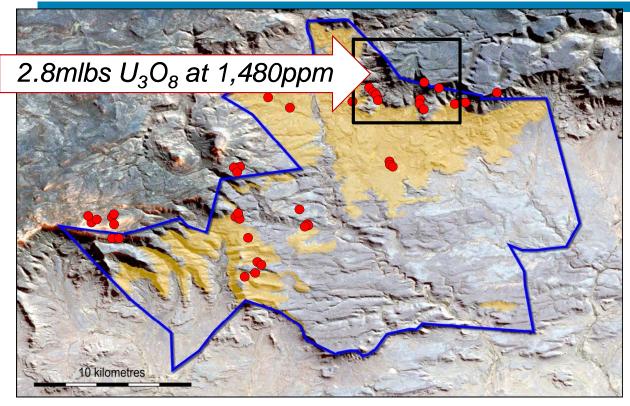
Historic Mineralisation	Tonnes	Grade (ppm U ₃ O ₈)	U ₃ O ₈ (mlbs)
Site 22	860,000	1,480	2.8
Site 45	2,786,000	700	4.3
Site 29	246,000	1,107	0.6
Total	3,892,000	1,015	7.7

Site 29 Uranium Potential

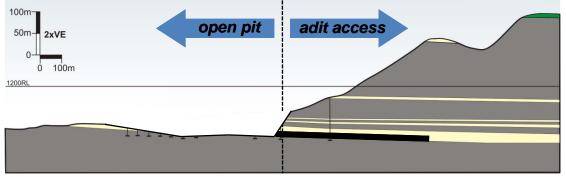
- 108km² of Prospective Poortjie Sandstone
- 308 holes drilled by Union Carbide
- Drill-defined 600,000 lbs
 U₃O₈ at 1,107 ppm
- Numerous un-tested uranium occurrences and channel systems
- Current drilling confirming high grade U₃O₈
- Mineralisation amenable to open pit mining

Cross Section

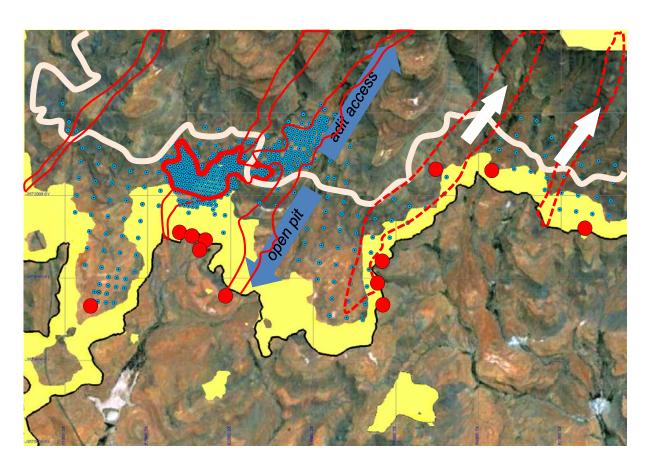
Site 29 January 2011 Drill Program ENERGY



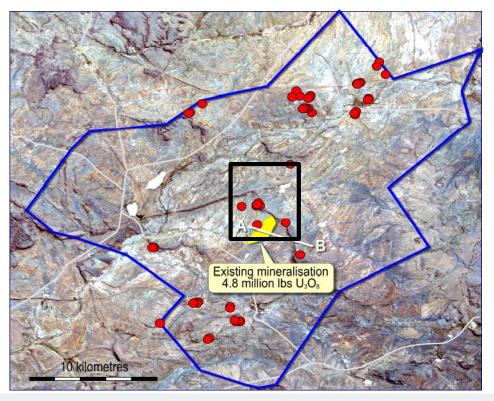
High grade intersections confirmed

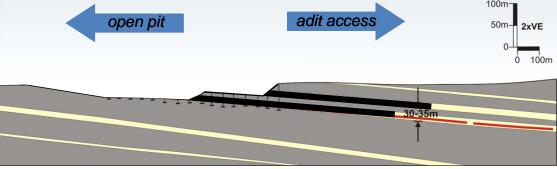


Site 22 Uranium Potential

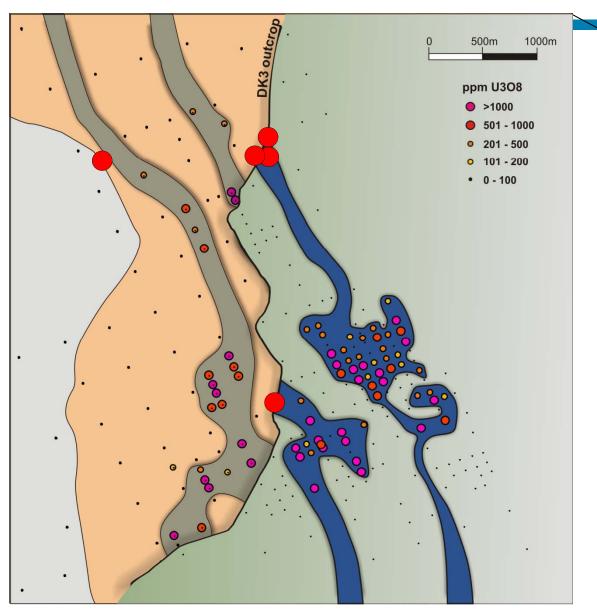

- 23 kilometers of prospective strike
- 120 km² of prospective Poortjie Sandstone
- 707 percussion holes drilled by JCI
- GT7 2.8mlbs drilldefined U₃O₈
- Amenable to openpit mining
- Numerous un-tested U₃O₈ occurrences

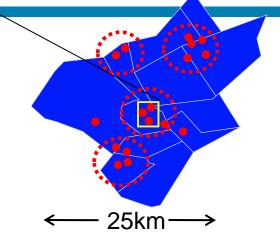
Cross Section


Site 22 Uranium Potential


- multiple stacked uranium-bearing channels
- >15mlbs U₃O₈ potential

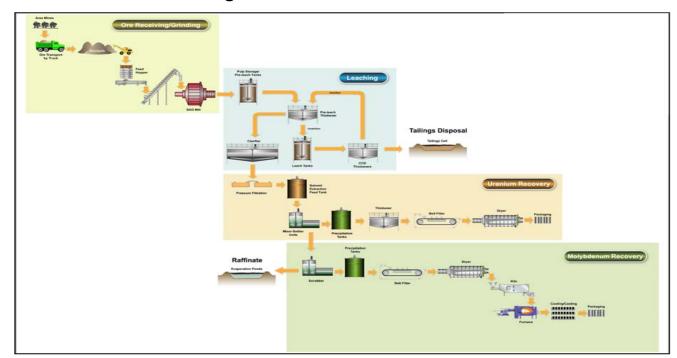
Site 45 Uranium Potential


- Prospective Davidskolk Member
- 432 holes Drilled by JCI
- Drill-defined mineralisation amenable to open-pit mining 4.8mlbs U₃O₈
- Numerous un-tested uranium occurrences
- Potential for >15mlbs U₃O₈



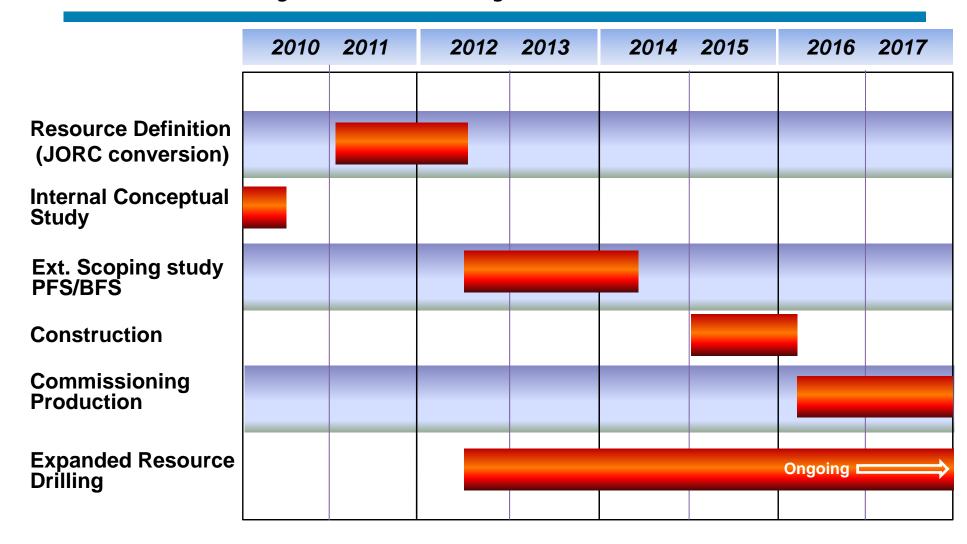
Cross Section

Site 45 Uranium Potential



- DK2 basal sandstone
- drill intersections
- DK2 resource channel
- DK3 upper sandstone
- drill intersections
- DK3 resource channel
- anomalous surface samples
- potential 15mlbs U₃O₈

Karoo Projects – Development Model


- Multiple open-pits; with central processing facility at Beaufort West
- Conventional mining & milling operation
- All sites within road-hauling distance

- Planning production in 2016/2017
- Continue to delineate > 120mlbs of uranium mineralisation.

Karoo Projects – Project Schedule

Karoo Projects – Conceptual Study

	US\$ per lb	US\$ / Year
Revenue	\$65-75	\$191 million
Capex Amortisation	\$3.4	\$11.6 million
Financing cost	\$1.0	\$3.3 million
Operating Costs	\$28.5	\$76.1 million
Royalty (3%)	\$2.0	\$5.1 million
Total Costs	\$34.9	\$96 million
Molybdenum Credit	\$5.2	\$15 million
Depreciation		\$14 million
Gross Margin		\$110 million
Tax		\$29 million
Net		\$81 million
NPV		\$211 million

Assumptions

30% tax, Interest Rate 8%, Real Discount Rate 10%, 60:40 Debt to Equity Ratio

- Assume 30mlb U₃O₈ and 3mlbs p.a. production
- Open-pit mining with conventional milling
- Central processing facility at Beaufort West near Site 29
- Drill defined mineralisation at Sites 22, 29 & 45 average 700 - 1400ppm U₃O₈
- Estimated recovery 90%
- Estimated capital cost US\$197 million

Figures are indicative only and developed for internal project evaluation purposes

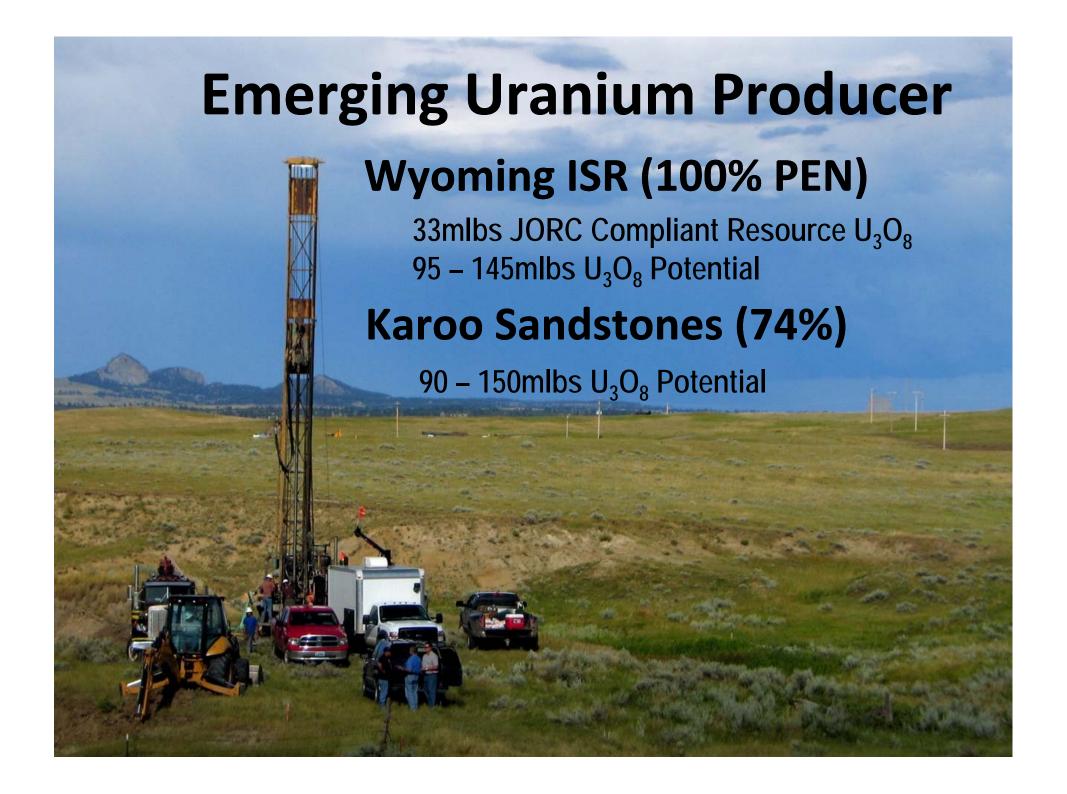
Karoo Targeted Milestones

• Jan 2011: Commence resource

development drilling program

May 2011: JORC compliant resource

Dec 2012: JORC compliant resource of ~30mlbs


June 2014: Complete Definitive Feasibility Study

July 2016: Commencement of production

Wyoming Targeted Milestones

•	April 2010:	Initial JORC compliant resource at Lance	✓	
•	May 2010:	Pre-feasibility study completed	✓	
•	July 2010:	Revised JORC compliant resource	✓	
•	Dec 2010:	Submit final licence applications	✓	
•	Jan 2011:	2 nd revised JORC compliant resource	✓	
•	Feb 2011:	Uranium sales contract		
•	Mar 2011:	Karoo drilling results		
•	April 2011:	Definitive Feasibility Study completed		
•	April 2011:	Decision to mine		
•	April 2011:	Strategic Partner		
•	May 2011:	Initial Karoo resource estimate		
•	June 2011:	Project Funding		
•	June 2011:	3 rd revised JORC compliant resource		
•	Aug 2011:	Project Construction		
•	Sept 2011:	4 th revised JORC compliant resource		43
•	Mar 2012:	Yellowcake production target		.0

