

Company Announcement: Friday May 11th, 2012

Results of the Annual General Meeting held at 10:30am (WST) on Friday, 11 May 2012

In accordance with Listing Rule 3.13.2 and Section 251AA of the Corporations Act 2001, the following information is provided to the ASX Limited in relation the results of the Annual General Meeting of the Company held on 11 May 2012 at 10:30am WST.

The following resolutions were passed unanimously by a show of hands without amendment.

Resolution 1: Adoption of Remuneration Report

Resolution 2: Re-election of Director – Simon Cato

Resolution 3: Re-election of Director – Jeremy Whybrow

Resolution 4: Ratification of Issue of Shares

Please refer to the attached schedule for details of the proxy votes lodged.

Miles Guy

Company Secretary

Disclosure of Proxy Votes Annual General Meeting held at 10:30am (WST) On Friday, 11 May 2012

					Chair	Proxy	
	For	Against	Abstain	Open	Discretion	Discretion	Total
R1 – Adoption of Remuneration Report	71,590,399	11,429,370	22,631,985	358,500	70,561	1,291	106,082,106
R2 – Re-election of Director – Simon Cato	96,177,819	5,261,735	4,212,200	358,500	70,561	1,291	106,082,106
R3 – Re-election of Director – Jeremy Whybrow	97,826,802	1,974,752	5,850,200	358,500	70,561	1,291	106,082,106
R4 – Ratification of Issue of Shares	105,504,042	145,712	2,000	358,500	70,561	1,291	106,082,106

Table 1. Statement of Identified Mineral Resources, Kvanefjeld Multi-Element Project

	Multi-Eleme	nt Resources Classification, Tonnage and Grade							Contained Metal						
Cut-off	Classification	M tonnes	TREO ²	U ₃ O ₈	LREO	HREO	REO	Y ₂ O ₃	Zn	TREO	HREO	Y_2O_3	U ₃ O ₈	Zn	
$(U_3O_8 ppm)^1$		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt	
Kvanefjeld - Mar	ch 2011														
150	Indicated	437	10929	274	9626	402	10029	900	2212	4.77	0.18	0.39	263	0.97	
150	Inferred	182	9763	216	8630	356	8986	776	2134	1.78	0.06	0.14	86	0.39	
150	Grand Total	619	10585	257	9333	389	9721	864	2189	6.55	0.24	0.53	350	1.36	
200	Indicated	291	11849	325	10452	419	10871	978	2343	3.45	0.12	0.28	208	0.68	
200	Inferred	79	11086	275	9932	343	10275	811	2478	0.88	0.03	0.06	48	0.20	
200	Grand Total	370	11686	314	10341	403	10743	942	2372	4.32	0.15	0.35	256	0.88	
250	Indicated	231	12429	352	10950	443	11389	1041	2363	0.24	2.53	2.63	178	0.55	
250	Inferred	41	12204	324	10929	366	11319	886	2598	0.04	0.45	0.46	29	0.11	
250	Grand Total	272	12395	347	10947	431	11378	1017	2398	0.28	2.98	3.09	208	0.65	
300	Indicated	177	13013	374	11437	469	11906	1107	2414	2.30	0.08	0.20	146	0.43	
300	Inferred	24	13120	362	11763	396	12158	962	2671	0.31	0.01	0.02	19	0.06	
300	Grand Total	200	13025	373	11475	460	11935	1090	2444	2.61	0.09	0.22	164	0.49	
350	Indicated	111	13735	404	12040	503	12543	1192	2487	1.52	0.06	0.13	98	0.27	
350	Inferred	12	13729	403	12239	436	12675	1054	2826	0.16	0.01	0.01	10	0.03	
350	Grand Total	122	13735	404	12059	497	12556	1179	2519	1.68	0.06	0.14	108	0.31	
Zone 2 - March 2	012														
150	Inferred	242	11022	304	9729	398	10127	895	2602	2.67	0.10	0.22	162	0.63	
200	Inferred	186	11554	344	10223	399	10622	932	2802	2.15	0.07	0.17	141	0.52	
250	Inferred	148	11847	375	10480	407	10887	961	2932	1.75	0.06	0.14	123	0.43	
300	Inferred	119	12068	400	10671	414	11084	983	3023	1.44	0.05	0.12	105	0.36	
350	Inferred	92	12393	422	10967	422	11389	1004	3080	1.14	0.04	0.09	85	0.28	
Project Total			_												
Cut-off	Classification	M tonnes	TREO ²	U_3O_8	LREO	HREO	REO	Y_2O_3	Zn	TREO	HREO	Y_2O_3	U ₃ O ₈	Zn	
$(U_3O_8 ppm)^1$		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt	
150	Indicated	437	10929	274	9626	402	10029	900	2212	4.77	0.18	0.39	263	0.97	
150	Inferred	424	10480	266	9257	380	9636	844	2401	4.45	0.16	0.36	249	1.02	
150	Grand Total	861	10708	270	9444	391	9835	873	2305	9.22	0.34	0.75	512	1.98	

¹There is greater coverage of assays for uranium than other elements owing to historic spectral assays. U₃O₈ has therefore been used to define the cutoff grades to maximise the confidence in the resource calculations.

²Total Rare Earth Oxide (TREO) refers to the rare earth elements in the lanthanide series plus yttrium.

Note: Figures quoted may not sum due to rounding.

ABOUT GREENLAND MINERALS AND ENERGY LTD.

Greenland Minerals and Energy Ltd (ASX – GGG) is an exploration and development company focused on unlocking the mineral riches of southern Greenland. The Company's flagship project is the Kvanefjeld multi-element deposit (Rare Earth Elements, Uranium, Zinc), that is rapidly emerging as a premier specialty metals project. An interim report on pre-feasibility studies has demonstrated the potential for a large-scale multi-element mining operation. For further information on Greenland Minerals and Energy visit http://www.ggg.gl or contact:

Roderick Mcillree, Managing Director +61 8 9382 2322 Christian Olesen (DK) Rostra Kommunikation +45 (0)3336 0429

Greenland Minerals and Energy Ltd is aware of and respects the Greenlandic government's stance on uranium exploration and development in Greenland – which is currently a zero tolerance approach. However, a new amendment has been introduced to the standard terms for exploration licenses in Greenland that creates a framework for the evaluation of projects that include uranium amongst other economic elements. Within this framework the Company is permitted to fully evaluate the Kvanefjeld project, inclusive of radioactive elements.

The Kvanefjeld Project is recognised as the world's largest undeveloped JORC-compliant resource of rare earth oxides (REO), in a multi-element deposit that is also enriched in uranium and zinc.

Greenland Minerals will continue to advance this world class project in a manner that is in accord with both Greenlandic Government and local community expectations, and looks forward to being part of continued community discussions on the social and economic benefits associated with the development of the Kvanefjeld Project.

The information in this report that relates to exploration results, geological interpretations, appropriateness of cutoff grades, and reasonable expectation of potential viability of quoted rare earth element, uranium, and zinc
resources is based on information compiled by Jeremy Whybrow. Mr Whybrow is a director of the Company and a
Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Whybrow has sufficient experience
relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is
undertaking to qualify as a Competent Person as defined by the 2004 edition of the "Australasian Code for
Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Whybrow consents to the reporting of
this information in the form and context in which it appears.

The geological model and geostatistical estimation for the Kvanefjeld deposit were prepared by Robin Simpson of SRK Consulting. Mr Simpson is a Member of the Australian Institute of Geoscientists (AIG), and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2004 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Simpson consents to the reporting of information relating to the geological model and geostatistical estimation in the form and context in which it appears.