

# Greenland Minerals Extends 'Zone 2' Rare Earth-Uranium Deposit with Broad Drill Intercepts

Company Announcement: Tuesday January 24<sup>th</sup>, 2012

Results of the 2011 drilling at *Zone 2* on the northern Ilimaussaq complex continue to deliver broad, high-grade intercepts of REE-uranium mineralisation. Zone 2, located 6km from the world-class Kvanefjeld resource (contained metal 350 Mlbs  $U_3O_8$ , 6.6 Mt TREO\*, 3 Blbs zinc), is clearly shaping up as a significant deposit in its own right, and is anticipated to lead to a substantial increase in the projects overall resource base.

## **Significant 2011 Zone 2 Intercepts Include:**

| • | S018 | 66m @ 474ppm U <sub>3</sub> O <sub>8</sub> , 1.55% TREO, 0.34% Zn |
|---|------|-------------------------------------------------------------------|
| • | S019 | 60m @ 486ppm U <sub>3</sub> O <sub>8</sub> , 1.15% TREO, 0.34% Zn |
| • | S016 | 65m @ 417ppm U <sub>3</sub> O <sub>8</sub> , 1.36% TREO, 0.33% Zn |
| • | S020 | 52m @ 452ppm U <sub>3</sub> O <sub>8</sub> , 1.49% TREO, 0.33% Zn |
| • | S013 | 45m @ 443ppm U <sub>3</sub> O <sub>8</sub> , 1.70% TREO, 0.35% Zn |
| • | S015 | 39m @ 449ppm U <sub>3</sub> O <sub>8</sub> , 1.29% TREO, 0.37% Zn |

- Intercepts continue to delineate a thick, high-grade upper lens that remains open to the north
- > Drill hole array now covers an area of 500 x 800m, with all holes intersecting mineralisation
- > Drill results follow the recent introduction of a uranium licensing framework for the Kvanefjeld project (inclusive of new deposits)
- Results of the 2011 drilling at 'Zone 3' are anticipated in the coming weeks
- Initial JORC-code compliant resources estimates for Zones 2 and 3 scheduled for Q1 2012 \*TREO = rare earth oxides in the lanthanide series, plus yttrium oxide





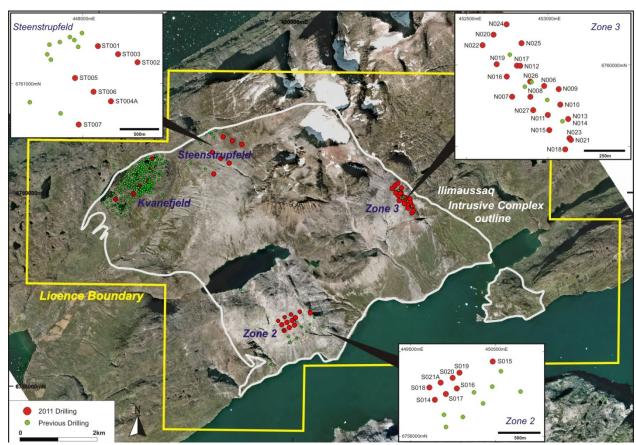


#### Introduction

Greenland Minerals and Energy Ltd ('GMEL' or 'the Company') is a mineral exploration and development company operating in southern Greenland. The Company is primarily focused on advancing the Kvanefjeld multi-element project (both light and heavy rare earth elements, uranium, and zinc) through the feasibility phase and into mine development.

Kvanefjeld is located within the Company's license over the northern Ilimaussaq Intrusive Complex; a unique geological entity that is highly prospective for specialty metals. Mineral resources at Kvanefjeld now stand at **619 Mt** (JORC Compliant), with three recently discovered satellite deposits now being the focus of resource definition. Kvanefjeld is a highly-accessible resource that outcrops on a broad plateau, with the higher grade portions located close to surface. Adjacent deep-water fjords provide shipping access directly to the project area. An international airport is located 35km away, and a nearby lake system has been positively evaluated for hydroelectric power.

An *Interim Report* on the Kvanefjeld pre-feasibility study was released in February 2010 that indicates the potential for the multi-element resources to sustain a large-scale mining operation for decades (*for more information visit the Company's website at* http://www.ggg.gl).


Importantly, the Greenland government recently introduced a uranium licensing framework for the Kvanefjeld project. This provides a clear path to see the project move through the feasibility phase and ultimately into mine development.

The Company's aim is to be a cost-effective producer of metals of fundamental strategic importance and value to tomorrow's world. Rare earth elements (REEs) are now recognised as being critical to the global manufacturing base of many emerging consumer items and green technologies. However, China controls more than 95% of global REE supply, and has maintained a policy of significantly reducing export quotas. This continues to raise serious concerns to non-Chinese consumers over the long-term stability of REE supply and pricing, at a time when REE-demand continues to grow. Uranium forms an important part of the global base-load energy supply, with demand set to grow in coming years as developing nations expand their energy capacity.



### 2011 Field Program: Northern Ilimaussaq Complex

In 2010, Greenland Minerals and Energy Ltd ("GMEL") unearthed two significant new multielement (REE, U, Zn) deposits within the northern Ilimaussaq complex; Zones 2 and 3. Significantly, these deposits demonstrated that mineralisation is far more widespread than previously recognised (Figure 1). Geological evidence suggests that Zones 2 and 3 represent outcropping, or near-surface expressions of a mineralised system that extends over several kilometres from Kvanefjeld, and is interconnected at depth. Following the highly encouraging initial drill results that were generated between 2008 and 2010, GMEL set about drilling sufficient drill holes in 2011 to generate initial resource estimates for both Zones 2 and 3. The aim is to increase resources at the upper end of the grade range established for resources already defined at Kvanefjeld.



**Figure 1**. Overview of GMEL's multi-element project on the northern Ilimaussaq Complex in Greenland. A JORC-code compliant 619Mt resource has been defined at Kvanefjeld. The 2011 drill program concentrated on Zones 2 and 3.



#### Resource Drilling – Zone 2

In 2008, GMEL's second year of exploration on the northern Ilimaussaq intrusion, regional exploration drilling was undertaken with the intention of evaluating the broader resource potential within the license area. The program also aimed to identify higher grade ore that may displace presently scheduled mill feed. Available geological evidence suggested that the mineralized layer (lujavrite) that outcrops at Kvanefjeld extended through much of the northern Ilimaussaq Complex at depth.

The initial discovery drill hole at Zone 2 (S001) was completed close to the end of the 2008 field season. The target was a large body of lujavrite visible from Tunugdliarfik fjord (Figure 2). Radiometric surveys suggested that grade profile was promising, and potentially higher grade than resources defined at Kvanefjeld. This drill hole intersected considerable lujavrite mineralisation over its 398 metres and was the catalyst for future exploration on this prospect. The intercepts reported from drill hole S001 were:

- S001
   116m @ 440 ppm U<sub>3</sub>O<sub>8</sub>, 1.2% TREO, 0.34% Zn
- \$001 34m @ 346 ppm U<sub>3</sub>O<sub>8</sub>, 1.1% TREO, 0.36% Zn



**Figure 2**. View of the Zone 2 lujavrite mineralisation from Tunugdliarfik Fjord looking to the north west, Zone 2 in BLUE, and Zone 3 (several kilometres away refer Figure 1) in GREEN.

This discovery hole, and another hole drilled halfway to Kvanefjeld (adjacent to Lake Taseq), confirmed that the mineralized layer underlies the majority of the intrusive complex extending up to 7 km from Kvanefjeld. This geological theory had been suggested previously by state sponsored geologists but until recently, remained untested by drilling. At Zone 2, the full mineralized section is present, and not partially unroofed by glaciation like that at Kvanefjeld.



A further 13 holes were drilled in 2010 for 4,713m, this drilling was designed to further refine the geological understanding of the deposit. The most significant intercepts previously reported included:

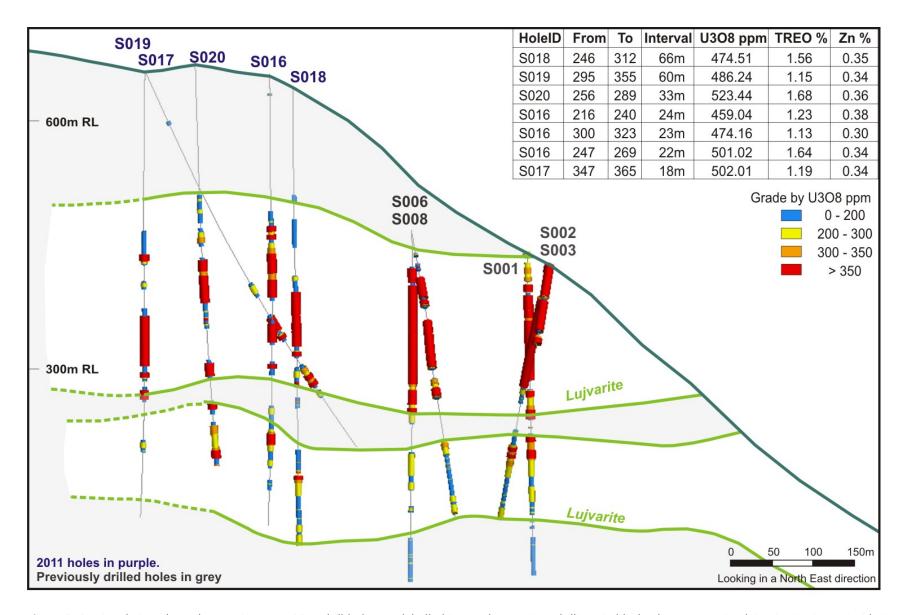
- *S006* 185m @ 442 ppm U<sub>3</sub>O<sub>8</sub>, 1.2% TREO, 0.34% Zn
- *S002* 131m @ 447 ppm U<sub>3</sub>O<sub>8</sub>, 1.3% TREO, 0.34% Zn
- S008 64m @ 462 ppm U<sub>3</sub>O<sub>8</sub>, 1.3% TREO, 0.33% Zn
- *S003* 42m @ 463 ppm U<sub>3</sub>O<sub>8</sub>, 1.4% TREO, 0.39% Zn
- S003 46m @ 415 ppm U<sub>3</sub>O<sub>8</sub>, 1.5% TREO, 0.37% Zn

The drilling in 2010 reinforced that Zone 2 could not only be a deposit of comparable size to Kvanefjeld but also that a distinct, higher-grade upper horizon was both continuous and of an attractive mining width.

In 2011 GMEL planned to complete as much resource drilling as possible extending the mineralisation to the north and the west. This drilling was designed to enable resource estimation to be completed to JORC standard.

A total of 10 holes were completed during the 2011 field season, with the deepest hole being drilled to approximately 550m depth. The mineralized body is characterized by thick, subhorizontal lenses that outcrop along the slopes to Tunugdliafik Fjord (Figure 2), and remains open to the north. Significant intercepts from the 2011 drill program include:

- \$018 66m @ 474ppm U<sub>3</sub>O<sub>8</sub>, 1.55% TREO, 0.34% Zn
- S019 60m @ 486ppm U₃O<sub>8</sub>, 1.15% TREO, 0.34% Zn
- S016 65m @ 417ppm U₃O<sub>8</sub>, 1.36% TREO, 0.33% Zn
- S020 52m @ 452ppm U₃O<sub>8</sub>, 1.49% TREO, 0.33% Zn
- S013 45m @ 443ppm U₃O<sub>8</sub>, 1.70% TREO, 0.35% Zn
- S015 39m @ 1.29% TREO, 449ppm U<sub>3</sub>O<sub>8</sub>, 0.37% Zn




Upon completion of the 2011 field season the drill hole array at Zone 2 covers an area of 800m by 500m, and extends to depths of up to 550m. All drill holes intersected the mineralised lujavrite, which remains open to the east, north and west. Figure 3 presents a schematic section through Zone 2, highlighting the high-grade upper layer.

The mineralisation at Zone 2 has strong lithological and geochemical similarities to the mineralisation at Kvanefjeld. The host rock, lujavrite, occurs as a thick, flat lying horizon surrounded mostly by naujaite. The higher grade mineralisation is located closer to surface and grade slowly diminishes with growing depth. The mineralisation at Zone 2 has a more pronounced, higher-grade upper layer than Kvanefjeld, which can be largely attributed to the preservation of the entire mineralized section.

Importantly, it confirms the presence of *multiple* significant deposits within the broader northern Ilimaussaq project area. Results of the 2011 drilling at Zone 2 are presented in Table 1.





**Figure 3**. Sectional view through Zone 2; newer 2011 drill holes are labelled in purple, previous drillings in black. The outcropping lujavrite in Figure 2 aids in firming up the geological interpretation. Note: Hole S017 is angled off section.



**Table 1.** Results of 2011 drilling at Zone 2.

| Area  | Hole_ID | From (m) | To (m) | Interval (m) | U308 ppm | TREO ppm | Zn ppm  |
|-------|---------|----------|--------|--------------|----------|----------|---------|
| Zone2 | S018    | 246      | 312    | 66           | 474.51   | 15591.26 | 3498.32 |
| Zone2 | S019    | 295      | 355    | 60           | 486.24   | 11535.93 | 3433.07 |
| Zone2 | S016    | 204      | 269    | 65           | 417.45   | 13668.28 | 3348.18 |
| Zone2 | S020    | 237      | 289    | 52           | 452      | 14901.35 | 3289.9  |
| Zone2 | S013    | 170      | 215    | 45           | 443.81   | 17014.89 | 3578.27 |
| Zone2 | S015    | 120      | 159    | 39           | 449.55   | 12927.25 | 3767.1  |
| Zone2 | S013    | 222      | 254    | 32           | 419.7    | 13344.55 | 3679.44 |
| Zone2 | S016    | 300      | 323    | 23           | 474.16   | 11280.62 | 2996.26 |
| Zone2 | S013    | 120      | 141    | 21           | 456.38   | 16060    | 3589.19 |
| Zone2 | S017    | 347      | 366    | 19           | 492.52   | 11678.85 | 3333.21 |
| Zone2 | S017    | 421      | 447    | 26           | 354.97   | 10181.2  | 2637.42 |
| Zone2 | S016    | 428      | 452    | 24           | 357.29   | 12932.5  | 3256.08 |
| Zone2 | S020    | 361      | 377    | 16           | 488.25   | 11211.32 | 3142.56 |
| Zone2 | S015    | 307      | 327    | 20           | 344.22   | 10622.16 | 2473.95 |
| Zone2 | S020    | 459      | 476    | 17           | 360.44   | 13241.73 | 3657.18 |
| Zone2 | S016    | 183      | 199    | 16           | 369.89   | 15355.42 | 3079.44 |
| Zone2 | S013    | 270      | 286    | 16           | 360.76   | 12648.78 | 3309.25 |
| Zone2 | S019    | 384      | 396    | 12           | 388.19   | 13005.51 | 4888.5  |
| Zone2 | S015    | 262      | 273    | 11           | 403.23   | 9897.41  | 3053.18 |
| Zone2 | S015    | 247      | 256    | 9            | 450.71   | 13739.78 | 3135.67 |
| Zone2 | S019    | 221      | 231    | 10           | 370.4    | 13846.26 | 2873.7  |
| Zone2 | S020    | 204      | 217    | 13           | 282.2    | 15758.2  | 4501.23 |
| Zone2 | S013    | 76       | 85     | 9            | 395.98   | 18215.36 | 3291.11 |
| Zone2 | S018    | 466      | 477    | 11           | 321.6    | 13322.51 | 4317.55 |
| Zone2 | S020    | 436      | 447    | 11           | 320.62   | 12238.48 | 2535.73 |
| Zone2 | S013    | 300      | 312    | 12           | 291.38   | 10306.79 | 2616.42 |
| Zone2 | S018    | 318      | 324    | 6            | 548.81   | 11045.6  | 2906.17 |
| Zone2 | S013    | 148      | 155    | 7            | 438.03   | 12936.77 | 4006.29 |
| Zone2 | S017    | 371      | 377    | 6            | 469.36   | 11985.59 | 2170.67 |
| Zone2 | S018    | 341      | 349    | 8            | 349.9    | 11669.74 | 1946.38 |
| Zone2 | S019    | 363      | 369    | 6            | 464.25   | 13069.02 | 2340.83 |
| Zone2 | S016    | 348      | 354    | 6            | 456.53   | 15891.85 | 3169.33 |
| Zone2 | S020    | 410      | 417    | 7            | 391.15   | 8722.16  | 2771.86 |
| Zone2 | S013    | 493      | 501    | 8            | 336.25   | 15364.32 | 546.5   |
| Zone2 | S015    | 235      | 241    | 6            | 434.56   | 13423.88 | 3302.33 |
| Zone2 | S015    | 224      | 231    | 7            | 365.6    | 13420.21 | 3330.29 |



| Zone2 | S013 | 258 | 264 | 6 | 302.61 | 11113.15 | 2488.33 |
|-------|------|-----|-----|---|--------|----------|---------|
| Zone2 | S015 | 17  | 23  | 6 | 293.93 | 17162.69 | 3962.83 |
| Zone2 | S018 | 545 | 551 | 6 | 286.53 | 7914.2   | 2193    |
| Zone2 | S016 | 401 | 407 | 6 | 279.32 | 11114.44 | 1982.67 |
| Zone2 | S020 | 176 | 181 | 5 | 274.35 | 16129.09 | 5053.8  |

Intercepts calculated at 250 ppm U<sub>3</sub>O<sub>8</sub> cut-off, maximum internal waste 4m, minimum intercept 5m.\*TREO=LREO+HREO+Y<sub>2</sub>O<sub>3</sub>

Yours faithfully,

Roderick McIllree

Managing Director Greenland Minerals and Energy Ltd



Table 1. Statement of Identified Mineral Resources, Kvanefjeld Multi-Element Project, March 2011.

|                                                  | Multi-Ele          | ment Resources | , Classifica      | ation, To                     | nnage an | d Grade |       |          |      | Contained Metal |      |          |                               |     |  |
|--------------------------------------------------|--------------------|----------------|-------------------|-------------------------------|----------|---------|-------|----------|------|-----------------|------|----------|-------------------------------|-----|--|
| <b>Cut-off</b>                                   | Classification     | M tonnes       | TREO <sup>2</sup> | U <sub>3</sub> O <sub>8</sub> | LREO     | HREO    | REO   | $Y_2O_3$ | Zn   | TREO            | HREO | $Y_2O_3$ | U <sub>3</sub> O <sub>8</sub> | Zn  |  |
| (U <sub>3</sub> O <sub>8</sub> ppm) <sup>1</sup> |                    | Mt             | ppm               | ppm                           | ppm      | ppm     | ppm   | ppm      | ppm  | Mt              | Mt   | Mt       | M lbs                         | Mt  |  |
| 150                                              | Indicated          | 437            | 10929             | 274                           | 9626     | 402     | 10029 | 900      | 2212 | 4.77            | 0.18 | 0.39     | 263                           | 0.9 |  |
| 150                                              | Inferred           | 182            | 9763              | 216                           | 8630     | 356     | 8986  | 776      | 2134 | 1.78            | 0.06 | 0.14     | 86                            | 0.3 |  |
| 150                                              | Grand Total        | 619            | 10585             | 257                           | 9333     | 389     | 9721  | 864      | 2189 | 6.55            | 0.24 | 0.53     | 350                           | 1.3 |  |
| 200                                              | Indicated          | 291            | 11849             | 325                           | 10452    | 419     | 10871 | 978      | 2343 | 3.45            | 0.12 | 0.28     | 208                           | 0.6 |  |
| 200                                              | Inferred           | 79             | 11086             | 275                           | 9932     | 343     | 10275 | 811      | 2478 | 0.88            | 0.03 | 0.06     | 48                            | 0.2 |  |
| 200                                              | <b>Grand Total</b> | 370            | 11686             | 314                           | 10341    | 403     | 10743 | 942      | 2372 | 4.32            | 0.15 | 0.35     | 256                           | 0.8 |  |
| 250                                              | Indicated          | 231            | 12312             | 352                           | 10950    | 443     | 11281 | 1032     | 2363 | 2.84            | 0.10 | 0.24     | 178                           | 0.5 |  |
| 250                                              | Inferred           | 41             | 11251             | 324                           | 10929    | 366     | 10426 | 825      | 2598 | 0.46            | 0.02 | 0.03     | 29                            | 0.3 |  |
| 250                                              | <b>Grand Total</b> | 272            | 12152             | 347                           | 10947    | 431     | 11152 | 1001     | 2398 | 3.30            | 0.12 | 0.27     | 208                           | 0.  |  |
| 300                                              | Indicated          | 177            | 13013             | 374                           | 11437    | 469     | 11906 | 1107     | 2414 | 2.30            | 0.08 | 0.20     | 146                           | 0.  |  |
| 300                                              | Inferred           | 24             | 13120             | 362                           | 11763    | 396     | 12158 | 962      | 2671 | 0.31            | 0.01 | 0.02     | 19                            | 0.  |  |
| 300                                              | <b>Grand Total</b> | 200            | 13025             | 373                           | 11475    | 460     | 11935 | 1090     | 2444 | 2.61            | 0.09 | 0.22     | 164                           | 0.4 |  |
| 350                                              | Indicated          | 111            | 13735             | 404                           | 12040    | 503     | 12543 | 1192     | 2487 | 1.52            | 0.06 | 0.13     | 98                            | 0.2 |  |
| 350                                              | Inferred           | 12             | 13729             | 403                           | 12239    | 436     | 12675 | 1054     | 2826 | 0.16            | 0.01 | 0.01     | 10                            | 0.  |  |
| 350                                              | <b>Grand Total</b> | 122            | 13735             | 404                           | 12059    | 497     | 12556 | 1179     | 2519 | 1.68            | 0.06 | 0.14     | 108                           | 0.3 |  |

<sup>&</sup>lt;sup>1</sup>There is greater coverage of assays for uranium than other elements owing to historic spectral assays. U<sub>3</sub>O<sub>8</sub> has therefore been used to define the cutoff grades to maximise the confidence in the resource calculations.

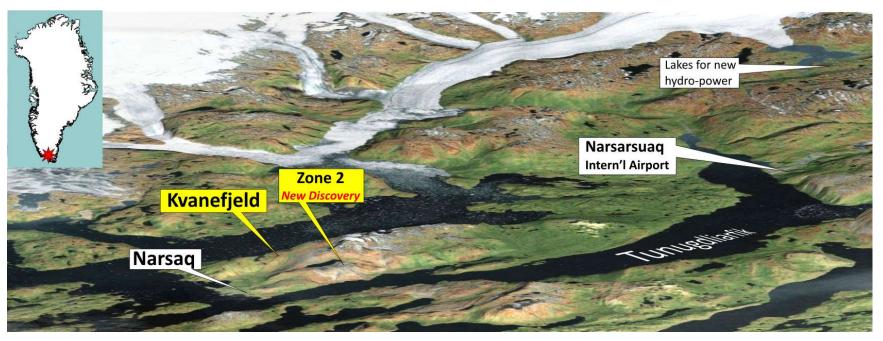
Note: Figures quoted may not sum due to rounding.

<sup>&</sup>lt;sup>2</sup>Total Rare Earth Oxide (TREO) refers to the rare earth elements in the lanthanide series plus yttrium.



#### ABOUT GREENLAND MINERALS AND ENERGY LTD.

Greenland Minerals and Energy Ltd (ASX – GGG) is an exploration and development company focused on developing high-quality mineral projects in Greenland. The Company's flagship project is the Kvanefjeld multi-element deposit (Rare Earth Elements, Uranium, Zinc), that is rapidly emerging as a premier specialty metals project. An interim report on pre-feasibility studies has demonstrated the potential for a large-scale multi-element mining operation. For further information on Greenland Minerals and Energy visit <a href="http://www.ggg.gl">http://www.ggg.gl</a> or contact:


Roderick Mcillree Managing Director +61 8 9382 2322 David Tasker (Australia) Professional PR +61 (0) 89388 0944 Christian Olesen (DK) Rostra Kommunikation +45 (0)3336 0429

Greenland Minerals and Energy Ltd will continue to advance the Kvanefjeld project in a manner that is in accord with both Greenlandic Government and local community expectations, and looks forward to being part of continued community discussions on the social and economic benefits associated with the development of the Kvanefjeld Project.

The information in this report that relates to exploration results, geological interpretations, appropriateness of cutoff grades, and reasonable expectation of potential viability of quoted rare earth element, uranium, and zinc
resources is based on information compiled by Jeremy Whybrow. Mr Whybrow is a director of the Company and a
Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Whybrow has sufficient experience
relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is
undertaking to qualify as a Competent Person as defined by the 2004 edition of the "Australasian Code for
Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Whybrow consents to the reporting of
this information in the form and context in which it appears.

The geological model and geostatistical estimation for the Kvanefjeld deposit were prepared by Robin Simpson of SRK Consulting. Mr Simpson is a Member of the Australian Institute of Geoscientists (AIG), and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2004 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Simpson consents to the reporting of information relating to the geological model and geostatistical estimation in the form and context in which it appears.





View over the broader geography of GMEL's multi-element project on the northern Ilimaussaq Complex located in southern Greenland. The fjords form a large-scale natural harbor system that is open to the north Atlantic shipping lanes all year round, and provide easy access to the project area. The distance from Narsaq to Narsarsuaq is approximately 45 km.