Adelaide Resources Limited

69 King William Road Unley SA 5061 * PO Box 1210 Unley BC SA 5061

61 8 8271 0600 tel 61 8 8271 0033 fm

adres@adelaideresources.com.au email

www.adelaideresources.com.au web

75 061 503 375 ABN

Australian Securities Exchange Announcement

Thursday 5 July, 2012

Company Announcements Office Australian Securities Exchange Limited PO Box H224 Australia Square NSW 1215

PASKEVILLE INTERPRETATION REVEALS COMPELLING NEW EXPLORATION TARGET.

Highlights

- Final analytical results have been received from the 2012 Paskeville Prospect drilling program. An interpretation of the prospect data shows it to be a coherent body of shallow, low to moderate grade, copper-dominant mineralisation with an unclosed strike length of 300 metres.
- The mineralised zone dips northeast and the width of the mineralised system increases towards the southeast, being greatest on the southeastern drill traverse where its true width is estimated to be over 130 metres.
- Study of the metal distribution in the mineralised system confirms that copper grade is increasing down dip on the southeastern drill traverse, presenting a highly compelling, large and high grade target zone.
- The deposit is located in paddocks currently sown with winter crops, however the relevant landowner has consented to limited further drilling later in 2012.

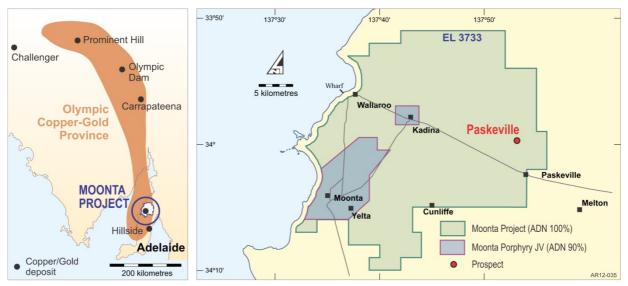


Figure 1: Moonta Copper-Gold Project location.

Background

The Moonta Project falls towards the southern end of the Olympic Copper Gold Province on the Yorke Peninsula of South Australia. The Paskeville Prospect is located in the east of the project in an area that is 100% owned by Adelaide Resources Limited (Figure 1). The prospect is defined by a cluster of copper and gold geochemical anomalies which have been targeted by a drilling program in the first half of 2012 (Figure 2).

The discovery of significant mineralisation at Paskeville was announced on 19 March, and releases detailing further promising exploration results were made to the ASX on 12 April and 5 June 2012. Assay results for drill samples from the remaining holes completed earlier in 2012 are now at hand. All prospect data have now been assessed and an interpretation of the prospect geology made resulting in the recognition of a compelling exploration target.

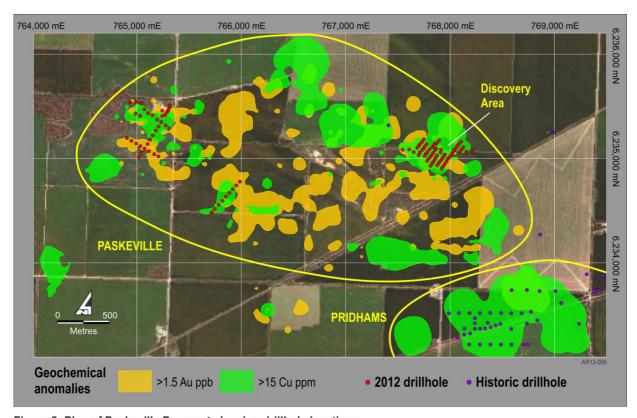


Figure 2: Plan of Paskeville Prospect showing drillhole locations.

Latest Results

Analytical results have been received for the last 50 aircore holes, and the single diamond hole completed at Paskeville during the drill program conducted in the first half 2012. The aircore results are from 19 holes drilled in the "Discovery Area", and from 31 holes drilled on geochemical targets in the west of the overall prospect. Figure 3 presents a plan showing hole locations in the Discovery Area zone, while Table 1 (at the back of this report) presents a complete summary of all assay results from the 2012 drill program. New results of note include:

- 4 metres at 1.1% copper from 67 metres downhole in PAS092;
- 15 metres at 0.36% copper from 47 metres, and 15 metres at 0.34% copper from 99 metres to the end of hole in PAC093, with the last 2 metres assaying 1.05% copper (this hole is interpreted to have finished in the zone intersected by hole PAC006 which returned 42 metres at 1.1% copper);
- 12 metres at 0.38% copper from 67 metres in PAC094; and
- 6.5 metres at 0.51% copper from 73 metres to the end of hole in PAC096.

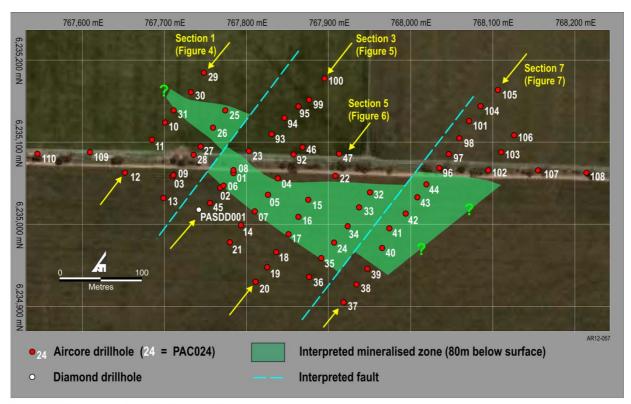


Figure 3: Discovery Area Summary Plan.

The single diamond drill hole, PASDD001, was sited to test southwest of hole PAC006 (42 metres at 1.10% copper). PASDD001 returned a best interval of 10 metres at 0.27% copper from 92 metres downhole, and is now confirmed to have drilled in the footwall to the mineralised zone which dips to the northeast.

Aircore holes testing the western geochemical targets intersected variably altered and, in places, strongly pyritic metasediments, and returned anomalous to very low grade levels of copper, gold and silver.

Current Interpretation of the Discovery Area

An assessment and interpretation of all Paskeville drill data has now been completed and shows that copper mineralisation is present on each of the well drilled traverses. The mineralised zone (defined as zones greater than 0.1% copper) displays good continuity on each of these traverses (Figures 4 to 7), while continuity between drill sections is also considered to be good (Figure 3). The strike length of the mineralised body is confirmed to be at least 300 metres, with the body interpreted to be displaced by cross cutting faults. Figure 3 shows the position of the interpreted primary mineralised zone at a depth of 80 metres below surface.

Mineralisation commences at shallow depths, in cases immediately beneath the cover sediments (Figure 5), and persists to the depth of current drilling on all traverses where the body has been intersected. The host rock is a variably altered metasediment which is weathered to depths varying from about 15 metres to over 100 metres below surface. The host rock is covered by a blanket of sand and clay sediments with an average thickness of about 8 metres.

The primary copper mineral present in fresh rock is chalcopyrite, which is often associated with pyrite and quartz veining. Secondary copper minerals observed in the weathered zone include chalcocite, native copper, malachite, azurite, and possibly atacamite. Associated metals include gold and silver, while a number of other elements including rare earth elements and molybdenum are at anomalous levels.

The mineralised body is interpreted to dip at a moderate angle to the northeast. The interpreted true width of the body in the primary zone increases systematically from approximately 15 metres in the northwest (Figure 4) to greater than 130 metres on the southeastern section (Figure 7).

A flat lying zone of very weak mineralisation in the weathered bedrock is present, most notably on the northwestern section (Figure 4), and is possibly the result of lateral remobilisation of metal during supergene weathering processes.

The overall copper grade in that part of the deposit tested so far is low to moderate, while narrower internal zones of higher grade mineralisation are commonly present. The continuity of these higher grade internal zones remains to be established, however hole PAC006, which is now interpreted to have drilled approximately down dip of one of these higher grade zones, intersected an un-bottomed interval of 42 metres at 1.1% copper, suggesting reasonable continuity is likely to exist.

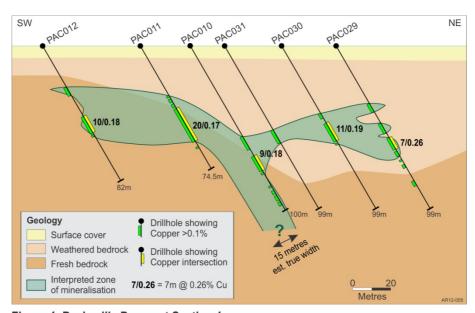


Figure 4: Paskeville Prospect Section 1.

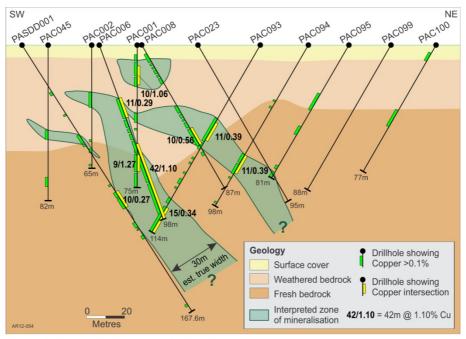


Figure 5: Paskeville Prospect Section 3.

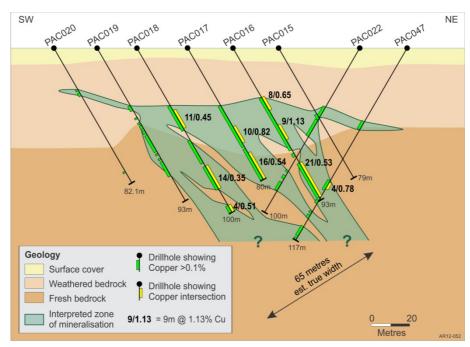


Figure 6: Paskeville Prospect Section 5.

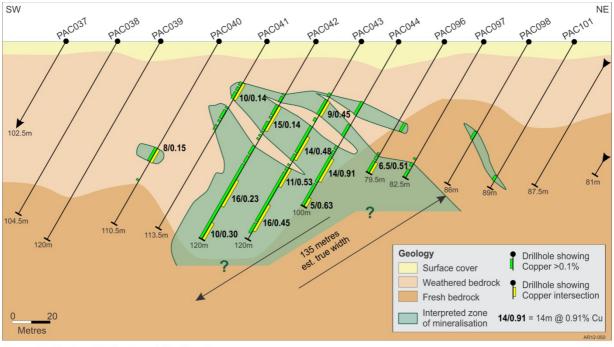


Figure 7: Paskeville Prospect Section 7.

Discussion, Target Definition and Future Exploration

The continuity and dimension of the mineralised zone delineated at Paskeville to date is a positive attribute, as are the attractive narrow intersections of better grade copper mineralisation. The overall grade of the deposit however is low, and consequently future exploration must seek to discover and delineate significant tonnages of higher grade mineralisation. Such higher grade zones may be present along strike from, or below, the body defined so far, or be found as subzones within the defined deposit around holes like PAC006 which returned 42 metres at 1.10% copper.

The potential to increase the size of the Paskeville deposit through further drilling along strike is considered to be excellent. The deposit is thickest on the southeastern most drill traverse (Figures 3 and 7), presenting a large, robust target zone along strike in that direction.

The mineralised body also remains open at depth along its currently defined strike length of 300 metres, and deeper drilling has a high potential of discovering further mineralisation beneath the depth tested by the aircore holes drilled so far.

Most significantly however, study of the copper grade distribution on the southeastern drill traverse reveals that the grade of the mineralised body is steadily increasing down dip. Figure 8 shows interpreted copper grade contours on this section. Copper grades through one interpretable subzone within the body increase down dip from 10 metres at 0.14% copper (hole PAC041), through 15 metres at 0.14% copper (PAC042), 14 metres at 0.48% copper (PAC043), and finally reach 14 metres at 0.91% copper in the deepest hole (PAC044).

This exciting observation suggests higher grade mineralisation should be present down dip of the current limit of drilling in this region of the deposit. This grade increase, combined with the very substantial true thickness of the deposit in this area, presents a compelling, high priority, target zone that clearly warrants drill testing utilizing diamond drilling methods.

Pleasingly, while the paddocks in which the Paskeville Prospect is located are currently sown with winter crops, the relevant landowner has consented to Adelaide Resources completing further limited drilling in 2012 which will allow testing of the priority target and possibly targets at depth below the other drill traverses in the coming months.

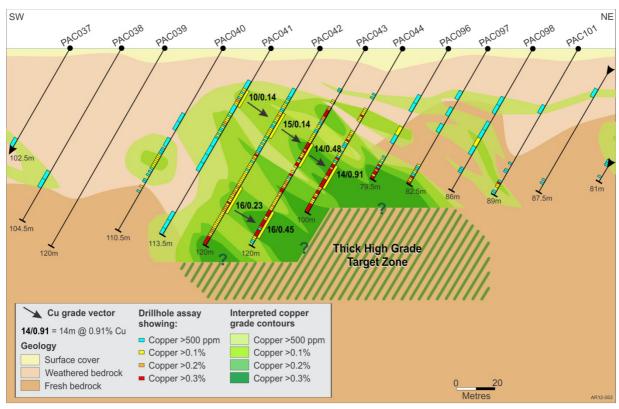


Figure 8: Interpreted copper grade contours on Section 7.

Chris Drown

Managing Director

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Chris Drown, who is a Member of The Australasian Institute of Mining and Metallurgy and who consults to the company on a full time basis. Mr Drown has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Drown consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Enquiries should be directed to Chris Drown. Ph (08) 8271 0600 or 0427 770 653.

 Table 1: Paskeville 2012 Program Intersections.

Hole Name	Easting (mga94)	Northing (mga94)	Dip	Azimuth	Final Depth	From (m)	To (m)	Interval (m)	Cu %	Au g/t	Ag g/t	Hole ends in copper
PAC001	767783	6235063	-90	~	75	5	22	17	0.70	~	~	Yes
					incl.	11	21	10	1.06	~	0.3	
						36	41	5	0.30	0.07	0.8	
						54	75	21	0.66	0.04	2.1	
D4.0000	707700	0005040	00		incl.	58	67	9	1.27	0.06	3.1	NI NI
PAC002	767769	6235046	-90	~	65	26	31	5	0.35	~	~	No
PAC003	767710	6235059	-90	~	65 incl.	14 19	25 21	11 2	0.41 1.17	~ ~	~ ~	No
PAC005	767823	6235035	-90	~	85	32	84	52	0.40	0.06	1.9	No
	707020	020000			incl.	58	65	7	1.16	0.13	2.9	
PAC006	767771	6235048	-70	035	98	30	98	68	0.76	0.07	2.9	Yes
				3330 933	incl.	56	98	42	1.10	0.11	3.9	
					incl.	62	67	5	2.93	0.21	4.2	
					and	78	87	9	1.69	0.14	4.0	
PAC007	767810	6235018	-60	035	65	30	65	35	0.27	0.01	1.1	Yes
					incl.	43	49	6	0.48	~	2.1	
PAC008	767785	6235066	-60	035	87	15	23	8	0.41	~	~	No
						37	61	24	0.36	0.02	0.9	
					incl.	51	58	7	0.67	0.04	1.5	
PAC009	767711	6235060	-60	035	94	22	44	22	0.49	0.01	~	No
					incl.	22	29	7	1.07	0.02	~	
PAC011	767685	6235106	-60	035	74.5	30	58	28	0.15	~	~	No
PAC013 PAC014	767700	6235033	-60	035	77	74	77	3	0.78	0.05	3.3	Yes
	767794	6234998	-60	035	99	37	73	36	0.37	0.03	2.9	No
					incl.	43 59	49 66	6	0.63 0.62	0.07	0.7 7.0	
PAC016	767861	6235008	-60	035	92.5	30	62	32	0.52	0.03	2.8	No
	707001	0233000	-00	000	incl.	30	35	5	0.85	0.00	~	140
					and	49	56	7	1.40	0.26	11.8	
						70	91	21	0.53	0.04	1.4	
PAC017	767850	6234990	-60	035	80	35	80	45	0.45	0.05	2.0	Yes
					incl.	48	58	10	0.82	0.08	7.5	
					and	71	80	9	0.70	0.07	1.1	
PAC018	767837	6234972	-60	035	100	35	50	15	0.37	0.07	~	Yes
						56	86	30	0.29	0.02	1.1	
						96	100	4	0.51	0.06	3.2	
PAC019	767824	6234951	-60	035	93	45	78	33	0.16	0.03	5.3	No
PAC021	767779	6234979	-60	035	98	56	65	9	0.20	0.03	1.1	No
PAC022	767907	6235057	-60	215	100	36	54	18	0.18	0.01	~	
DA C004	767000	6004070	60	025	00	78	87	9	0.21	0.03	2.1	Va
PAC024	767906	6234978	-60	035	90 incl	32	63	31	0.51	0.03	3.1	Yes
					incl. and	38 50	43 60	5 10	1.05 0.73	0.06	7.1 4.1	
					*	77	90	13	0.73	0.04	1.3	
PAC026	767758	6235118	-60	035	99	41	47	6	0.29	0.01	~	No
	, 37700	0200110	00	000		56	70	14	0.33	0.01	1.7	
						82	88	6	0.12	0.04	1.4	
PAC027	767743	6235096	-60	035	99	25	36	11	0.24	~	~	No
						39	52	13	0.25	0.14	~	
						62	94	32	0.14	0.02	1.3	
PAC028	767735	6235085	-60	035	102	24	54	30	0.27	0.03	1.0	Yes
						65	102	37	0.17	0.01	0.7	

Table 1: Paskeville 2012 Program Intersections (continued).

Hole Name	Easting (mga94)	Northing (mga94)	Dip	Azimuth	Final Depth	From (m)	To (m)	Interval (m)	Cu %	Au g/t	Ag g/t	Hole ends in copper
PAC029	767746	6235186	-60	035	99	56	67	11	0.21	~	1.9	No
PAC030	767730	6235166	-60	035	99	47	58	11	0.19	0.01	6.3	No
PAC031	767712	6235143	-60	035	99	51	59	8	0.15	~	0.6	No
PAC032	767948	6235042	-60	035	93	50	57	7	0.18	~	0.6	No
PAC033	767935	6235023	-60	035	102	32	39	7	0.22	0.05	~	No
						50	73	23	0.33	0.03	1.7	
					incl.	70	73	3	1.36	0.15	7.2	
PAC034	767921	6235003	-60	035	110	26	43	17	0.19	0.02	~	Yes
						48	52	4	0.79	0.07	~	
						63	110	47	0.47	0.04	1.8	
					incl.	67	76	9	0.82	0.06	4.3	
					and	106	110	4	1.07	0.10	2.0	
PAC035	767891	6234958	-60	035	111	44	54	10	0.17	0.08	0.8	Yes
77.0000	7 07 00 1	120,000				57	111	54	0.42	0.09	2.2	
					incl.	77	84	7	0.96	0.06	3.2	
PAC036	767876	6234936	-60	035	69	57	69	12	0.18	0.02	3.7	Yes
PAC040	767963	6234971	-60	215	110.5	65	73	8	0.15	0.01	2.0	No
PAC041	767977	6234993	-60	215	113.5	25	49	24	0.15	0.01	0.7	No
PAC042	767992	6235013	-60	215	120	32	45	13	0.14	0.01	~	Yes
						64	120	56	0.20	0.06	1.5	
PAC043	768007	6235036	-60	215	120	36	45	9	0.45	0.01	~	No
				770 770 770		52	73	21	0.37	0.01	4.8	
					incl.	58	61	3	1.12	0.02	18.9	
						77	117	40	0.38	0.02	1.5	
					incl.	86	88	2	1.46	0.06	5.1	
					and	99	115	16	0.45	0.02	0.9	
PAC044	768018	6235052	-60	215	100	37	45	8	0.39	~	~	Yes
				10.000000		51	58	7	0.18	0.08	3.8	
						64	100	36	0.55	0.08	2.5	
					incl.	80	85	5	1.88	0.25	6.4	
					and	96	100	4	0.70	0.04	3.1	
PAC046	767869	6235098	-60	215	112	45	54	9	0.13	~	~	No
				7,500,500		102	106	4	0.58	0.04	2.3	
PAC047	767913	6235086	-60	215	117	81	87	6	0.58	0.05	2.3	Yes
						109	117	8	0.22	0.02	1.0	
PAC092	767856	6235081	-60	216	91	67	70	3	1.36	0.06	6.6	No
PAC093	767831	6235107	-60	213	114	45	64	19	0.32	0.02	1.3	Yes
						99	114	15	0.34	0.03	1.2	
					incl.	112	114	2	1.05	0.08	2.8	
PAC094	767846	6235127	-60	215	98	67	79	12	0.38	0.04	2.1	No
PAC095	767861	6235143	-60	216	81	30	40	10	0.14	~	~	Yes
						50	55	5	0.22	0.01	0.8	
PAC096	768031	6235069	-60	214	79.5	73	79.5	6.5	0.51	0.03	1.0	Yes
PAC097	768043	6235089	-60	217	82.5	78	82.5	4.5	0.29	0.03	~	Yes
PAC100	767894	6235180	-60	217	77	40	50	10	0.19	~	~	No
PAC102	768095	6235070	-60	212	67	57	65	8	0.30	0.05	1.4	No
					incl.	58	60	2	0.74	0.14	1.2	
PAC106	768124	6235111	-60	216	63	25	40	15	0.13	~	~	No
PASDD001	767744	6235016	-57	035	167.6	92	102	10	0.27	0.01	1.5	No

Intersections calculated by averaging 1-metre or 5-metre composite chip samples. Copper and silver determined by four acid digest followed by ICP-AES finish. Overrange copper (>1%) determined by AA finish. Gold determined by fire assay fusion followed by ICP-AES finish. Introduced QA/QC samples indicate acceptable analytical quality. Intersections are downhole lengths.

^{*}Possible sample contamination observed in this interval.