

Carpentaria Exploration Ltd Perth June 26 – 27 2012 Developing the Hawsons Iron Project

Carpentaria

Aim:

Discover, Develop and Mine mineral resources to grow shareholder value and fund further discoveries in Eastern Australia

Abilities:

Strong geoscientific and engineering team

Track Record:

- Established Resource at Hawsons
 - ✓ Positive PFS released
- Tin / Tungsten near Broken Hill
 - ✓ Tungsten Resource
- ➤ Gold Lachlan Fold Belt
- Nickel North of Broken Hill

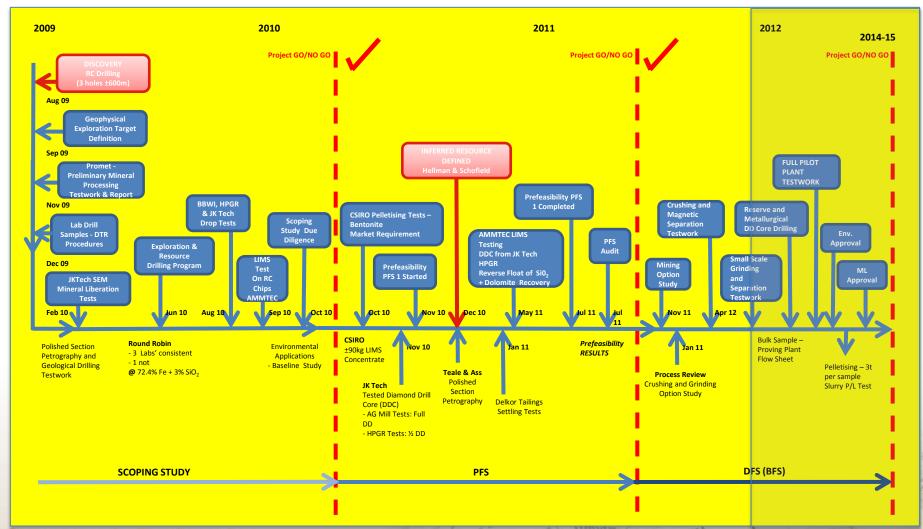
Carpentaria Exploration
We find it. We prove it. We make it possible.

Disclaimer

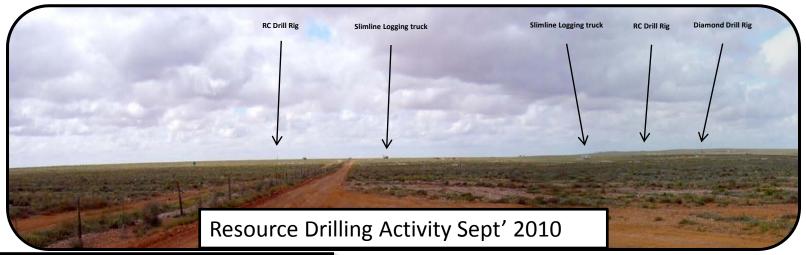
This presentation has been prepared by the management of Carpentaria Exploration Limited (CAP) for the benefit of analysts, brokers and investors and not as specific advice to any particular party or persons. The information is based on publicly available information, internally developed data and other sources. Where an opinion is expressed in this presentation, it is based on the assumptions and limitations mentioned herein and is an expression of present opinion only. No warranties or representations can be made as to origin, validity, accuracy, completeness, currency or reliability of the information. CAP disclaims and excludes all liability (to the extent permitted by law) for loses, claims, damages, demands, costs and expenses of whatever nature arising in any way out of or in connection with the information, its accuracy, completeness or by reason of reliance by any person on any of it. Where CAP expresses or implies an expectation or belief as to the success of future exploration and the economic viability of future project evaluations, such expectation or belief is expressed in good faith and is believed to have a reasonable basis. However, such expected outcomes are subject to risks, uncertainties and other factors which could cause actual results to differ materially from expected future results. Such risks include, but are not limited to, exploration success, metal price volatility, changes to current mineral resource estimates or targets, changes to assumptions for capital and operating costs as well as political and operational risks and governmental regulation outcomes. CAP does not have any obligation to advise any person if it becomes aware of any inaccuracy in or omission from any forecast or to update such forecast.

HAWSONS IRON PROJECT Structure of the Talk

- > Progress to date
 - > Time Line
 - > Location
 - > Geology and resources
 - > PFS
 - > Mining
 - Processing Flow Sheet
- Export and Logistic Solutions
 - Water
 - > Power
 - > Rail
 - > Port
- Summary

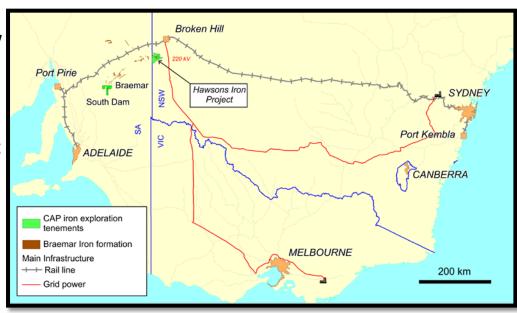


HAWSONS IRON PROJECT Project and Test Work Flow Diagram



Carpentaria Exploration

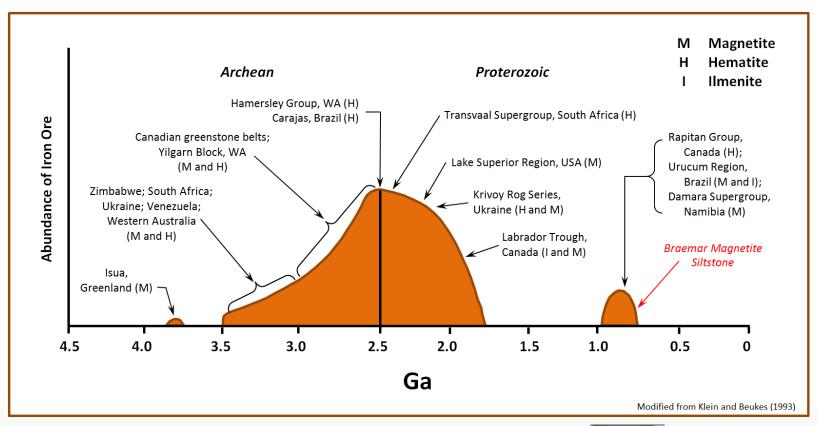
HAWSONS IRON PROJECT Pre-feasibility Study


We find it. We prove it. We make it possible.

HAWSONS IRON PROJECT Largest Magnetite Project in NSW

- Resource very large with potential for50 year plus mine life
- Mining very low unit costs because low strip ratio, very wide mining widths, low abrasion index and single pit
- Processing comparatively very low cost because of very soft mineralised rock
- Infrastructure water, power, transport and port all available for start up
- Approvals low hurdles compared with other projects

Native Title has been extinguished



Carpentaria Exploration

GLOBAL IRON Geological Time

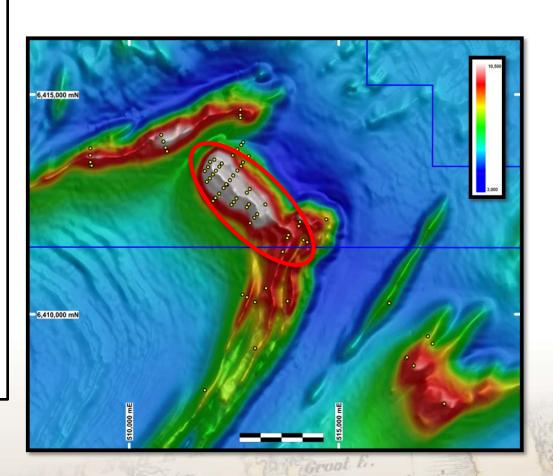
HAWSONS IRON PROJECT Geology and Resources

Five magnetic anomalies as target

- Very limited outcrop
- 20,000m drilling
- > 70 holes

Results

Consistent magnetite siltstone in all anomalies

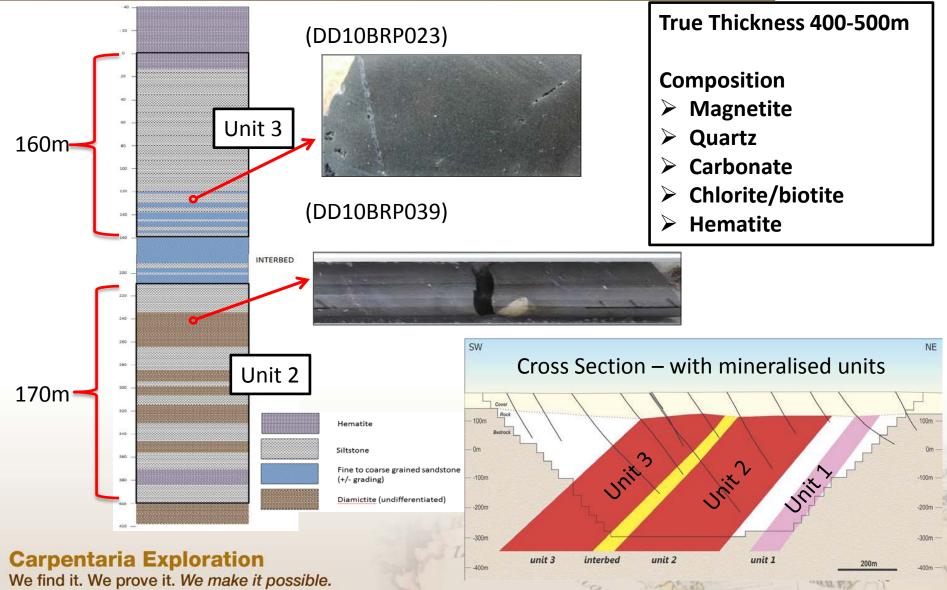

Exploration Target¹

6 to 11 billion tonnes 900-1,900 million tonnes of concentrate Mass Recovery (DTR) 14-17%

Concentrate Grade of 69-71% Fe

And a Maiden Resource

Carpentaria Exploration We find it. We prove it. We make it possible.

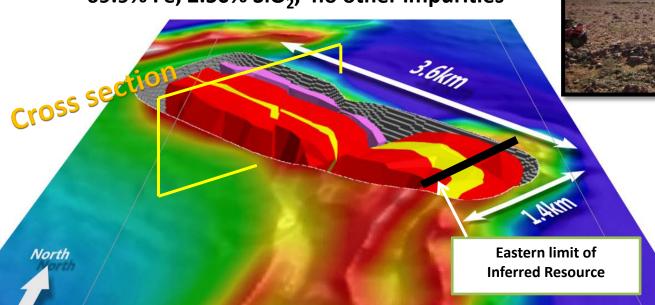


¹ The potential quantity and grade of the exploration targets is conceptual in nature and there has been insufficient exploration to define a Mineral Resource. It is uncertain if further exploration will result in the determination of a Mineral Resource. (DTR is Davis Tube Recovery)

ver Hankon

HAWSONS IRON PROJECT Geologically Consistent

HAWSONS IRON PROJECT Maiden Resource



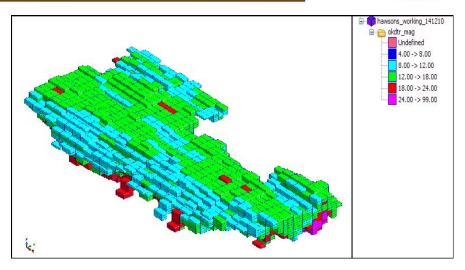
JORC Inferred Resource (12% DTR cut off)

1.4 billion tonnes at 15.5% mass rec.

220 million tonnes of concentrate

69.9% Fe, 2.50% SiO₂, no other impurities

Fe%	Al2O3%	P2O5%	SiO2%	S %
69.9	0.22	0.002	2.50	0.003


Carpentaria Exploration

HAWSONS IRON PROJECT PFS November 2011

Improvements to PFS base case:

- ➤ In pit crushing and conveying (IPCC) shows significant improvement
- Standard magnetite processing techniques

		Capex	NPV	IRR		Annual ave. Gross Profit	Payback	
Nov 2011 PFS Update (incl in pit crushing option)		\$2.9Bn	\$3.2 Bn	23%		\$735 m	6.3yrs	
July 2011 PFS Base Ca	se	\$2.8Bn	\$2.8 Bn	n 21%		\$688 m	6.7yrs	
Assumptions	Disc	ount rate	AUD			e of Mine 69%	Life of Mine equivalent	

1.00:0.85

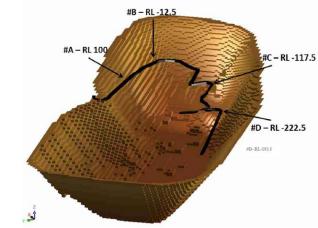
US\$88

US\$79

* Totalout KH

9%

HAWSONS IRON PROJECT Lower Mining Costs – In Pit Crushing and Conveying

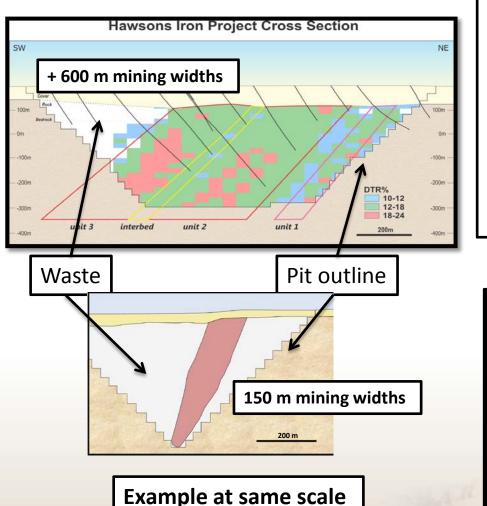



Existing and Proposed IPCC operations e.g.:

- Bingham Canyon
 - ~ ~ ~ 165Mtpa linked to the Copperton Concentrator by an 8km conveyor system
- Escondida Over 320Mtpa

Benefits:

- Lower fuel usage (fuel and transport ~50% of mining costs)
- > Truck utilisation increase by up to 15%
 - less long up hill hauls
- Uses Electrical power lower cost
- Better operational safety
- Deeper mine maximise resource



Carpentaria Exploration

HAWSONS IRON PROJECT Value of low Waste : Ore

Waste to ore 0.3:1, 15.5% DTR

Mine 130t material to produce 100t of ore

100t ore gives 15.5t of concentrate

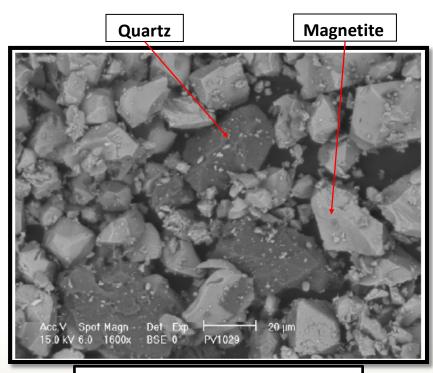
<u>8.4 t material moved</u> <u>produces 1 tonne concentrate</u>

Waste to ore 2.3: 1, 36% DTR

Mine 330t material to produce 100t of ore

100t ore gives 36t of concentrate

<u>9.2 t material moved</u> produces 1 tonne concentrate


- VECTIVATORI HA

HAWSONS IRON PROJECT Optimization Studies – Processing

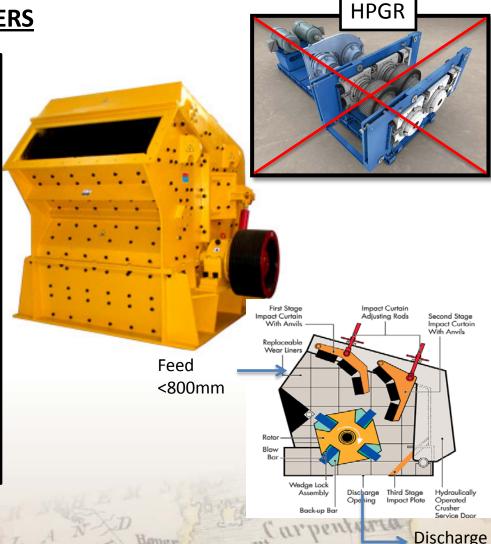
Unique Metallurgical Characteristics:

- Low bond work index of 6 8 kWh/t (BIF's ~ 15 - 30 kWh/t)
- Low abrasion index ~ 0.09(BIF's ~0.3 0.7)
- ➢ Rock Strength (UCS) 50 90 Mpa (BIF's ~ 355 Mpa)
- Grain size 30 50 μm
- Ideal for pellet production
- Ideal for slurry pipe operation
- Lab' trials indicate :
 - suitable for impact crushing
 - impact crushing generates more fines than conventional crushing

Rock breaks into grain size

HAWSONS IRON PROJECT Low Cost Front End Crushing

<65mm


PRIMARY CRUSHING - IMPACT CRUSHERS

Preliminary testwork - Positive

Utilizing soft ore characteristic(Low bond work and abrasion indices)

Value compared to HPGR:

- Lower capital cost
- Low energy consumption
- Large feed reduction ratio (12 : 1)
 - > Norm is 3 or 4 : 1
 - > Fewer crushing stages
- Off the shelf units

HAWSONS IRON PROJECT Low Cost Front End Crushing

Barmac Crusher


SECONDARY CRUSHING - IMPACT CRUSHERS

Laboratory scaled crushing tests indicate:

- Liberates crystalline magnetite
- **Secondary Crushing**
 - > Feed ~ 65mm
 - Discharge ~70% less than 1mm
 - **Total Fines Production ~35%** less than 53µm

Value:

- Off the shelf low cost units
- Low energy consumption
- **Produces 35% final products**
- **Eliminates tertiary crushing**

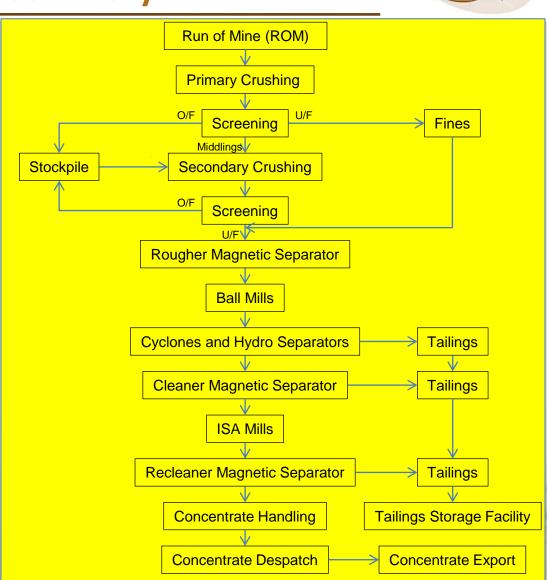
HAWSONS IRON PROJECT Optimization Studies - Processing

Preliminary Costings for a 5mtpa Crushing Module

Equipment	5Mtp (equival		Installed Power kW	Estimate d Costs M AUD	Option Study 5Mtpa (Anticipated)		Installed Power kW	Estimate d Costs M AUD
Primary Crushers	Gyratory	1	1,200	4.5	Impact Crusher	2	2,400	2.0
Secondary Crushers	Cone	2	1,900	7.0	Barmac	5	3,000	2.5
Tertiary Crushers	HPGR	4	16,000	31.2	-	-	-	
Total			19,100	42.7			5,400	4.5

Total Installed Power consumption estimated to be reduced from 173 MW to ~ 143 MW

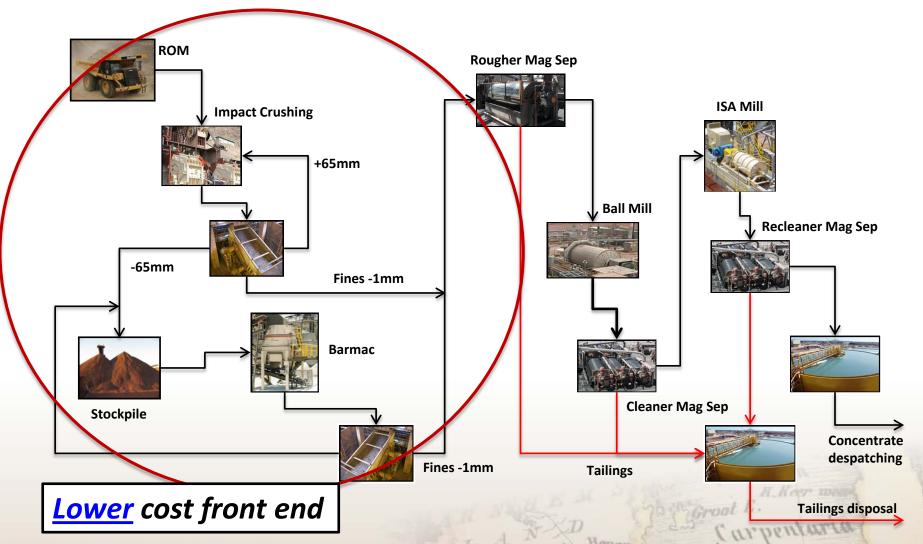
Estimated Power Reduction of 15 – 20% *


* Reduction not put into PFS, power for entire on site operation at 20Mtpa con. production

HAWSONS IRON PROJECT

Low Processing Costs - Summary

- Processing Costs \$11/t concentrate very low compared to others
- Produces premium pellet feed concentrate at 30-50 microns
- Very soft ore est' 30% less energy per tonne concentrate than typical WA deposits
- Grid Power up to 50% cheaper than self generated diesel power


Total and NA

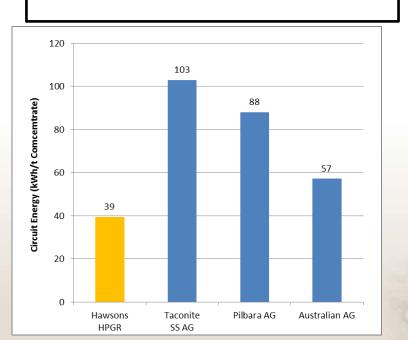
Carpentaria Exploration

HAWSONS IRON PROJECT

Optimization Studies – Simplified Flow Diagram

Carpentaria Exploration

HAWSONS IRON PROJECT Value of Soft Ore – power per tonne concentrate


Hawsons

Grinding costs

Bond Work index: 6 kWh/t

At 15.5% DTR:

39 kWh to produce 1 tonne con'

Example of a WA BIF

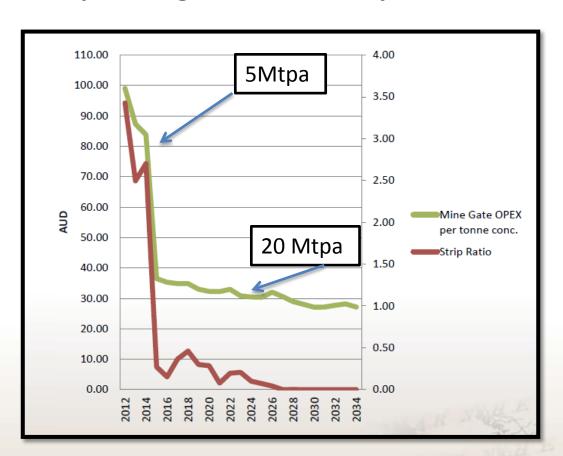
Grinding costs

Bond Work index :~ 20 kWh/t

At 36% DTR:

57 kWh to produce 1 tonne con'

Note:


- ➤Power calculations based on public information
- ➤ Hawsons costs assuming HPGR / Ball Mill circuit
- >Anticipate lower power with impact crushers

21

HAWSONS IRON PROJECT Operating Cost Summary

Operating Costs and Strip Ratio

Over Life of Mine:

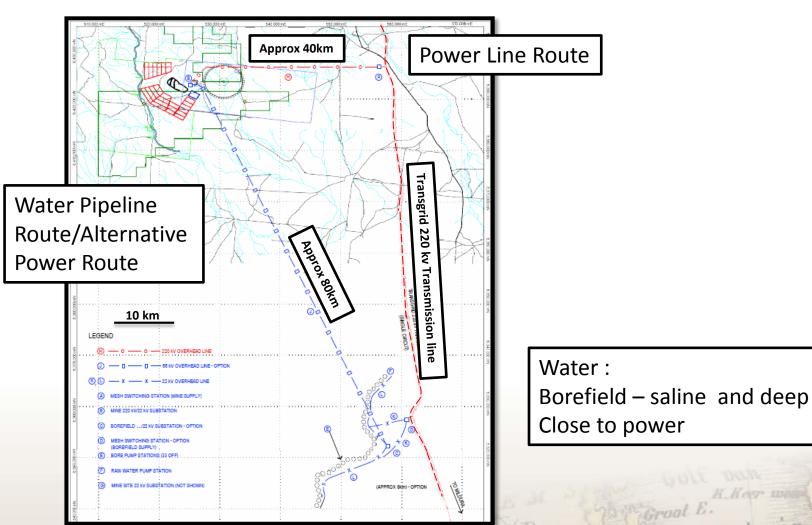
- ➤ Operating costs:
 Fall from \$36 to \$27
- Waste to ore Strip Ratio:
 Reduce at start of mine
 from ~ 0.4:1 to 0 in
 years

Carpentaria Exploration

HAWSONS IRON PROJECT Cost Summary – Start Up

Costs per tonne concentrate	AUD
Mining Costs	\$15
Processing Costs	\$11*
Other (incl' Royalties)	\$8
Total to Mine Gate	\$34 **

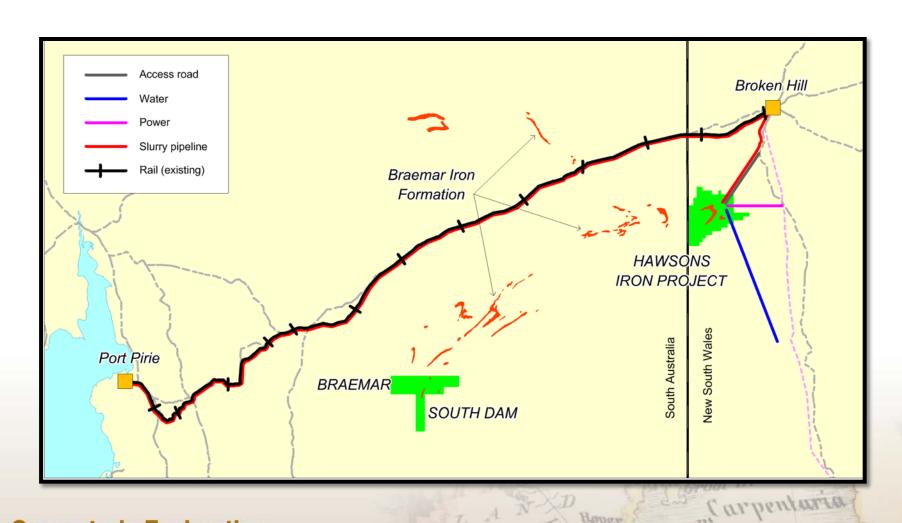
- ➤ FOB costs highly competitive (av. Closer to \$60)
- Average operating costs drop over life of mine after Pre Strip


FOB - Free on board

^{*} Does not include processing optimisation

^{**} Long term total is estimated to be \$27

HAWSONS IRON PROJECT Power and Water - Concept



Carpentaria Exploration

HAWSONS IRON PROJECT Transport Options From Site to Port

HAWSONS IRON PROJECT Transport Options – Great Optionality

Recent Developments – March 21, 2012

MOU signed with Flinders Ports to determine long term handling, storage and loading solution at Port Pirie, South Australia

Common User Facility for potential to export 20 – 30Mtpa of iron concentrates

Start Up Preference

- ➤ Year 1 5MT
 - slurry to Broken Hill, rail to Port Pirie
- Ramp up to yr 4 20MT
 - slurry to Broken Hill, slurry / rail to Port Pirie
- > 13Mtpa available using existing rail to Port Pirie
- Port Capacity available at Port Pirie pending upgrade

HAWSONS IRON PROJECT Transport Options – Concept Plan

Port Pirie bottleneck solved Two spare berths Out of town stock pile and conveyor

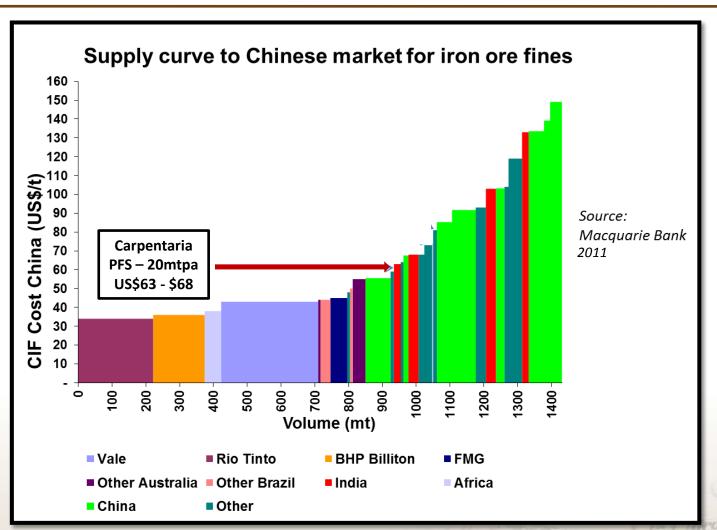
Availability of long-term handling and storage facility - great advantage over many other proposed magnetite projects

root E

HAWSONS IRON PROJECT Cost Summary

Costs per tonne concentrate	AUD
Mining Costs	\$15
Processing Costs	\$11*
Other (incl' Royalties)	\$8
Transport to and onto Ship	\$13 ^a - 19 ^b
Total FOB Port Pirie	\$47-53

- ^a Long term pipeline estimate
- ^b Rail to Port Pirie estimate
- * Not including processing optimization


- ➤ FOB costs highly competitive (av. Closer to \$60)
- Average operating costs drop over life of mine after Pre Strip

FOB - Free on board

HAWSONS IRON PROJECT CIF China Comparison June 2011

Note:

The CIF costs are at production grade eg hematite producers est. at 60% Fe

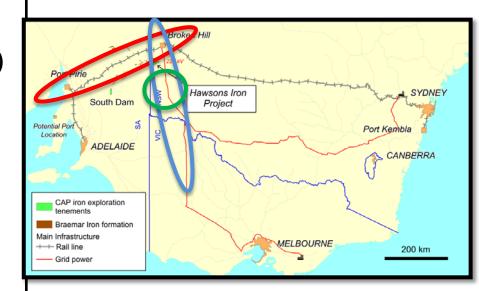
High grade concentrate producers – magnetite will attract 10 – 20% premium.

This offsets processing and transport costs not reflected in graph

Makes magnetite attractive

HAWSONS IRON PROJECT Work Program - Summary

- Port Pirie Expansion
 - > Flinders Port to complete
- Metallurgical Testwork
 - > Bench scale and pilot scale
- Project Sizing Study
 - > Determine optimum capacity and production rates
 - Include recent optimisation studies
- > Transport Studies
 - Maximise option utility (Slurry/rail)
- Drilling
 - Improve resource category
 - Geotechnical testing
 - Metallurgical sampling
- Statutory Approvals



HAWSONS IRON PROJECT SUMMARY

- Prefeasibility Study Start up at 5mtpa ramp to 20 mtpa concentrate production, 20 year mine life
 - NPV \$3.2 billion, IRR 23% (November 2011)
 - > CAPEX of \$2.9b
 - Life of mine 69%Fe price US\$87/t
 - > Est. cost in China US\$63 68 /t
 - PFS Audited Sept 2011 all ok
- Infrastructure Port, rail capacity, water, and power all available for start up
- Mining and Processing —low unit costs because low strip ratio, wide mining widths and soft ore
- Marketing Saleable concentrate low silica, no impurities
- Ownership CAP 60%, BMG (in Liquidation) 40%
 CAP potential to increase

Native Title has been extinguished

Carpentaria Exploration

The information in this presentation that relates to Exploration Results and Resources is based on information compiled by S.N.Sheard, who is a Fellow of the Australian Institute of Geoscientists and has had sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. S.N.Sheard is an employee of Carpentaria and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

