

Company Announcement, Tuesday November 27th, 2012

Political Developments in Greenland Set to Firm the **Government's Strategy for Uranium Exploitation from Kvanefjeld**

Greenland Minerals and Energy Ltd ("GMEL" or "the Company") is pleased to provide an update in regard to political developments in Greenland that relate to the Company's 100% owned Kvanefjeld multi-element project (rare earth elements, uranium, zinc).

On Wednesday 21st November the position of Greenland in regard to uranium policy was addressed in Greenland's parliament. A show of unanimous support was given from all political parties to fast-track an independent review to finalise the government driven, multi-year phase of information gathering on uranium production and associated issues. Importantly this review includes aspects that relate to Greenland's foreign policy, which is managed by Denmark.

The Danish foreign minister Villy Søvndal was present in Greenland and has indicated that Denmark will support Greenland in pursuing uranium production, but noted that it is Denmark's responsibility to ensure that international conventions, such as non-proliferation, are respected. Investigations are already underway in Denmark, led by the Ministry of Foreign Affairs, into foreign policy protocols that would be required to facilitate uranium production in Greenland.

This development is very significant in that uranium is slated to be a by-product of rare earth production from Kvanefjeld. By-product revenues are set to provide Kvanefjeld with a highly competitive cost structure and represent a major economic advantage over rare earth only operations. The development regarding uranium policy is therefore of major relevance to projected global rare earth supply, with Greenland positioning to play a key role.

The information campaign conducted by the Greenland Government has already generated a solid knowledge base to evaluate and effectively manage potential uranium production in Greenland. In addition to a compilation and dissemination of technical information, government and key stakeholder representatives have conducted visits to Canada to learn directly about the regulation and operation of uranium production, and the effective management of environmental and social impacts.

This latest political advancement follows a number of key licensing developments for the Kvanefjeld project over the last two years. In Greenland uranium is regulated at the license level, rather than under the Mining Act, and in late 2011 uranium was incorporated into GMEL's exploration license for Kvanefjeld. This effectively provides the Company with the right to apply for exploitation in accordance with Greenland's broader mining regulatory framework.

The show of support from all political parties highlights a coherent approach between GMEL and the Greenland Government in advancing Kvanefjeld toward mine development. In December, GMEL will be joining a Greenland Government delegation headed by Premier Kuupik Kleist on a visit to South Korea, organised through the Danish Embassy, as part of an ongoing engagement strategy with potential development partners.

About Kvanefjeld

Kvanefjeld is widely recognised as being one of the largest resources of both rare earth elements and uranium globally. The resources are hosted in bulk, mostly outcropping multi-element deposits in south Greenland with direct shipping access to the project area, year round. Kvanefjeld is one of the few emerging rare earth projects globally for which comprehensive pre-feasibility studies have been completed, with technical aspects of the project now significantly de-risked. The ore-type is considered to be highly favourable in that it can be effectively beneficiated utilising froth flotation, with mineral concentrates then being conducive to a simple atmospheric leach. In contrast to new rare earth producing operations at Mountain Pass (California) and Mt Weld (Australia), Kvanefjeld will have significant production of the strategically important heavy REEs and uranium.

Yours faithfully,

Roderick McIllree

Managing Director

Greenland Minerals and Energy Ltd

ABOUT GREENLAND MINERALS AND ENERGY LTD.

Greenland Minerals and Energy Ltd (ASX – GGG) is an exploration and development company focused on developing high-quality mineral projects in Greenland. The Company's flagship project is the Kvanefjeld multi-element deposit (Rare Earth Elements, Uranium, Zinc), that is rapidly emerging as a premier specialty metals project of global significance. A comprehensive pre-feasibility study has demonstrated the potential for a large-scale, cost-competitive, multi-element mining operation. For further information on Greenland Minerals and Energy visit http://www.ggg.gl or contact:

Roderick Mcillree Managing Director +61 8 9382 2322 Christian Olesen (DK) Rostra Kommunikation +45 (0)3336 0429

Greenland Minerals and Energy Ltd will continue to advance the Kvanefjeld project in a manner that is in accord with both Greenlandic Government and local community expectations, and looks forward to being part of continued stakeholder discussions on the social and economic benefits associated with the development of the Kvanefjeld Project.

Statement of Identified Mineral Resources, Kvanefjeld Multi-Element Project (Independently Prepared By SRK Consulting).

Multi-Element Resources Classification, Tonnage and Grade										Contained Metal				
Cut-off	Classification	M tonnes	TREO ²	U ₃ O ₈	LREO	HREO	REO	Y_2O_3	Zn	TREO	HREO	Y_2O_3	U ₃ O ₈	Zn
$(U_3O_8 ppm)^1$		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt
Kvanefjeld - March 2	2011													
150	Indicated	437	10929	274	9626	402	10029	900	2212	4.77	0.18	0.39	263	0.97
150	Inferred	182	9763	216	8630	356	8986	776	2134	1.78	0.06	0.14	86	0.39
150	Grand Total	619	10585	257	9333	389	9721	864	2189	6.55	0.24	0.53	350	1.36
200	Indicated	291	11849	325	10452	419	10871	978	2343	3.45	0.12	0.28	208	0.68
200	Inferred	79	11086	275	9932	343	10275	811	2478	0.88	0.03	0.06	48	0.20
200	Grand Total	370	11686	314	10341	403	10743	942	2372	4.32	0.15	0.35	256	0.88
250	Indicated	231	12429	352	10950	443	11389	1041	2363	2.84	0.10	0.24	178	0.55
250	Inferred	41	12204	324	10929	366	11319	886	2598	0.46	0.02	0.03	29	0.11
250	Grand Total	272	12395	347	10947	431	11378	1017	2398	3.33	0.12	0.27	208	0.65
300	Indicated	177	13013	374	11437	469	11906	1107	2414	2.30	0.08	0.20	146	0.43
300	Inferred	24	13120	362	11763	396	12158	962	2671	0.31	0.01	0.02	19	0.06
300	Grand Total	200	13025	373	11475	460	11935	1090	2444	2.61	0.09	0.22	164	0.49
350	Indicated	111	13735	404	12040	503	12543	1192	2487	1.52	0.06	0.13	98	0.27
350	Inferred	12	13729	403	12239	436	12675	1054	2826	0.16	0.01	0.01	10	0.03
350	Grand Total	122	13735	404	12059	497	12556	1179	2519	1.68	0.06	0.14	108	0.31
Sørensen - March 20	012													
150	Inferred	242	11022	304	9729	398	10127	895	2602	2.67	0.10	0.22	162	0.63
200	Inferred	186	11554	344	10223	399	10622	932	2802	2.15	0.07	0.17	141	0.52
250	Inferred	148	11847	375	10480	407	10887	961	2932	1.75	0.06	0.14	123	0.43
300	Inferred	119	12068	400	10671	414	11084	983	3023	1.44	0.05	0.12	105	0.36
350	Inferred	92	12393	422	10967	422	11389	1004	3080	1.14	0.04	0.09	85	0.28
Zone 3 - May 2012														
150	Inferred	95	11609	300	10242	396	10638	971	2768	1.11	0.04	0.09	63	0.26
200	Inferred	89	11665	310	10276	400	10676	989	2806	1.03	0.04	0.09	60	0.25
250	Inferred	71	11907	330	10471	410	10882	1026	2902	0.84	0.03	0.07	51	0.2
300	Inferred	47	12407	358	10887	433	11319	1087	3008	0.58	0.02	0.05	37	0.14
350	Inferred	24	13048	392	11392	471	11864	1184	3043	0.31	0.01	0.03	21	0.07
Project Total														
Cut-off	Classification	M tonnes	TREO ²	U ₃ O ₈	LREO	HREO	REO	Y_2O_3	Zn	TREO	HREO	Y_2O_3	U ₃ O ₈	Zn
(U₃O ₈ ppm) ¹		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt
150	Indicated	437	10929	274	9626	402	10029	900	2212	4.77	0.18	0.39	263	0.97
150	Inferred	520	10687	272	9437	383	9820	867	2468	5.55	0.20	0.45	312	1.28
150	Grand Total	956	10798	273	9524	392	9915	882	2351	10.33	0.37	0.84	575	2.25

¹There is greater coverage of assays for uranium than other elements owing to historic spectral assays. U₃O₈ has therefore been used to define the cut-off grades to maximise the confidence in the resource calculations.

Note: Figures quoted may not sum due to rounding.

²Total Rare Earth Oxide (TREO) refers to the rare earth elements in the lanthanide series plus yttrium.