

RARE EARTHS MINERALISATION OPEN AT DEPTH ACROSS NOLANS BORE

HIGHLIGHTS:

- South Zone drilling at Nolans Bore confirms rare earths mineralisation is open at depth across large parts of the resource;
- The best South Zone drill intercepts include:
 - $_{\odot}$ 130.0 metres @ 2.1% REO, 10.3% P_2O_5 and 0.35 lb/t U_3O_8 from 46.0 metres in NBRD1028
 - $_{\odot}$ 124.1 metres @ 3.1% REO, 16.0% P_2O_5 and 0.39 lb/t U_3O_8 from 30.0 metres in NBRD365
 - \circ 96.0 metres @ 1.8% REO, 8.1% P_2O_5 and 0.24 lb/t U_3O_8 from 5.0 metres in NBRD882
 - \circ 79.3 metres @ 4.0% REO, 20.0% P_2O_5 and 0.60 lb/t U_3O_8 from 46.6 metres in NBDH879
 - \circ 70.6 metres @ 3.8% REO, 20.2% P_2O_5 and 0.55 lb/t U_3O_8 from 179.6 metres in NBRD891
 - \circ 65.0 metres @ 2.8% REO, 13.9% P_2O_5 and 0.39 lb/t U_3O_8 from 178.6 metres in NBRD328
 - \circ 57.5 metres @ 4.0% REO, 17.6% P_2O_5 and 0.54 lb/t U_3O_8 from 110.5 metres in NBRD269
 - $_{\odot}$ 52.0 metres @ 3.3% REO, 15.8% P_2O_5 and 0.64 lb/t U_3O_8 from 122.0 metres in NBDH1099
 - \circ 51.5 metres @ 3.6% REO, 16.9% P_2O_5 and 0.59 lb/t U_3O_8 from 128.9 metres in NBRD869
 - $_{\odot}$ 34.5 metres @ 4.5% REO, 23.1% P_2O_5 and 0.98 lb/t U_3O_8 from 177.5 metres in NBRD1006
 - 21.0 metres @ 6.1% REO, 25.3% P₂O₅ and 1.06 lb/t U₃Oଃ from 141.0 metres in NBRC866
 - 15.6 metres @ 5.5% REO, 26.4% P₂O₅ and 0.64 lb/t U₃O₀ from
 152.0 metres in NBRD257.

Australian rare earths company Arafura Resources Limited (ASX: ARU) (Arafura or the Company) today reports the discovery of significant intercepts of rare earths mineralisation in deep diamond core drilling beneath the southern part of its 100 per cent-owned Nolans Bore deposit in the Northern Territory.

Prior to the 2011 drilling campaign, the southern part of the Nolans Bore deposit (ASX: ARU 11/11/08 – Figure 1 "South Zone Resource") was sparsely drilled to a nominal

ARAFURA RESOURCES LIMITED

depth of about 90 metres, with few holes exceeding 100 metres, and a maximum drilled depth of about 138 metres. Systematic infill reverse circulation (RC) drilling to 120-150 metres and deeper diamond core to a nominal maximum depth of about 250 metres now demonstrates widespread thick intervals of rare earths mineralisation at depth across the South Zone of the Nolans Bore deposit.

Table 1 provides a summary of assay results from substantial deep drill intercepts across the South Zone, with the distribution of these holes shown on Figure 1. Only intercepts of rare earths mineralisation exceeding 10 metres in width and passing through, or entirely below, 100 metres down-hole are reported here. Importantly, several of the holes terminated in mineralisation (NBRD340, NBRC848, NBRC866, NBRD868-870, NBRC882, NBRD891 and NBRD896).

Arafura recently reported the discovery of a substantial north-south zone of strong rare earths mineralisation in the central part of Nolans Bore (ASX: ARU 28/07/11 and 22/08/11). Several of the holes in Table 1 intersected this new zone (NBRD328, NBRD365, NBRD891, NBDH879, NBDH880, NBDH1071, NBDH1076, NBDH1078 and NBDH1099, amongst others). Assays are pending from a number of east-west oriented holes that encountered wide intervals of rare earths mineralisation from within the new zone.

One of the main objectives of the 2011 drilling program was to investigate the depth extent of the Nolans Bore resource for assessment of future expansion capacity. The deeper diamond core component of the program has shown that rare earths mineralisation remains open at depth across large parts of the deposit, including the South Zone. Virtually all of the mineralised intercepts reported here are very likely to constitute new resources that were not included in the most recent Statement of Identified Mineral Resources for Nolans Bore in 2008 (ASX: ARU 11/11/08).

Arafura's Managing Director and CEO, Dr Steve Ward, said, "The 2011 drilling program is proving to be a resounding success and a great credit to our exploration team. The new results, and those published previously, emphasise the scale and world-class nature of Nolans Bore. This strategic resource will form the foundation of Arafura's activities well into the future as the Company seeks to become the recognised leading producer of rare earths for users worldwide.

We now look forward to an updated resource statement which is targeted to be completed by the end of the year."

- ENDS -

For further information contact:

Dr Steve Ward Managing Director & CEO Arafura Resources Ltd T: +61 8 6210 7666

Competent Person's Statement

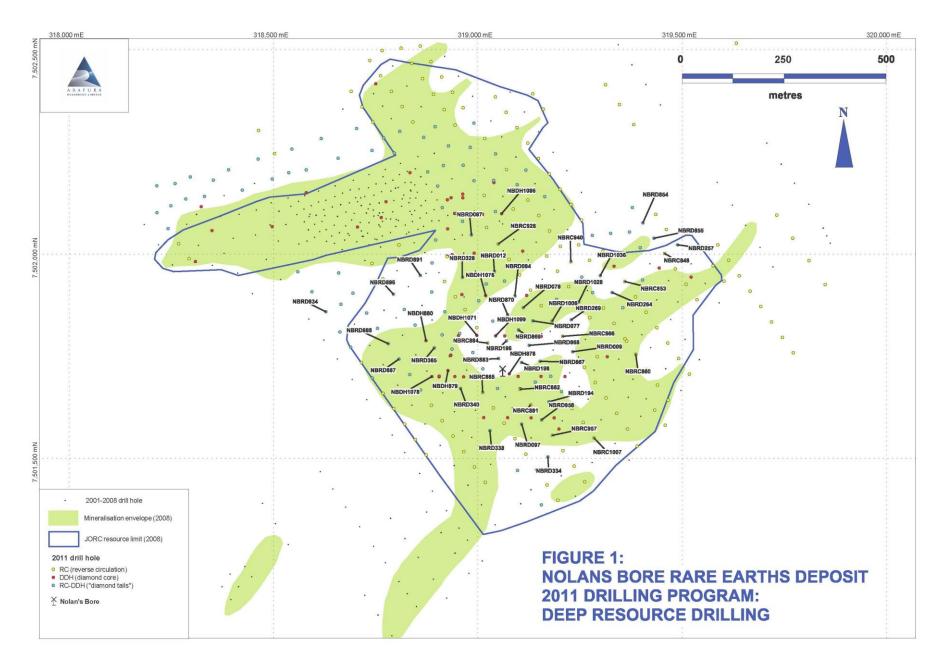
The information in this release that relates to exploration results and geological interpretation has been compiled by Mr Kelvin Hussey BSc (Hons) MAIG.

Mr Hussey is a Member of the Australian Institute of Geoscientists and he has sufficient experience with the style of mineralisation being reported to qualify as a Competent Person as defined in the *Australasian Code for Reporting of Mineral Resources and Ore Reserves* (JORC Code) for reporting these exploration results. Mr Hussey is a full-time employee of Arafura Resources Limited. He consents to the inclusion in this report of the contained technical information in the form and context in which it appears.

Table 1: 2011 Drilling Results, Nolans Bore

HOLENO	FDC14		INITEDICAL	TOT4:	D C ** ^/	
HOLE NO.	FROM	ТО	INTERVAL	TOTAL	P ₂ O ₅ ** %	U ₃ O ₈ **
	metres	metres	metres	REO** %		lb/t***
NBRD 009	169.6	182.6	12.0	1.9	8.1	0.21
NBRD 003	95.0	116.4	13.0 21.4	2.9	14.5	0.21
NBRD 077	131.3	143.0	11.7	1.1	4.5	0.30
and	229.4	241.5	12.1	3.1	16.4	0.58
NBRD 078	168.0	188.0	20.0	2.0	9.4	0.31
and	212.0	225.0	13.0	2.0	8.9	0.32
NBRD 084	206.5	234.0	27.5	1.5	6.1	0.18
NBRD 087	190.1	226.1	36.0	2.8	13.5	0.31
NBRD 097	166.1	198.6	32.5	1.1	4.6	0.13
NBRD 194	211.9	230.7	18.9	3.4	16.6	0.37
NBRD 196	160.4	197.0	36.6	1.5	7.1	0.25
NBRD 198	98.7	111.9	13.2	3.6	19.4	0.60
and	121.9	164.5	42.6	1.4	7.8	0.26
and	202.8	221.7	19.0	2.9	14.0	0.46
NBRD 257	152.0	167.6	15.6	5.5	26.4	0.64
NBRD 264	148.4	167.4	19.0	3.2	15.2	0.57
and	176.7	188.8	12.2	1.1	6.1	0.20
NBRD 269	110.5	168.0	57.5	4.0	17.6	0.54
NBRD 328	178.6	243.6	65.0	2.8	13.9	0.39
NBRD 334	99.7	130.5	30.7	1.4	7.4	0.13
and	146.2	169.4	23.2	1.7	8.7	0.21
NBRD 338	131.6	149.3	17.6	1.3	6.4	0.19
NBRD 340	132.6	144.7	12.2	1.0	4.0	0.11
and	188.2	207.6	19.4	1.9	9.0	0.31
and	228.3	249.4	21.1	1.6	7.8	0.23
NBRD 365	30.0	154.1	124.1	3.1	16.0	0.39
NBRC 848	136.0	150.0	14.0	1.5	8.3	0.21
NBRC 853	140.0	150.0	10.0	3.5	17.4	0.58
NBRD 854	86.0	119.0	33.0	1.7	7.7	0.21
and NBRD 855	191.6 173.9	215.5 189.7	23.9 15.9	2.5 2.8	13.4	0.45 0.49
NBRC 860	175.9	148.0	22.0	0.9	14.2 3.8	0.49
NBRC 865	105.0	129.0	24.0	1.8	6.3	0.14
NBRC 866	141.0	162.0	21.0	6.1	25.3	1.06
NBRD 867	102.0	131.4	29.4	2.3	10.4	0.37
NBRD 868	97.0	133.6	36.6	3.4	16.9	0.55
and	158.6	180.6	22.0	1.9	9.9	0.33
NBRD 869	128.9	180.4	51.5	3.6	16.9	0.59
NBRD 870	151.6	180.6	29.0	2.1	9.6	0.27
NBDH 878	87.8	112.4	24.6	2.2	11.0	0.36
and	185.3	195.8	10.5	1.4	7.2	0.26
NBDH 879	46.6	125.9	79.3	4.0	20.0	0.60
and	203.0	219.2	16.2	1.6	5.8	0.20
and	229.5	245.5	16.0	1.3	5.0	0.20
NBDH 880	155.3	167.9	12.6	2.9	15.3	0.44
NBRC 881	88.0	122.0	34.0	1.3	6.2	0.24
NBRC 882	5.0	101.0	96.0	1.8	8.1	0.24
and	119.0	150.0	31.0	1.7	7.4	0.25
NBRD 883	104.0	144.3	40.3	2.3	10.5	0.26
and	167.4	177.7	10.3	4.9	24.4	0.74
NBRC 884	100.0	136.0	36.0	2.4	10.0	0.28
NBRD 887	139.0	149.0	10.0	2.0	6.1	0.20
NBRD 888	99.0	111.0	12.0	2.1	8.0	0.28
NBRD 891	179.6	250.1	70.6	3.8	20.2	0.55
NBRD 896	234.7	252.5 106.0	17.8 17.0	2.0	8.1	0.32
NBRC 928	89.0 168.0	106.0	17.0 12.0	1.0	4.1	0.19
NBRD 934 NBRC 940	168.0	180.0	12.0 15.0	1.2	4.9 12.4	0.14
NDKC 940	91.0	106.0	15.0	2.7	12.4	0.43

NBRC 957	100.0	126.0	26.0	1.0	3.7	0.14
NBRD 958	114.0	124.6	10.6	2.2	9.8	0.33
and	146.3	157.5	11.1	1.7	8.6	0.22
NBRD 1006	112.0	124.0	12.0	1.0	3.3	0.09
and	177.5	212.0	34.5	4.5	23.1	0.98
NBRC 1007	93.0	106.0	13.0	1.8	7.7	0.27
NBRD 1028	46.0	176.0	130.0	2.1	10.3	0.35
NBRD 1036	146.5	157.0	10.5	2.7	13.2	0.43
NBDH 1071	72.9	108.0	35.2	2.2	10.0	0.34
NBDH 1076	118.0	135.8	17.8	3.8	19.0	0.43
NBDH 1078	90.8	127.8	37.0	3.2	16.1	0.41
NBDH 1086	94.0	112.9	18.9	1.2	6.6	0.13
NBDH 1099	122.0	174.0	52.0	3.3	15.8	0.64


HOLE NO.	EAST	NORTH	RL	INCLINATION	AZIMUTH	TOTAL
	metres	metres	metres	0	•	DEPTH
						metres
NBRD 009	319232.12	7501761.11	659.43	-60	131	200
NBRD 012	319040.38	7501957.93	657.68	-60	149	249.5
NBRD 077	319134.60	7501836.60	659.20	-60	145	249.7
NBRD 078	319111.02	7501869.02	659.25	-60	145	246.62
NBRD 084	319090.57	7501897.76	658.38	-60	145	249.5
NBRD 087	318984.19	7502047.43	656.92	-60	145	249.4
NBRD 097	319107.13	7501584.22	658.60	-60	145	250
NBRD 194	319173.74	7501638.78	659.18	-60	145	249.9
NBRD 196	319069.99	7501787.87	658.76	-60	145	250
NBRD 198	319106.67	7501735.09	659.24	-60	145	249.9
NBRD 257	319488.60	7502022.99	659.27	-60	145	200
NBRD 264	319328.70	7501906.37	659.38	-60	145	189.8
NBRD 269	319228.67	7501839.37	659.36	-60	145	195.6
NBRD 328	318962.19	7501943.26	657.26	-60	145	249.7
NBRD 334	319171.12	7501503.91	659.22	-60	145	251.7
NBRD 338	319029.28	7501568.22	658.17	-60	145	250
NBRD 340	318957.59	7501671.29	658.04	-60	145	249.4
NBRD 365	318893.46	7501770.73	657.95	-60	145	249.7
NBRC 848	319456.89	7502001.69	659.66	-60	145	150
NBRC 853	319359.62	7501933.03	659.74	-60	145	156
NBRD 854	319403.83	7502076.68	659.21	-60	145	250
NBRD 855	319430.80	7502038.95	659.52	-60	145	219.8
NBRC 860	319386.38	7501755.11	660.83	-60	145	156
NBRC 865	319011.63	7501661.40	657.70	-60	145	150
NBRC 866	319207.52	7501799.01	659.31	-60	145	162
NBRD 867	319152.34	7501737.56	658.99	-60	145	198.66
NBRD 868	319125.54	7501776.88	659.16	-60	145	180.6
NBRD 869	319099.12	7501814.53	659.01	-60	145	180.4
NBRD 870	319072.66	7501852.05	658.22	-60	145	180.6
NBDH 878	319076.70	7501707.23	658.66	-60	145	219.6
NBDH 879	318926.92	7501715.12	657.86	-60	145	249.3
NBDH 880	318872.91	7501788.48	658.09	-60	145	251.9
NBRC 881	319129.30	7501631.49	658.57	-60	145	150
NBRC 882	319103.24	7501669.23	658.49	-60	145	150
NBRD 883	319050.43	7501744.55	658.34	-60	145	180.4
NBRC 884	319023.97	7501782.49	658.03	-60	145	150
NBRD 887	318806.84	7501743.19	658.48	-60	145	249.5
NBRD 888	318780.54	7501780.92	658.28	-60	145	248.9
NBRD 891	318859.07	7501947.94	657.77	-60	145	250.1
NBRD 896	318793.24	7501902.14	657.75	-60	145	252.5
NBRC 928	319049.72	7502024.84	657.10	-60	145	150
NBRD 934	318628.11	7501859.05	658.05	-60	145	249.7
NBRC 940	319227.57	7501981.78	658.81	-60	145	150
NBRC 957	319182.09	7501556.57	659.54	-60	145	150

NBRD 958	319155.87	7501594.44	659.34	-60	145	179.8
NBRD 1006	319181.58	7501836.14	659.30	-60	145	249.7
NBRC 1007	319284.03	7501550.31	660.51	-60	145	150
NBRD 1028	319246.98	7501882.79	659.48	-60	145	201.5
NBRD 1036	319299.43	7501947.41	658.96	-60	145	219.8
NBDH 1071	318997.38	7501801.28	657.34	-60	270	265
NBDH 1076	319019.13	7501898.58	657.42	-60	270	159
NBDH 1078	318887.26	7501700.38	657.96	-60	90	210.7
NBDH 1086	319058.02	7502099.11	657.65	-60	270	182.5
NBDH 1099	319043.29	7501800.12	658.60	-60	145	246.7

Notes:

- The intercepts listed above encompass the full width of the mineralised lodes and have been selected to demonstrate the continuity and scale of mineralisation. A cut-off grade of 0.5% REE has been applied to define the outer limits of the mineralisation. Some intercepts include zones of internal waste within the lode. Broader zones of internal waste will be excluded from later estimates of identified resources. This should lead to an increase in grade of the resources above those listed in the table. Zero grade has been applied to all intervals of core loss within the lode;
- Total REO assays do not include Yttrium Oxide (Y₂O₃);
- Assay samples were selected on the bases of geological and radiometric logging and are representative
 of the various rock types and mineralisation styles intersected. RC assay samples range from 1 metre to
 2 metres. Drill core assay intervals are rounded to the nearest 0.1 metres and are representative halfcore samples of HQ3 and NQ2 core ranging in length from about 0.25 to 2 metres. Sample intervals
 rarely exceed 2.5 metres and only in unmineralised intervals. Samples were prepared and analysed
 using the same procedures and analytical techniques (3-acid digest, ICP-OES/MS) that were used in all
 previous drill programs at Nolans Bore;
- Drill hole collar coordinates are in MGA94 Zone 53.
- ** Analytical data subject to confirmation by inter-laboratory analyses.
- *** 1 lb/t U₃O₈ equals 0.0454% U₃O₈

