

ASX:EAF

31 January 2013

DECEMBER 2012 QUARTERLY ACTIVITIES REPORT

HIGHLIGHTS

Mkuju South Joint Venture

- The results of EAF's recent field work continue to highlight the potential of the Karoo sediments within the Mkuju South JV Project area to host sandstone-hosted roll front type uranium mineralisation.
- Sample results confirm the presence of uranium.
- Planning is underway for a fully funded 10,000m drill program which is scheduled to begin in April 2013.

Eastern Rift Project

• Results received for samples taken from A1 and C1 anomalies

Tanzania Country Manager Appointed

• Mr James Sullivan appointed Tanzania Country Manager

Overview

East Africa Resources Limited (ASX:EAF) has five projects within Tanzania (refer Figure 1). Field work continued at the Mkuju South Joint Venture area in the December Quarter 2012.

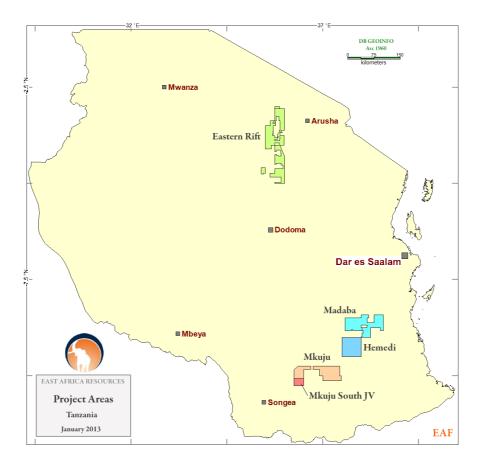


Figure 1 - Project Location Map

Mkuju Uranium Project

The Mkuju Uranium Project consists of 19 tenements (granted or active, offered and applications) covering 4,340 square kilometres in Southern Tanzania (refer Figure 2).

The company is targeting sedimentary type uranium deposits that usually form as tabular and roll-front bodies hosted by coarse sandstones. The nearby Uranium One owned (formerly Mantra Resources Limited) Mjuku River deposit (32,750 t @ 439ppm U_3O_8) and the Paladin Energy Limited Kayelekera Mine (14,728 t @ 810ppm U_3O_8) in Malawi are examples of sandstone hosted tabular deposits within Karoo Sandstone basins.

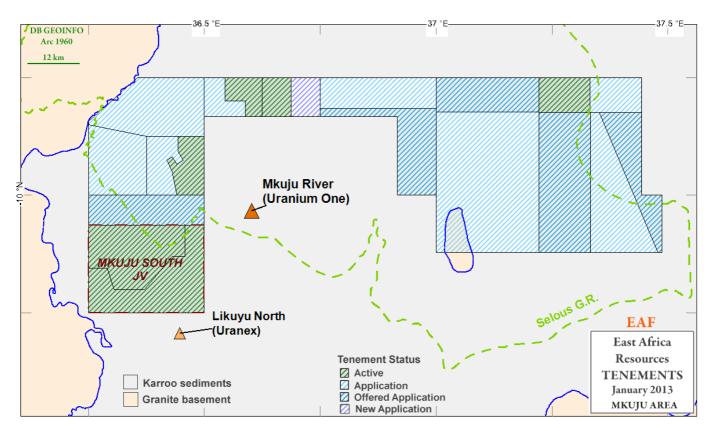


Figure 2 - Tenements Mkuju Uranium Projects

Mkuju South Joint Venture

The Mkuju South Joint Venture (MS-JV) is between the Company and Korea Resources Corporation ("KORES"). It covers the Mkuju South project which comprises two tenements in the southern part of the Mkuju Uranium Project totalling 550 km². Under the terms of the agreement KORES has committed to a staged investment of US\$3.5 million to secure a 50% interest in the Mkuju South uranium project. The JV investment will comprise two major exploration

programs at Mkuju South.

Horobo 2

ERA

MANTRA

Octavo

Royal

Colombier

Pott U

Mkuju / Nyota

Horobo 1

Quarto

Foolscap

Foolscap

Selous
Border
(approx.)

MS-JV

Airb.
survey

Airb.
survey

Figure 3 adjacent shows the location of the Mkuju South JV Project on an airborne radiometric image compiled from EAF data and data released on the ASX by Uranium One (Mantra) for their Mkuju/Nyota Deposit. The main prospects are shown for the Mkuju South JV and the most prominent airborne anomalies for the EAF ground to the north.

Figure 3 - Airborne Radiometric Image Mkuju Area

Mkuju South JV – Exploration Update

Recent field work at the Mkuju South JV Project in southern Tanzania has further confirmed the presence of sandstone-hosted secondary uranium mineralisation at the Mkuju South JV Project.

Figure 4 Two samples of visible uranium mineralisation from Quarto

The field work completed during the quarter included infill radiometric traversing, geological mapping, grab sampling and channel sampling of the previously excavated trenches. Previously completed auger samples were also dispatched for assay. Work was mainly undertaken at Quarto and Foolscap (Figure 3).

The following details the work was undertaken by Mzuri Exploration Services (under contact to East Africa Resources) during 2012:

- 30 km² detailed ground scintillometer work,
- 3 km² detailed ground spectrometer work,
- 6 trenches excavated 145 linear m,
- 14 hand auger holes (103 m),
- 58 outcrops mapped,
- camp established,
- and access tracks established to Foolscap, Post and Quarto.

This includes the following completed in October during a visit to site by Dr Joseph Drake-Brockman:

- a total of 20 areas were visited,
- 5 trenches mapped,
- 6 pits dug (ea 1-2 m deep),
- 18 trench channel samples collected,
- 17 grab samples collected,
- and 34 hand auger samples dispatched.

A total of 69 samples were dispatched for assay at the end of October 2012. They consisted of 18 trench channel samples collected from the back walls of 5 trenches excavated at Quarto. The samples were collected by free-hand chiselling down the face of the soft weathered exposed sandstone. Radeye scintillometer readings were used to control the sampling. A further 17 grab samples were collected from pits at Foolscap and grab samples from hotspots elsewhere. The remainder of the samples (34) were sorted out from stored auger hole samples. Samples returning >100 cps measured in a low background environment (of approx. 75 cps) were shipped for assay.

Trench and Auger Sampling

Six trenches were excavated by Mzuri at the Quarto Prospect, three of them along the line of the surface anomaly, two behind the radiometric front and one at a spot anomaly to the east. Figure 5 shows the trench locations on the scintillometer image.

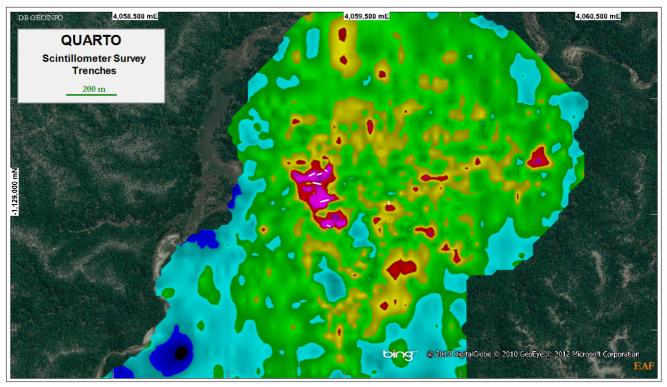


Figure 5 - Quarto Trench Locations on the Scintillometer Image

The detailed sample results from the Quarto prospect are recorded in Table 1.

The results show a strong degree of radiometric disequilibrium within the weathered profile at Quarto. The assay values being approximately 50% of the expected values based on the radiometric readings. Maximum values were in the range 90-112 ppm U3O8. This is not un-expected in weathered porous beds under high rainfall conditions that prevail at Mkuju.

Disequilibrium means that the uranium present in the trenches is not in secular equilibrium with its daughter products. In particular with the daughter product Bi²¹⁴ which is the major gamma emitter and responsible for the radiometric signature. Frequently within the weathered profile uranium is leached and moves away from the Bi²¹⁴ daughter. This results in less uranium in chemical assays as compared with the expected results expressed in recorded scintillometer readings. The moved uranium can then accumulate in a different part of the profile resulting in excess uranium compared with the radiometric readings.

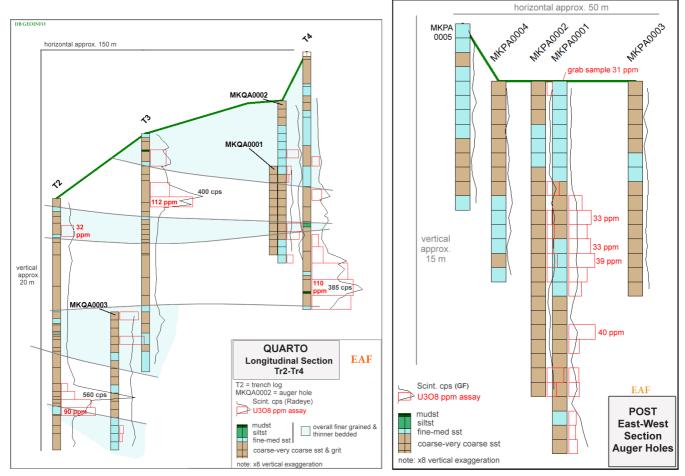
Figure 6 illustrates the assay results plotted on a longitudinal section for Quarto. The trenches are plotted as pseudo drill holes.

The three anomalies exposed in the trenches are clearly visible along with lithological control exercised by the finer grained layers. The downward displacement of uranium away from the radiometric high can be seen in all trenches but most clearly in T2. It is quite probable that uranium has been leached leaving behind the radioactive daughter products. That uranium is moving within the weathered profile is further illustrated by a sample from trench Tr5b which gave 33 ppm U from 75 cm of wall reading just 75-80 cps Radeye indicating a relative oversupply of uranium compared with the cps measured. Auger sampling results are provided in Table 2. The best result from the auger sampling shown on the section was 65 ppm in MKQ0003.

The trench sampling results summarized are:

- Tr2 1.5 m at 65 ppm U3O8
- Tr3 0.6 m at 110 ppm U308
- Tr4 2.85 m at 105 ppm U3O8
- Tr5a, Tr5b & Tr1 gave assays < 39 ppm U3O8

The above results prove the existence of a significant geochemical anomaly at Quarto that is reflective of leached surface uranium mineralization. The anomalous zone remains a worthwhile detailed drilling target.


Table 1: Trench Sample Results - Quarto Anomaly

No.	Sample	Description	Radeye cps	U3O8 ppm	Easting UTM37	Northing UTM37
T1	E2101	Tr. 1, step 1, 45-90 cm, back corner, yel stained vc uniform sst	100-130	38	222480	8883970
T4	E2102	Tr. 4, step 7, 40-100 cm, back wall, crm-tan mottl vc sst	65-85	20	222230	8883985
T4	E2103	Tr. 4, step 9, 35-100 cm, back wall, crm-tan c sst + gry mudst clasts	80-140	26		
T4	E2104	Tr. 4, step 13, 0-100 cm, back wall, crm-tan streaked m & c sst	120-250	96		
T4	E2105	Tr. 4, step 13, 100-200 cm, back wall, gry-tan streaked m & vc sst	195-385	110		
T4	E2106	Tr. 4, step 14, 0-85 cm, back wall, crm-tan mottl c-vc sst	140-245	104		
T4	E2107	Tr. 4, step 12, 20-100 cm, back wall, gry-crm mottl c sst	70-80	18		
T4	E2108	Tr. 4, step 12, 100-200 cm, back wall, gry-crm-tan streaked/mottl c-vc sst	115-265	30		
Т3	E2109	Tr. 3, step 2, 0-100 cm, back wall, gry-tan streaked c-vc bedded sst	95-150	42	222170	8884095
Т3	E2112	Tr. 3, step 4, 0-90 cm, back wall, gry-tan streaked c-vc sst, gry mudst clasts	130-400	51		
Т3	E2113	Tr. 3, step 4, 90-150 cm, back wall, 10cm sized gry mudst clasts in brn limonite encrusted vc sst matrix	220-400	112		
T2	E2114	Tr. 2, step 2, 65-130 cm, back wall ,tan vc gritty sst	65-105	33	222195	8884050
T2	E2115	Tr. 2, step 11, 0-50 cm, back wall, tan vc sst	90-250	16		
T2	E2116	Tr. 2, step 11, 50-100 cm, back wall, gry to occas. tan mottl m-c sst	250-560	36		
T2	E2117	Tr. 2, step 12, 0-50 cm, back wall, light tan vc sst	200-235	78		
T2	E2118	Tr. 2, step 12, 50-100 cm, back wall, pnk-yel-gry streaked/mottl, mica rich, m-c sst	170-200	90		
T5b	E2119	Tr. 5b, step 3, 125-200 cm, back wall, tan c-vc uniform sst	75-80	39	222215	8884110
T5a	E2120	Tr. 5a, step 3, 50-100 cm, back wall, gry-pink-tan streaked/mottl med-mica rich sst	115	22	222185	8884090

Note: Yel = yellow, brn = brown, crm = cream, gry = grey, pnk = pink, mottl = mottled, m = medium, c = coarse, vc = very course, sst = sandstone, mudst = mudstone, occas = occasionally

Notes:

- 1. Trenches are typically excavated as steps down a hillside slope. Continuous channel sampling is undertaken over the full thickness of the vertical faces of the steps. Sample intervals are based on mapped geological boundaries or scintillometer readings. Geological units are flat lying to shallowly dipping so vertical intervals approximate true widths
- 2. Detailed geological mapping and radiometric profiling (using a hand-held scintillometer) is undertaken for all trenches
- 3. Sample preparation by ALS Chemex laboratory in Mwanza, Tanzania
- 4. Sample analysis by ALS South Africa. Low level analysis by four acid digest and ICP and high level (>1,000 ppm U 3 08) analysis using fused pellet XRF method. Assay results in ppm U have been converted to ppm U3 08 for reporting (multiplied by factor of 1.179)
- 5. Quality control standards, blanks and duplicates are routinely included with the site samples prior to submission to the laboratory, where further laboratory control samples are added
- 6. GF scintillometer readings are approximately 4-5 times the Radeye scintillometer readings in same location

Figure 6 - Quarto Longitudinal Section

Figure 7 - Post East-West Section

The best results from the 3 auger holes drilled at Quarto were 50 and 65 ppm U3O8 in the top part of MKQA0003. The best result for MKQ0002 was 39 ppm. These assays are shown on the section in Figure 6. These are anomalous values with background being approximately 2-3 ppm U3O8.

Anomalous results were also returned from two of the four auger holes drilled at Post. The best results were 40 and 25 ppm U3O8 from MKP0001 and MKP0002 respectively. An east west section is shown in Figure 7. This shows broad zones mildly anomalous in uranium; e.g. 3.5 m at 25 ppm U3O8 in top part of MKP0001 and 1.5 m at 21 ppm in the bottom part of MKP0002. A grab sample from the surface exposure gave 31 ppm U3O8 which indicates severe leaching of uranium compared with the radiometric response.

The results at Post, though rather modest do confirm the area as a geochemical target for spaced drilling.

Table 2: Auger Samples

Prospect	Easting UTM 37	Northing UTM 37	Sample	Auger Hole No.	From (m)	To (m)	cps (GF)	U3O
Foolscap	215675	8871700	E2142	MKFA0006	9.5	10	101	
Post	223380	8880380	E2143	MKPA0001	4.0	4.5	111	
Post			E2144	MKPA0001	4.5	5	113	
Post			E2145	MKPA0001	5.0	5.5	112	
Post			E2146	MKPA0001	5.5	6	115	
Post			E2147	MKPA0001	6.0	6.5	109	
Post			E2148	MKPA0001	6.5	7	117	
Post			E2149	MKPA0001	7.0	7.5	112	
Post			E2150	MKPA0001	8.5	9	114	
Post			E2151	MKPA0001	9.0	9.5	105	
Post			E2153	MKPA0001	10.0	10.5	104	
Post			E2154	MKPA0001	10.5	11	112	
Post			E2155	MKPA0001	11.5	12	126	
Post			E2156	MKPA0001	12.0	12.5	140	
Post			E2157	MKPA0001	12.5	13	160	
Post	223375	8880385	E2158	MKPA0002	0.0	0.5	100	
Post			E2159	MKPA0002	3.5	4	115	
Post			E2160	MKPA0002	4.5	5	109	
Post			E2161	MKPA0002	5.0	5.5	101	
Post			E2163	MKPA0002	5.5	6	104	
Post			E2164	MKPA0002	6.0	6.5	110	
Post			E2165	MKPA0002	6.5	7	106	
Post			E2166	MKPA0002	10.	10.5	103	
Post			E2167	MKPA0002	10.5	11	105	
Quarto	222225	8884005	E2168	MKQA0002	3.0	3.5	109	
Quarto			E2169	MKQA0002	4.0	4.5	110	
Quarto			E2170	MKQA0002	4.5	5	113	
Quarto			E2171	MKQA0002	7.5	8	105	
Quarto			E2173	MKQA0002	8.0	8.5	135	
Quarto			E2174	MKQA0002	9.5	10	116	
Quarto	222155	8884050	E2175	MKQA0003	0.0	0.5	109	
Quarto			E2176	MKQA0003	1.5	2	102	
Quarto			E2177	MKQA0003	7.0	7.5	108	
Quarto			E2178	MKQA0003	7.5	8	118	

Grab Sampling

The results of the grab sampling from radiometric hotspots located in October 2012 are listed in Table 3.

Two samples from the Block 4 radiometric target do confirm trace amounts of uranium in the range 12-33 ppm U3O8. Hence the target remains as a low grade leakage halo along a suspected redox front.

The pit sampling at Foolscap returned a best assay of 115 ppm U3O8 from a 100 cps (Radeye) hotspot. This suggests that uranium is being retained around a mudstone boulder exposed in the pit while the radioactive daughters have been preferentially removed. The remaining assays were grouped at about 20 ppm. The sampling confirms the leached leakage nature of the geochemical anomaly at Foolscap. Wide spaced drilling to map out the leakage halo is the only way forward.

The grab sampling at Demy produced the best result with 191 ppm U3O8. This sample was collected from a mix of black soil, ferruginous crusts and quartz pebbles. Further work (pit excavation and scintillometer surveys) is needed to confirm this result. Two other grab samples from similar material gave 32-58 ppm U3O8. These results show some uranium enrichment worthy of follow-up.

The sample result from Tembo gave 46 ppm U3O8 which is an encouraging response from a modest radiometric anomaly. Further scintillometer scouting and grab sampling is needed to assess the size and style of the target and to decide the scope of any follow-up work.

The results from Tree showed modest amounts of uranium at 20-33 ppm U3O8. However two samples also gave similar results for thorium indicating a mixed response and the possibility that heavy mineral bands are causing at least part of the anomaly. However the presence of the strongly radioactive silicified wood which is certainly uranium means that The Tree anomaly remains of interest. Further scout work is needed.

Table 3: Grab Sample Details

	Siab Sample					Th	U3O8
Sample	Area	Description	cps Radeye	E-UTM-z37	N-UTM-z37	ppm	ppm
E2122	Block 4	jdb stop 62, yel c sst s/c, small hole	65-75	223,203	8,881,683	13	33
E2123	Block 4	jdb stop 64, pale yel c sst s/c, small hole	65-75	223,284	8,881,417	9	12
E2124	Post	gully o/c, yel-crm-gry streaked/mottl c sst in gully wall, 75 cm channel sample	100-150	223,487	8,880,085	5	31
E2125	Foolscap	pit 5, 40-60 cm grab, lt-tan-gry mottl c sst, incl. gry mudst clasts	55-60	215,829	8,872,425	12	18
E2126	Foolscap	pit 4, 30-40 cm grab, tan vc sst, limonite crusts, gry-brn mudst boulder	70-100	215,866	8,872,454	14	115
E2127	Foolscap	pit 3, 60-70 cm grab, gry brn stained on surfaces mudst	60-70	215,904	8,872,465	10	20
E2128	Foolscap	jdb stop 81, gry soil + qtz pebbles, small hole, poss Th?	80-85	216,093	8,872,258	14	30
E2129	Foolscap	pit 2,floor 120 cm grab, crm-tan mottl c sst	50-60	216,099	8,872,436	5	13
E2130	Demy	jdb stop 89, grab, small hole, gry-brn pebbly soil, limonite crusts - concretions	75-135	204,022	8,870,234	12	191
E2131	Demy	jdb stop 93, grab from small hole, blk pebbly soil	60-100	203,833	8,870,085	25	32
E2132	Demy	jdb stop 88, grab from small hole, pebbly gry soil	60-105	204,025	8,870,226	12	58
E2134	Tembo	jdb stop 109, grab from small hole, gry soil, brn clay, fe-crusts	40-60	218,357	8,873,684	14	46
E2135	Foolscap	Foolscap, pit 6, wall 100 cm, grab, uniform sandy yellow clay colluvium	60-70	216,095	8,872,249	10	18
E2136	Reconn	jdb stop 199, blk mbuga clay, termite mound, grab from surface	35-55	200,854	8,866,599	29	5
E2137	Tree	jdb stop 110, grab from small hole, gry sandy soil, limonite crusts	35-40	215,702	8,870,831	9	27
E2138	Tree	jdb stop 103, grab small hole, brn clay, gry sandy soil	30-38	215,250	8,870,021	21	20
E2139	Tree	jdb stop 112, grab from o/c face, gry-pnk-red mottl v wth sst	60-70	215,243	8,870,038	42	33
E2140	Reconn	jdb stop 115, lt tan sand in gully floor, heavy minerals?, Th?	50-60	224,125	8,871,040	35	5

Note: Yel = yellow, brn = brown, blk = black, crm = cream, gry = grey, pnk = pink, mottl = mottled, m = medium, c = coarse, vc = very course, sst = sandstone, mudst = mudstone, qtz = quartz, colluvium = surface material, mbuga = swamp, s/c = subcrop, o/c = outcrop, channel sample = continuous sample over an interval, grab = point sample from best spot, wth = weathered, occas = occasionally

Planning Underway for Fully Funded Drilling Program

The results of EAF's recent field work continue to highlight the potential of the Karoo sediments within the Mkuju South JV Project area to host sandstone-hosted roll front type uranium mineralisation. Compilation and interpretation of the geological, geophysical and assay data generated from the recent field work is ongoing.

Based on these 2012 field season results, the company is implementing an aggressive exploration program, with a strong emphasis on the application of modern exploration technologies and targeted drilling, to evaluate the potential of its uranium exploration projects. Approximately, 10,000m of drilling will be carried out in the first half of 2013 and the program will be fully funded through the JV with KORES.

Eight particular targets have been selected for follow-up work, with six recommended for drilling. The targets are summarised in Table 4.

Table 4 - Targets

Target	Size (m)	Target	Rank	Drill	No. holes	Pattern (m)	Ave Depth (m)	Total Meters
Quarto	320x120	mineralization	1	У	28	80x40	75	2100
Post	1000x250	geochem anomaly	2	у	22	160x80	75	1650
Foolscap	1000x1200	geochem anomaly	2	у	25	480x160	75	1875
Demy	300x300	geochem anomaly	2	у	12	160x80	75	900
Block 4	800x150	radiometric trend	3	у	12	160x80	75	900
Kanga	3000x200	radiometric trend	4	у	10	1000x80	75	750
Reconn	28 km	stratigraphic	2	у	12		125	1500
Tembo	50x50	leakage	3	n				
Tree	35x35	leakage	3	n				

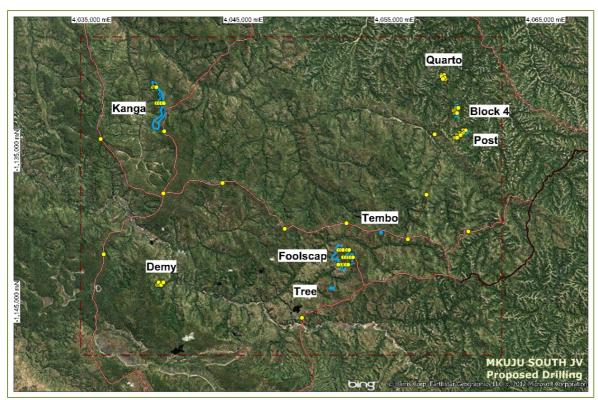


Figure 8 - Regional Drilling & Prospect Targets

Reconnaissance drilling will be carried out East –West across the tenement block to gain background geological information on stratigraphy and redox conditions (Figure 8).

Planning and contracts work will be done to provide for the drill program to commence at the end of the rainy season in April.

Exploration Update - Eastern Rift Uranium Project

The Eastern Rift Project consists of 37 tenements covering approximately 5,000 km² around Lake Manyara in the north of Tanzania (refer Figure 9). The target geology is the Manyara Basin, where playa lake sediments have filled a large rift structure. The exploration concept is based on a modified playa-lake calcrete model where uranium is accumulated along porous weakly cemented sand seams that are inter-bedded through the clay lake sediments. Drilling of surface anomalies in 2011/12 showed evidence of widespread low grade uranium enrichment that suggests the target model is valid. Figure 9 illustrates the tenement holdings and the location of the main targets and prospects.



Figure 9 - Eastern Rift Airborne Anomalies and Target Basins

There was no activity on the Eastern Rift Project during the quarter however sample results were received from the geological contractors Mzuri during the quarter. It was also decided to begin a process of tenement rationalization. Accordingly the following tenements were released or not renewed during the quarter: PL 5466/2008, PL 5915/2009, PL 5914/2009, HQ-P18058, HQ-P20423 and HQ-P19926.

Sampling

A total of 17 water samples were collected from a selection of the 2011 drilled holes. A further 4 samples were collected from local sources in the south of the tenement area in the Masai Channel area.

The results from the drill holes all demonstrated strong uranium values in the range 64-775 ppb U. These are very high values. Average samples from the Western Australian and Namibian calcrete terrains give values in the range 10-50 ppb U with anomalous values generally in the range 100-350 ppb U. The results are listed in Table 5. These results confirm the A1 and C1 anomalies as interesting targets for uranium exploration.

Table 5 - Eastern Rift Water Sample Results

	Drill			Easting	Northing
Sample	Hole	Area	U (ppb)	UTM z36	UTM z36
ERW001	ERAC030	A1	67.5	822198	9618947
ERW002	ERAC031	A1	167.5	821798	9618945
ERW003	ERAC032	A1	64.5	821397	9618955
ERW004	ERAC024	A1	260	821198	9618547
ERW005	ERAC025	A1	105	821599	9618546
ERW006	ERAC027	A1	755	822396	9618552
ERW007	ERAC022	A1	95.8	821603	9618154
ERW008	ERAC023	A1	236	821202	9618150
ERW009	ERAC021	A1	465	822003	9618160
ERW010	ERAC019	A1	253	821981	9617771
ERW011	ERAC036	A1	242	823660	9615503
ERW012	ERAC035	A1	140	822997	9615504
ERW013	ERAC026	A1	330	822001	9618548
ERW018	ERAC014	Esilale	99	821207	9609402
ERW019	ERAC015	Esilale	407	821409	9609399
ERW020	ERAC016	Esilale	225	821602	9609400
ERW021	ERAC011	C1	670	833292	9599996

Results from the surface waters in the Masai channel were modest. Refer Table 6.

Table 6 – Masai Channel Water Sample Results

Sample	Easting	Northing	U (ppb)	
ERW014	823899	9518923	4.24	
ERW015	823007	9521038	7.01	
ERW016	823159	9521077	1.53	
ERW017	824376	9526295	2.92	

Grab sampling produced a best result of 52 ppm U3O8 from the south end of the A1 anomaly. Refer Table 7.

Table 7 - Eastern Rift Grab Samples

Tuble / Lusten interest									
Sample	Area	Lat Arc1960	Lon Arc1960	Description	Th ppm	U3O8 ppm	V ppm		
EARS003		-3.61317	36.00404	gneiss/granite (weathered) lots magnetite	44	5	5		
EARS007	10	-3.41031	35.92576	basalt volcanic high R/M area	7	2	391		
EARS008	C1	-3.58081	35.94494	white light grey siltstone	26	2	113		
EARS009	C1	-3.50444	35.97189	siltstone/mudstone high R/M	13	21	243		
EARS014	C1	-3.54802	35.99597	white siltstone/mudstone	17	9	89		
EARS015	A1	-3.45892	35.90480	hi R/M stromatolites	40	2	17		
EARS016	A1	-3.47187	35.91053	siltstone/mudstone	17	52	181		
EARS017	A1	-3.47187	35.91053	Soft mudstone	29	52	32		
EARS018	A1	-3.44447	35.89218	white light grey siltstone	7	2	114		
EARS019	A1	-3.44444	35.89646	coarse gritty sandstone	43	12	48		

Note R/M = radiometrics

Madaba Uranium Project

The Madaba Project is situated in the south of Tanzania to the North of the Mkuju project (refer Figure 1). It was the subject of exploration undertaken in the 1970-80's which located uranium mineralisation through groundwork and drilling.

No work was conducted on the Madaba Project in the December quarter due to access issues related to the Selous Game Reserve. The Company is actively pursuing all options to gain access to explore in the Selous Game Reserve.

Hemedi Uranium Project

The Hemedi Project is located approximately 65 kilometres south of the Madaba Project (refer Figure 1). The tenements are largely outside of the Selous Game Reserve and are available for exploration. An examination of the old regional exploration maps from the Madaba Projects suggests that the target lithology at Madaba may continue into the Hemedi area.

Appointment of a new Country Manager - Tanzania

On the 1st November, 2012 the Company appointed Mr James Sullivan as Country Manager - Tanzania.

Mr Sullivan is a professional geologist with over 15 years' experience in mineral exploration and mining industry. He has experience in various commodities (gold, uranium, nickel and base metals) in Australia and Africa. He has held several senior positions and exploration management roles with successful mineral exploration and development companies, including Moto Goldmines Ltd, Mantra Resources Ltd and more recently, AngloGold Ashanti and Harmony Gold.

Mr Sullivan specialises in Greenfields exploration through to resource development and mineral economic valuations. He is based in Tanzania. Mr Sullivan is a member of The Australian Institute of Geoscientists and The Australian Institute of Energy.

Corporate

EAF will continue to identify and review other opportunities in Africa including potential acquisitions, joint ventures, or investments in the resources sector, with the objective of enhancing shareholder value.

EAST AFRICA RESOURCES LIMITED

Katina M Law

Executive Director/Chief Executive Officer

Enquiries

The Company:

Katina Law Executive Director/Chief Executive Officer +61 8 9227 3270

Ernie Myers Company Secretary +61 8 9227 3270

Email: info@eastafricaresources.com.au

Competent Person

The information in this release, insofar as it relates to exploration results, is compiled under the supervision of Dr Joe Drake-Brockman. Dr Drake-Brockman is employed by Drake-Brockman Geoinfo Pty Limited. Dr Drake Brockman has sufficient experience which is relevant to the style of mineralisation and the type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves". His educational qualifications include; an Associateship in Applied Geology from WAIT (now Curtin University), a Diploma and PhD in Geology from University of Cologne (Germany) and a Graduate Diploma in Computer Studies (Murdoch University). He joined the AusIMM in 1972 as a student and has been a full Member since 2004 and a Fellow since 2013. He has worked in uranium exploration for 26 years. Dr Drake- Brockman consents to the inclusion in the reports of the matters based on his assessment of the available information in the form and context in which it appears.