24 March 2010

Exploring the highlyprospective
Ilimaussaq Intrusive
Complex, favourably
located near the
southern tip of
Greenland.

619 Mt JORC compliant multielement resource (REE, U, Zn, NaF) defined at Kvanefjeld plateau, with huge upside potential

Pre-Feasibility Study indicates potential for an economically robust, long life mine

Greenland Minerals and Energy
Ltd is a mineral exploration and
development company positioning
itself to become the worlds
premier supplier of Rare Earth
Elements.

The company is listed on the Australian Securities Exchange.

Website: www.ggg.gl

Contact Details:

Unit 6 100 Railway Road, Subiaco Western Australia 6008

Telephone: +61 8 9382 2322
Facsimile: +61 8 9382 2788
Postal: PO Box 2006

Subjaco WA 6904

ANNOUNCEMENT

Greenland Minerals and Energy Ltd refer to our presentation lodged on 24 March 2011.

We confirm that the reference in slide 11 of the presentation to JORC resources of 619 million tonnes is supported by our resource statement upgrade reported on 23 March 2011 of which the table of resources is herewith attached.

ABOUT GREENLAND MINERALS AND ENERGY LTD.

Greenland Minerals and Energy (ASX – GGG) is an exploration and development company focused on unlocking the mineral riches of southern Greenland. The Company's flagship project is the Kvanefjeld multi-element deposit (Rare Earth Elements, Zinc, Uranium), that is rapidly emerging as the world's premier specialty metals project. Kvanefjeld has now entered the pre-feasibility phase that will ultimately map out a path to development and timeline to production. For further information on Greenland Minerals and Energy visit http://www.ggg.gl or contact:

Roderick Mcillree, Managing Director +61 8 92261100 David Tasker (Australia) Professional PR +61 (0) 89388 0944 Laurence Read (UK) Threadneedle PR +44 (0)20 7653 9855

Greenland Minerals and Energy Ltd is aware of and respects the Greenlandic government stance on uranium exploration and development in Greenland – which is currently a zero tolerance approach to the exploration and exploitation of uranium. Any potential change toward the current stance of zero tolerance is not expected until after the public consultation and review process is concluded in the coming months.

The company is currently advancing the Kvanefjeld Project, recognised as the world's largest undeveloped JORC compliant resource of rare earth oxides (REO), in a multi-element deposit that is inclusive of uranium and zinc.

Greenland Minerals will continue to advance this world class project in a manner that is in accord with both Greenlandic Government and local community expectations, and looks forward to being part of the community discussion on the social and economic benefits associated with the development of the Kvanefjeld Project.

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Jeremy Whybrow, who is a Member or Fellow of The Australasian Institute of Mining and Metallurgy or the Australian Institute of Geoscientists or a 'Recognised Overseas Professional Organisation' ('ROPO') included in a list promulgated by the ASX from time to time.

Jeremy Whybrow is a director of the company.

Jeremy Whybrow has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Jeremy Whybrow consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Statement of Identified Mineral Resources, Kvanefjeld Multi-Element Project, March 2011.

	Multi-Element Resources, Classification, Tonnage and Grade									Contained Metal				
Cut-off	Classification	M tonnes	TREO ²	U ₃ O ₈	LREO	HREO	REO	Y_2O_3	Zn	TREO	HREO	Y_2O_3	U ₃ O ₈	Zı
J ₃ O ₈ ppm) ¹		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	M
150	Indicated	437	10929	274	9626	402	10029	900	2212	4.77	0.18	0.39	263	0.
150	Inferred	182	9763	216	8630	356	8986	776	2134	1.78	0.06	0.14	86	0.
150	Grand Total	619	10585	257	9333	389	9721	864	2189	6.55	0.24	0.53	350	1.
200	Indicated	291	11849	325	10452	419	10871	978	2343	3.45	0.12	0.28	208	0.
200	Inferred	79	11086	275	9932	343	10275	811	2478	0.88	0.03	0.06	48	0.
200	Grand Total	370	11686	314	10341	403	10743	942	2372	4.32	0.15	0.35	256	0
250	Indicated	231	12312	352	10950	443	11281	1032	2363	2.84	0.10	0.24	178	0
250	Inferred	41	11251	324	10929	366	10426	825	2598	0.46	0.02	0.03	29	0
250	Grand Total	272	12152	347	10947	431	11152	1001	2398	3.30	0.12	0.27	208	0
300	Indicated	177	13013	374	11437	469	11906	1107	2414	2.30	0.08	0.20	146	0
300	Inferred	24	13120	362	11763	396	12158	962	2671	0.31	0.01	0.02	19	0
300	Grand Total	200	13025	373	11475	460	11935	1090	2444	2.61	0.09	0.22	164	0
350	Indicated	111	13735	404	12040	503	12543	1192	2487	1.52	0.06	0.13	98	0
350	Inferred	12	13729	403	12239	436	12675	1054	2826	0.16	0.01	0.01	10	C
350	Grand Total	122	13735	404	12059	497	12556	1179	2519	1.68	0.06	0.14	108	0

¹There is greater coverage of assays for uranium than other elements owing to historic spectral assays. U₃O₈ has therefore been used to define the cutoff grades to maximise the confidence in the resource calculations.

Note: Figures quoted may not sum due to rounding.

²Total Rare Earth Oxide (TREO) refers to the rare earth elements in the lanthanide series plus yttrium.