

The following presentation represents Galaxy's management's best judgment at the time of presentation. The contents include forward looking statements prepared on the basis of assumptions which may prove to be incorrect. This presentation should not be relied upon as recommendation or forecast by Galaxy Resources Limited. No representation or warranty is made as to accuracy, completeness or reliability of the information

Competent Persons

The information in this report that relates to Mineral Resources is based on information compiled by Mr. Robert Spiers who is a full time employee of Hellman & Schofield Pty Ltd and who is a Member of the Australian Institute of Geoscientists. Mr. Spiers has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Spiers consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Mineral Ore Reserves is based on information compiled by Mr. Roselt Croeser who is a full time employee of Croeser Pty Ltd. Mr. Croeser has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Croeser consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

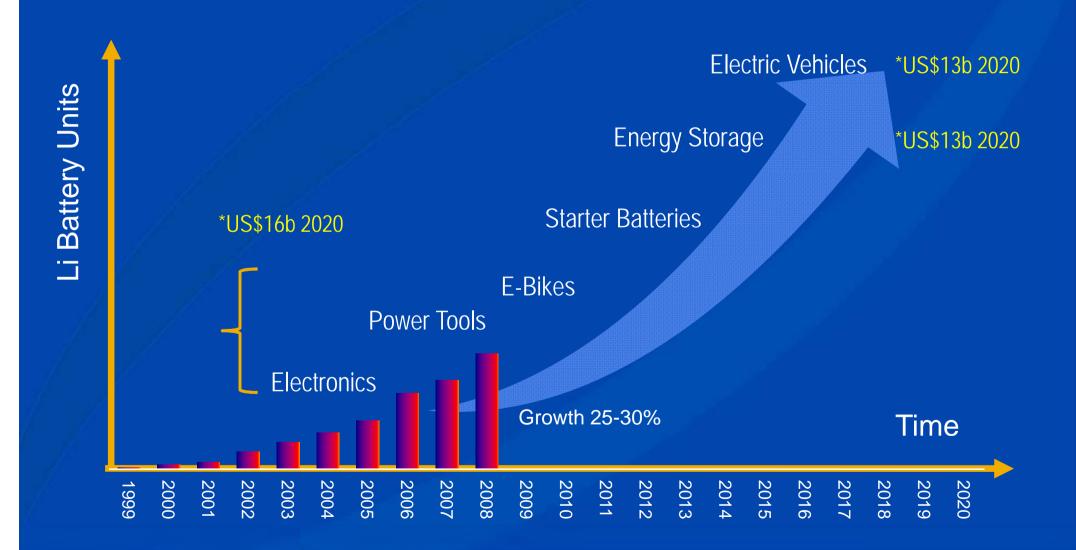
The information in this report that relates to Exploration Results, including exploration data and geological interpretations is based on information compiled by Mr Philip Tornatora who is a full time employee of the Company and who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr. Tornatora has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Tornatora consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

James Bay Competent Person

The mineral resources are reported in accordance with National Instrument 43-101 and have been estimated in conformity with generally accepted CIM "Estimation of Mineral Resource and Mineral Reserves Best Practices" guidelines. Resource evaluation work was completed by Mr. Sébastien Bernier, P.Geo (OGQ#1034, APGO#1847) an independent Qualified Person as defined by NI 43-101.

COMMENTS

INVESTMENT OVERVIEW



- Lithium Pure Play
- Downstream Integration Value Add
- Resource, Chemical, Battery
- Operating mine and ore resources Australia / Canada
- Lithium Carbonate chemical facility in China
- Lithium battery project in China

GROWTH PROFILE

PRESSURE ON LEAD BATTERIES

RESOURCE DIVISION

MT CATTLIN MINE

Operating spodumene mine

Resource of 18 mt at 1.08% Li₂O *

- Expected mine life of 18 years at 1 mtpa
- ◆ 137,000 tpa spodumene grading 6% Li₂O
- Record construction of <11 months</p>
- Project on time and on budget (A\$80m)
- Third shipment end October 11

*	Resource	Tonnes	Li ₂ O %	Ta₂O₅ ppm	
	Measured	3,193,000	1.17	149	
	Indicated	10,613,000	1.06	168	
	Inferred	4,382,000	1.07	132	
	TOTAL	18,188,000	1.08	156	

CHEMICAL DIVISION

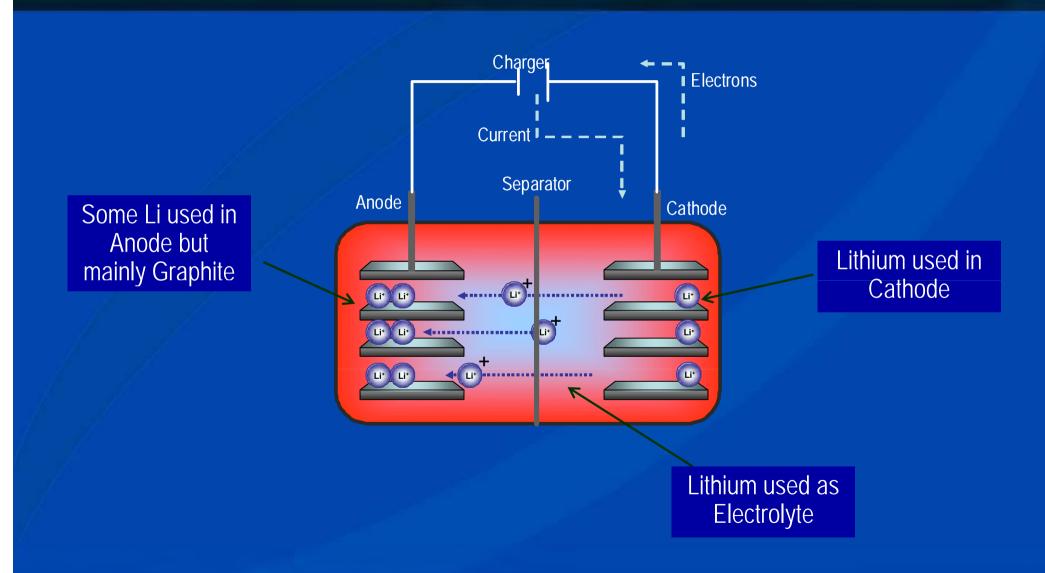
GALAXY **CHINA LC INDUSTRY** meeting a lithium future Hallar * Harbin **Xinjiang Non-ferrous** Changehun Jrumqi Shenyang Beijing , Hohhot + Shijiazhuang 🛖 **Aba Guangsheng** Yinchuan Taiyuan 🚖 Jinan 🛊 Olingdans Golmud Xuzhou **General Lithium** Sichuan Ni&Co Guorun Shigunhe Stribua Zistribua Zistribuay Similyind Changzhou ** Nanjing ** Hefei 🛨 **JIANGSU** Hangzhou Wuhan 🚖 Chengdu 🖈 GALAXY Nanchang **Minfeng Lithium** Chongqing * Changsha Fuzhou Sichuan Tianqi Kunming 🛖 Guangzhou Jiangxi Ningdu Taiyu

JIANGSU PLANT IS STRATEGICALLY LOCATED

- Zhangjiagang Free Trade Zone
- Galaxy owns 100%
- 120 top foreign companies
- Chemical Industrial Park
- Adjacent to a wharf
- Supply of sulfuric acid and soda ash
- Close to markets

JIANGSU LITHIUM CARBONATE PLANT

- Largest LC plant in China
- ◆ 17,000 tpa of high quality LC
- Continuous production technology
- Capability 99.9% purity and above
- Focus lithium-ion battery industry
- Currently under construction
- Commissioning by end Q4 2011
- On schedule and budget



PRODUCING FOR THE BATTERY INDUSTRY

LITHIUM CONSUMPTION – BATTERIES

WHY LITHIUM BATTERIES?

Performance Comparison of Different Chemistries of Batteries							
Battery Chemistry	Pb-Acid	Ni-Cd	Ni-MH	LMO	LFP		
Working Voltage	2V	1.2V	1.2V	3.7V	3.3V		
Energy Density (Wh/L)	100	150	250	285	255		
Energy Density (Wh/Kg)	30	57	80	110	115		
Cycle Life	400	500	500	>800	>2000		
Self Discharge Rate (%)	20%	30%	35%	10%	8%		
Safety	Good	Good	Good	Moderate	Good		
Environment Friendliness	No	No	Yes	Yes	Yes		

HIGHER GRADES FOR LI BATTERIES

IMPURITIES IN LITHIUM CARBONATE

- Metal impurities enter into the lattice of electrodes
- Electrochemical reaction changing crystal structure
- Making batteries electrochemically inactive
- Reduction and ultimately failure in cycle life
- Metal deposition on electrode developing Dendrites
- Short-circuiting the batteries

IMPURITIES IN LITHIUM CARBONATE

- Sodium
 - ◆ May form metal on electrode → explosive compound
 - Enter spinel crystal structure affect discharge capacity
 - Forms sodium oxide, decomposed leads to gassing
- Magnesium, Calcium and Potassium
 - Crystal structure of lithium spinel
 - Fades the capacity of the batteries

Gassing in prismatic cell

IMPURITIES IN LITHIUM CARBONATE

- ◆ Iron
 - ◆ Can be corroded (electrolyte), oxygen, gassing → cell leakage
- Sulfates
 - Decomposing into sulphur solid, enter spinel decrease the performance of the batteries
 - Sulfates can decompose to produce oxygen

BATTERY DIVISION

CHINA'S LITHIUM BATTERY INDUSTRY

- Thousands of small medium factories
- High labour assembly lines
- Cheap low quality raw materials
- Prone to quality inconsistencies
- High defect rates affecting life of batteries
- All trying to do their own R&D
- Cannot compete with Japanese & Korean batteries

GALAXY'S APPROACH

- Feasibility study completed
 - "Turn key" equipment supplied by KUBT (Korea)
 - Full automation extremely low reject rates
 - Suppliers of Samsung and LG Chem
 - ★ K2 Energy US lithium battery partner
 - Leap frog R&D
 - ◆ 350,000 E-bike battery packs pa easy entry point
- More stable Lithium Iron Phosphate batteries
- Securing battery sales off-take

INTERNATIONAL PARTNERS

Owner
Galaxy Resources
Australia

Technology Partner K2 Energy Solutions USA

Turn Key Partner KOBET Consortium Korea

EPCM Manager M+W Group Germany

Plant Location Zhangjiagang China

PROJECT STATISTICS

Statistic		
Number of Battery Packs pa	350, 000	
Battery Pack Capacity	36V, 10Ah	
Cathode Base Material	Li Iron Phos	
Anode Base Material	Graphite	
Capital Cost	A\$134m	

36 cylindrical cells

K2 ENERGY PARTNERSHIP

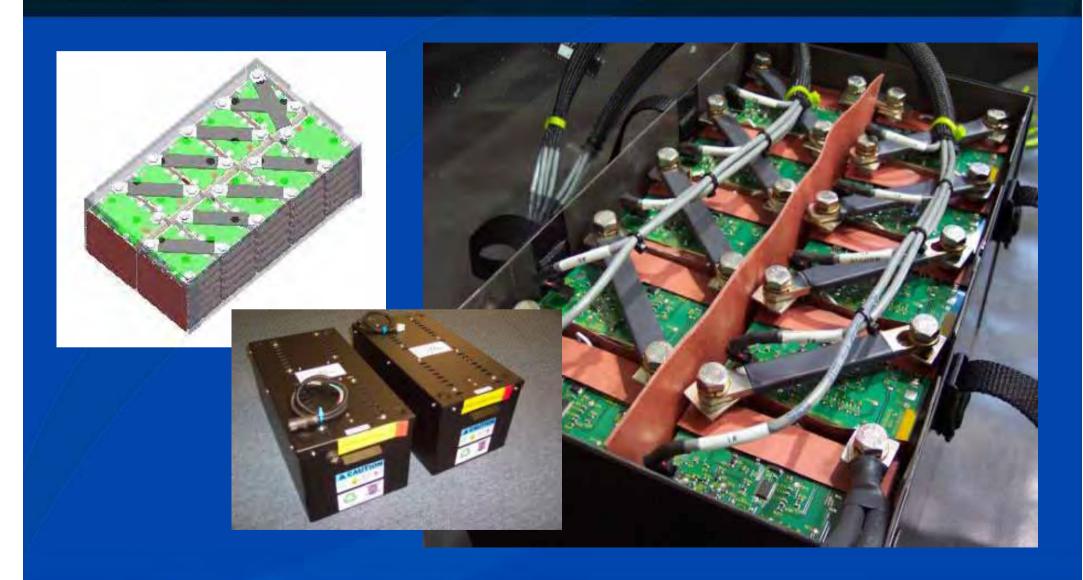
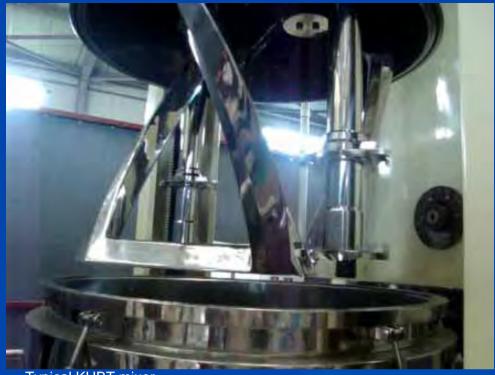

- Established US lithium battery producer
- License to use all K2 Energy's technology
- K2 provides recipe, expertise, commissioning support
- Highest energy densities of any LFP products on the market
- Intellectual property

Table 1 - Energy Density (Wh/I)								
Battery type	K2	Comp 1	Comp 2	Comp 3				
18650 E	290		261	213				
18650 P	242	220						
26650 P	241	220	223					
26650 EV	297							


EXPERIENCE IN LARGE FORMAT BATTERIES

Typical KUBT mixer

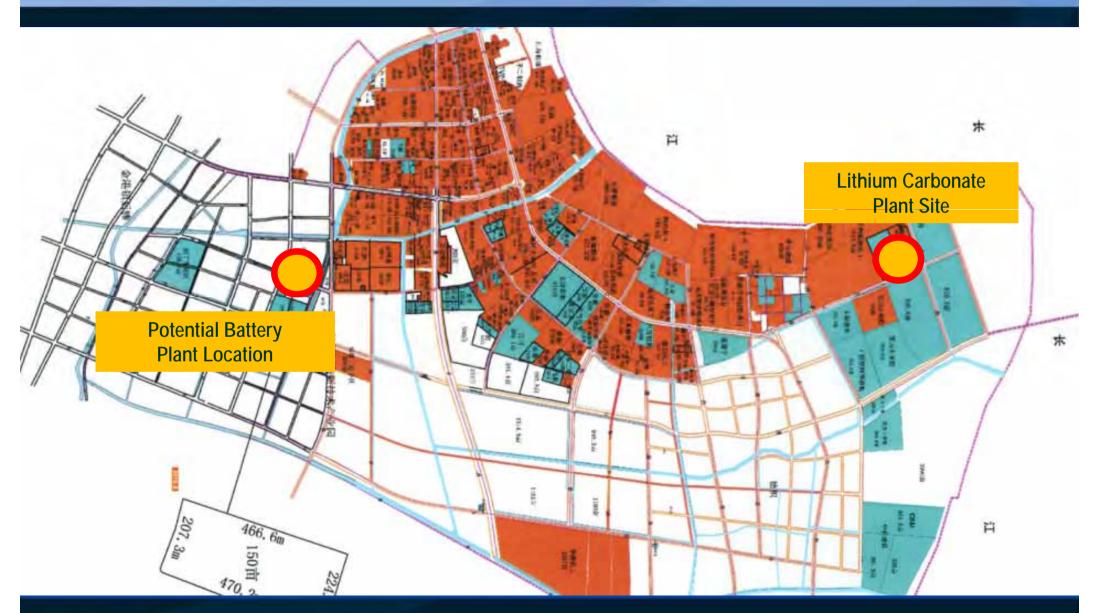
KUBT coating and drying machinery

KUBT rolling and slitting machinery

KUBT rolling and slitting machinery

KUBT separator formation machinery

KUBT jelly roll machine


KUBT tapping machine

KUBT aging and degassing machinery

POTENTIAL LOCATION OF BATTERY PLANT

THANK YOU