

INVESTMENT HIGHLIGHTS

- Developing a major coking coal province:
 - Amaam 412Mt total Resource:
 349Mt Inferred^B & 63Mt Indicated^C
 - Amaam North: 30-430Mt Exploration Target^D
 - Combined Resources and Exploration
 Target of over 1Bt

Amaam:

- Project 25km from planned port site and only 8 days shipping to China, Korea and Japan
- High vitrinite content (>90%) coking coal with excellent coking properties
- PFS completed

Amaam North:

- Initial Resource definition drilling complete
- Project 35km from existing Beringovsky coal port
- Potential for low capital and operating cost production from thick seams of direct shipping quality coking coal

BOARD OF DIRECTORS & CEO

Antony Manini Executive Chairman

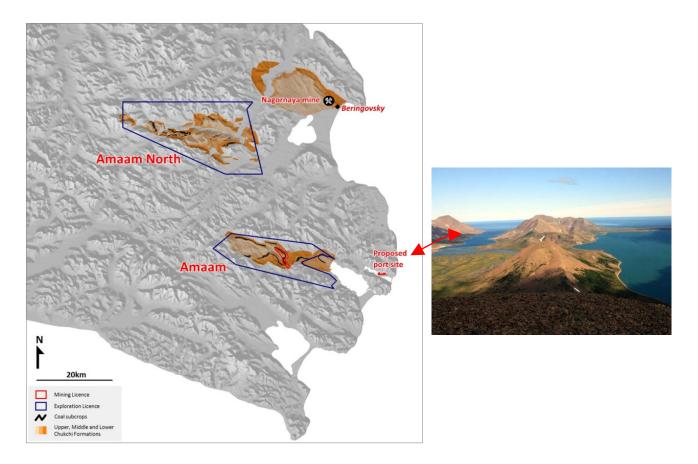
Brian Jamieson
Independent Non-executive Director

Owen Hegarty Non-executive Director

Craig Wiggill
Non-executive Director

Craig Parry Chief Executive Officer

Tigers Realm Coal Limited ACN 146 752 561 ASX code: "TIG"


Level 7, 333 Collins Street Melbourne VIC 3000 T: (+61) 3 8644 1326

Positive Amaam Pre-Feasibility Study confirms large scale, high quality coking coal mine potential

Highlights:

- Comprehensive Pre-feasibility Study (PFS) on the Amaam Coking Coal Project highlights potential for an economically robust large-scale, long-life open pit and underground mine operations, with dedicated transport infrastructure and extensive upside potential.
- PFS demonstrates capacity for production of 6.5Mpta of coking coal. 5Mtpa of production to come from open pit and 1.5Mtpa from underground mining over the 20-year life-ofmine (LOM).
- Total free-on-board (FOB) costs, including mining, washing, administration, rail, port and Russian state royalties, estimated to average US\$98.01/t of saleable product over LOM.
- Capital cost to initial production is estimated at US\$1,344M. These costs include over \$600M in mine fleet and infrastructure costs and TIG is pursuing independent contractors and infrastructure partners to fund part or all of these capital costs.
- PFS confirms strong Project economics with an NPV of US\$885M and an IRR of 19%. (Discount rate at 10% real, aftertax and long-term coking coal price of US\$190/tonne).
- TIG will continue with the Bankable Feasibility Study on the Amaam Coking Coal Project.
- Ongoing work programs will assess options to further enhance Project value. These include increasing open pit resources from further drilling at Amaam, extending the underground mine life beyond the initial 20 year LOM and improving coking coal yields by further processing of coarse middlings.
- TIG's plan for early development of the Amaam North deposit will add further value.

TIG is pleased to announce that it has completed a comprehensive Pre-feasibility Study (PFS) on the Amaam Coking Coal Project located in Chukotka province in Far Eastern Russia, approximately 40 km south of the existing coal mining operations at Nagornaya and its supporting port and township of Beringovsky.

Location map of the Amaam Coking Coal Project and Proposed Port Site at Arinay Lagoon

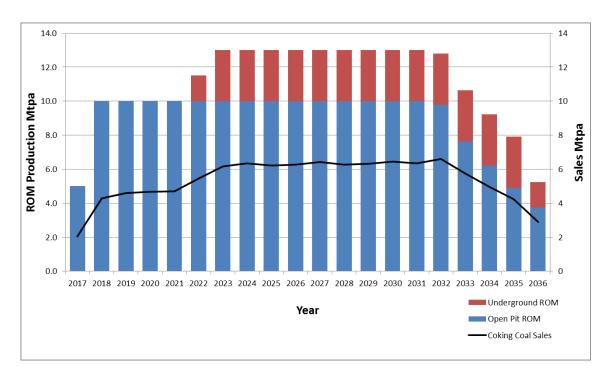
The Amaam Project PFS primarily focussed on the open pit potential of the Amaam Resource comprising three main components (refer Figure on page 4):

- 1. An open pit mine, coal handling and preparation plant (CHPP), and associated infrastructure on the Amaam Licence.
- 2. A 25 km all-weather road and rail line to a coal terminal located on the north shore of Arinay Lagoon.
- 3. A coal terminal with loading facilities for shipment of coking coal to export markets.

In addition, the PFS addressed (at a lower level of study accuracy) the potential for coking coal production from the remaining Resources and Exploration Target across both Licences. This production potential includes:

On the Amaam Licence

- 1. Underground mining of coal Resources below the Amaam open pit.
- 2. Open pit, high-wall/auger and/or underground mining of the Cretaceous coal seams in the Exploration Target lying stratigraphically below the Middle Chukchi coals.


On the Amaam North Licence

- 1. A low capital, early production open pit mine based on thick, near-surface, Lower Chukchi formation coal seams in the Exploration Target, with low ash, direct shipping potential via the existing Beringovksy Port.
- 2. Large-scale open pit and underground operations (akin to Amaam), based on the Middle Chukchi Exploration Target, with a CHPP producing coking coal for transportation by rail to the proposed new coal terminal at Arinay Lagoon.

The Project Base Case encompasses:

- 1. The Amaam open pit containing 177Mt of ROM coal, at a LOM average stripping ratio of 12.3:1 (bcm:ROM tonne). The open pit is mined at a ROM rate of 10 Mtpa;
- 2. An Underground mine containing 42 Mt of ROM coal, mined at a production rate of 3 Mtpa. There is potential for the underground operations to continue beyond the life of the open pit as an upside case; and
- 3. Initial CHPP and associated infrastructure constructed with a capacity of 10 Mtpa ROM coal and expanded to 13 Mtpa with the development of the underground mine.

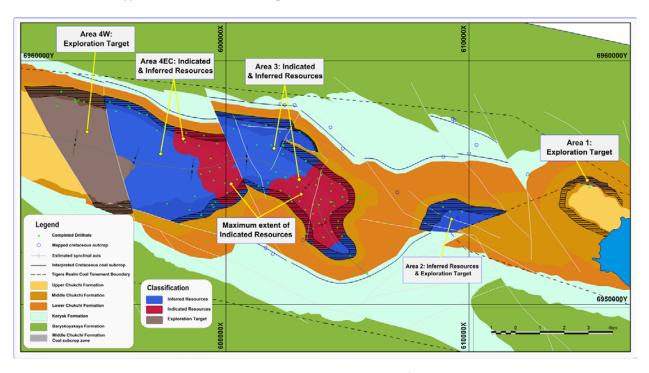
The combined open pit and underground production for the Base Case is 107 Mt of product coal, comprising 91 Mt of Premium Coking Coal and 16 Mt of High Vol Coking Coal. The mine plan for the initial years will primarily focus on production of Premium Coking Coal to maximise revenue. The following figure summarises the CHPP processing schedule and product sales.

Amaam Base Case Project Production Schedule

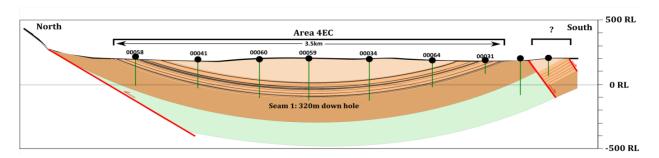
Amaam Coking Coal Project - Mine, CHPP, Road / Rail Line and Port

Coal Resources

As previously reported, the PFS is based on a Resource of 412 Mt. The Resource estimate was prepared by Resolve with an independent review by McElroy Bryan Geological Services.


Area	Open Pit ¹ (Mt)	Underground ² (Mt)	Total (Mt)
Indicated	62	0.5	62.5
Inferred	240	109	349
Total (rounded)	302	110	412

Total Resources for the Amaam Project (100% basis)


- 1. Assumes coal seams greater than 0.3m to a depth of 400m
- 2. Assumes coal seams greater than 1.2m deeper than 400m

The Amaam Project is a multi-seam, moderate dipping coal deposit within a synclinal basin. Coal occurs within the Paleogene Chukchi Formation and the deposit is divided into four main areas by north-west trending faults. The Eocene Middle Chukchi sub-formation is the primary target of exploration and comprises five seam groups of mineable thickness. The average cumulative coal thickness throughout the deposit is estimated to be between 10-11m, and drill holes have intersected cumulative coal thicknesses up to 25m.

The following figures depict the Amaam geology plan showing the distribution of Indicated and Inferred Resources, and a typical cross-section through Area 4E.

Amaam Geology Plan showing the extent of Coal Resources

Amaam - Typical Cross-section - Area 4E

Coal Quality, Washability and CHPP Operations

A&B Mylec supervised the laboratory program (conducted at SGS Novokuznetsk) for analysis of drill core from TIG's 2011 and 2012 drilling programs. The results from the laboratory program were used to determine plant yields and indicative product coal specifications.

The LOM average yield (Product tonne / ROM tonne) is estimated to be 48.8%. A&B Mylec 's proposed CHPP flowsheet reflects the fine nature of the Amaam high-vitrinite coal. Following conventional breaking and crushing stages, the plant feed is distributed by size fraction to one of four beneficiation processes. Coarse material (+1.4 mm) is beneficiated via dual-stage Dense Medium Cyclone (DMC) circuits. Fine material is washed via either Reflux Classifiers (-1.4 + 0.5 mm) or Spirals (-0.5 + 0.25 mm) circuits and Ultra-fines (-0.25 mm) will be processed via froth flotation units. Moisture contents of product coals are reduced through dewatering and drying process equipment, to meet downstream product handling requirements.

The dual-stage DMC circuit produces a coarse middlings stream, a small portion of which will be utilised as feed material for the coal-fired power plant. In addition, further optimisation studies are investigating the possibility of increasing the plant yield through additional liberation and processing of the remaining coarse middlings. Bench-scale laboratory sighter-tests have indicated that a yield increase (~3%) may be possible from further processing of the coarse middlings. This yield benefit is additional to the Base Case yield of 48.8%.

The rank varies across the mining domains at Amaam. Measured RoMax (Mean Maximum Vitrinite Reflectance) values range from a minimum of 0.65 in Area 4E to 1.25 in Area 3. Based on rank considerations Amaam will most likely produce two coking coal products. Because of higher rank and excellent plasticity properties, Mining Areas 2, 3, 4C and 4W coals will be blended to produce an Amaam Premium Coking Coal. Area 4E coal will produce a separate, lower rank Amaam High-Vol Coking Coal.

Over the LOM the Amaam Base Case operation will produce 91 Mt of Premium Coking Coal and 16 Mt of High-Vol Coking Coal. The indicative product specifications for the two coal types are summarised in the following table.

Amaam Coking Coals – Indicative Specification Sheet

Parameters		Premium Coking Coal	High-Vol Coking Coal	Basis/Units
Product Moisture		10%	10%	As Received
Proximate Analysis	Inherent Moisture	0.7	1.0	
	Ash	10.0	10.0	% Air Dried
	Volatile Matter	28.6	34.2	% All Dried
	Fixed Carbon	60.7	54.8	
Total Sulphur		0.72%	1.0%	As Dansing d
Phosphorus		0.12%	0.1%	As Received
Ultimate Analysis	Carbon	76.9	74.5	
	Hydrogen	4.9	5.0	0/ A: D : I
	Nitrogen	1.7	1.4	% Air Dried
	Oxygen (by difference)	5.0	6.5	
Crucible Swelling Number (CSN / FSI)		8.5	8.0	
Gray-King Coke Type		G9 – G12	*	
G Index		96	*	
Maximum Fluidity		1600	1150	ddpm
Maximum Dilatation		105%	50%	
Petrographics	Vitrinite	92%	90.2%	
	Liptinite	1%	2.7%	
	Inertinite	7%	7.1%	
Vitrinite Reflectance		1.09	0.86	% MMR

^{*} Insufficient data density

Open Pit and Underground Mining Operations

The mining method determined for the Amaam open pit operations (by RungePincockMinarco) is the "haul-back method" of mining. This method is characterised by long (along strike) pits with approximately 50% of waste dumped in-pit and the remainder to external waste dumps. The mining fleet comprises conventional, large hydraulic excavators and off-highway trucks for bulk-waste removal, with smaller excavators, supported by bulldozers, loading off-highway trucks for the selective mining of coal and associated waste.

The key physical and cost parameters of the Amaam Open Pit projected to commence production in 2017 are summarised below.

Amaam Base Case Open Pit Project Summary

Description	Unit	Outcome	
Physicals			
Life of Mine ROM Production	Mt	177.3	
ROM Production Rate	Mtpa	10	
Life on Mine Stripping Ratio	bcm waste : t ROM	12.3:1	
LOM Yield	%	48.8	
Coking Coal Production – LOM	Mt	86.5	
Coking Coal Production – Annual	Mtpa	Up to 5.1	
Capital Costs			
Mine to 2017 – Fleet And Pre-strip	\$M	254	
CHPP & Rail Load-out	\$M	443	
Infrastructure & Owners Team	\$M	229	
Rail	\$M	95	
Port & Marine	\$M	323	
Pre-production Capital Costs	\$M	1,344	
Mine Fleet - Ramp-up to 10 Mtpa – to 2019	\$M	371	
Mining Sustaining Capital Costs – 2020 onwards	\$M	816	
Site Operating Costs			
Mining (including tailings disposal)	\$/ROM t	41.25	
СНРР	\$/ROM t	2.39	
Rail	\$/Product t	0.44	
Port	\$/Product t	2.11	
Site Services	\$/Product t	4.00	
Site Administration	\$/Product t	4.53	
Total free-on-board (FOB) site costs	\$/Product t	100.55	
Russian Royalty	\$/Product t	1.73	

Two underground mining methods are feasible, single lift retreat longwall mining along strike as currently (and historically) practiced at the nearby Nagornaya Mine at Beringovsky; and room and pillar mining with continuous miners.

For the PFS, the Underground Base Case assumes longwall operations with LOM ROM coal production of 42Mt at a production rate of 3 Mtpa. The Project has a two-year pre-production period, for underground development, procurement and establishment of the mining fleet and longwall units. The Base Case Underground operation for the PFS coincides with the life of the open pit. The potential additional ROM coal for continuing underground operations is estimated to be between 30 Mt and 70 Mt.

The key physical and cost parameters of the Amaam Base Case Underground operation, projected to commence production in 2022, are summarised in the following table.

Amaam Base Case Underground Project Summary

Description	Unit	Outcome	
Physicals			
Life of Mine ROM Production	Mt	42	
ROM Production Rate	Mtpa	3	
LOM Yield	%	48.8	
Coking Coal Production – LOM	Mt	20.5	
Coking Coal Production – Annual	Mtpa	1.5	
Capital Costs		·	
Underground Mine	\$M	153	
CHPP Expansion	\$M	150	
Infrastructure & Owners Team	\$M	88	
Rolling Stock	\$M	5	
Pre-production Capital Costs	\$M	396	
Mining Sustaining Capital Costs	\$M	110	
Site Operating Costs			
Mining (including tailings disposal)	\$/ROM t	30.54	
СНРР	\$/ROM t	2.37	
Rail	\$/Product t	0.44	
Port	\$/Product t	2.11	
Site Services	\$/Product t	3.99	
Site Administration	\$/Product t	4.53	
Total free-on-board (FOB) site costs	\$/Product t	78.50	
Russian Royalty	\$/Product t	1.73	

Infrastructure and Services

To support the mining and processing aspects of the operations at Amaam and the rail transportation, stockpiling and product loading at Arinay Port, engineering firms Ausenco (Vancouver) and CETCO (Moscow) prepared designs and estimates for the various utilities (fuel storage, power generation and distribution, water) and fixed infrastructure (buildings, roads, camp). The proposed accommodation and recreation complexes are based on preassembled building modules, which are similar to those used at Kupol Mine in the north-west of Chukotka. Alternative designs, based on other Arctic and sub-arctic operations (e.g. Red Dog Mine, Alaska; Ekati, North-west Territories) will be investigated in future stages of the Project.

The PFS has determined raw water demands can be met from recycled water, detained in sedimentation ponds, with make-up water obtained from local fresh water sources, such as Amaam Lagoon. Conventional water treatment facilities will be used to generate potable water from fresh water supply.

Ausenco completed a study on electrical power generation alternatives and concluded that the most cost effective power generation system would be to install diesel-powered generators (18 MW) located at Arinay Port, for the ramp-up period, with a 25 MW coal-fired steam turbine power plant at the Mine as the longer-term power generation facility. Coal feed for the power plant will be sourced from middlings generated from coarse coal washing. This allows TIG to supply power to the site at an estimated cost of \$0.04/kWh.


Rail and Port

Product coal will be transported 25 km from the product coal stockpiles at Amaam to Arinay Lagoon by rail, where it will be unloaded and blended on the port stockpiles. Blended coal will then be reclaimed and conveyed to the ship-loader, located on the deep-water berth, for loading into ocean-going vessels. The port coal handling system design allows for direct-loading of coal from rail to vessel, without stacking or reclaiming from the port stockpiles.

Conventional materials-handling equipment will be utilised at the port facility, with conveyor galleries enclosed, as per other cold-weather operations. The figure below shows the Arinay Port layout, materials handling equipment and associated marine structures.

For access to the planned ship-loading pier location, a channel needs to be dredged on both sides and through the isthmus at the eastern end of Arinay Lagoon. The isthmus underwater slope is relatively steep on the lagoon side but flatter on the ocean side, resulting in the requirement for a dredged channel length of about 1.5 km. The total volume to be dredged is estimated at 2 million cubic metres.

The marine structure for the proposed coal loading terminal at Arinay is designed to handle up to 70,000 DWT Panamax vessels. The access trestle is a pile supported, pre-cast concrete deck, connected to a concrete abutment at the shore end and to the ship-loading pier within the lagoon. The proposed two-berth ship-loading pier is 290 m long and 18 m wide.

Proposed Arinay Port Layout (looking east toward Bering Sea)

Port operations in sub-arctic conditions such as at Arinay Lagoon are conventional and not unique with many ports operating around the globe in similar or harsher conditions. Year round navigation and shipping of coal has been demonstrated as feasible and is planned for the Amaam operation. Ice build-up at the port and along the coast typically occurs for three to four months of the year. Ice management to maintain open channels and facilitate docking and turning of bulk carriers will be required during these periods. This will be achieved by the employment of one harbour ice breaker and one ice breaking tug. These same vessels will both be utilised year round to manage ship movement and berthing in standard tug capacity.

Project Schedule and Permitting

The key milestones in the Project schedule are as follows:

- Amaam Construction Permit Granted May, 2015.
- Arinay Port Construction Permit Granted August, 2015.
- Commencement of mining Pre-strip— Quarter 2, 2016
- CHPP First Production Quarter 2, 2017.
- Arinay Port First Vessel Loading Quarter 3, 2017.

As reported previously TIG has made excellent progress on permitting for the Project with two key milestones achieved. In March 2013, NPCC was granted a Mining and Extraction Licence over the northern part of Area 3, and the Arinay Port was listed within newly passed legislation for the Russian Federal Government's Territorial Planning Scheme.

Financial Analysis

The Project financial analysis has been undertaken at the Russian company level (NPCC) and uses the following parameters:

- 1. An after tax real discount rate of 10%.
- 2. Russian corporate taxation rate of 20%. Depreciation allows for 30% write down in first year.
- 3. Russian federal production royalty of RR57/t product (\$1.73/t).
- 4. A long term premium coking coal price of US\$190/t which reflects a consensus of commodity analyst's forecasts and incentive pricing analysis.

The following two tables summarise the Base Case Project's NPV and other financial outcomes.

Amaam Base Case NP	ν (10% real, after t	ax)
--------------------	----------------------	-----

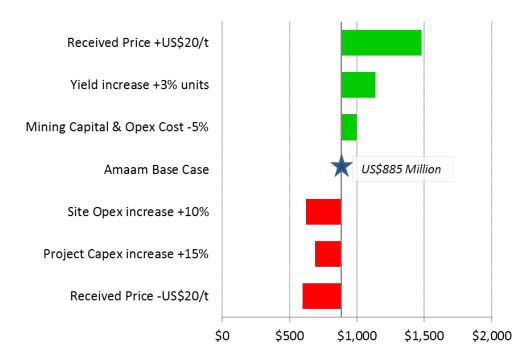
Project	\$ Million	IRR %
Open Pit	627	18
Underground	258	28
Total Project	885	19

NB: received FOB price for Premium coking coal of \$190/t, and \$152/t for High Vol coking coal.

Amaam	Rase	Case	Financial	Results
Alliaalii	Dase	Case	ııııaııcıa	INCOUILS.

Description	\$ Million
After tax Project Cashflow	5,025
Typical Yearly After Tax Cashflow (year 5 onwards)	375
Taxes and Royalties Paid	1,487

NB: received FOB price for Premium coking coal of \$190/t, and \$152/t for High Vol coking coal.


Sensitivity cases for the Project have been evaluated. These are illustrated in the following figure, and comprise:

1. Upside Cases.

- a. An increase in the received FOB price of \$20/t (\$210/t for Premium Product).
- b. A reduction in open pit mining capital and operating costs of 5%.
- c. An increase in yield of 3% due to recovery of coal from DMC coarse middlings.

2. Downside Cases.

- a. An increase in all site operating costs of 10%.
- b. An increase in capital costs of 15%.
- c. A reduction in the received FOB price of \$20/t (\$170/t for Premium Product).

Amaam Base Case Sensitivity Analysis – NPV real after tax (10% real, \$M)

The Amaam PFS has defined practical strategies for the development of the coking coal Resources from TIG's Licences. The Amaam open pit Project is the initial stage of the development of the Amaam Licence. It provides a high value stand-alone Project which includes development of a port that can then be used for the future shipments of coal from both Amaam and Amaam North.

In the shorter term, there is potential for a low capital shorter term entry to production via the thick near-surface, low ash coal seams identified in the lower Chukchi formation at Amaam North. In the longer term there is potential for the two coal basins under licence to produce significantly more coking coal than estimated in the Base Case Project.

Future Work Programs

With the completion of the Amaam PFS, TIG is now focussed on:

- 1. Moving to production at Amaam North via a low capital direct shipping operation in the shortest possible timeframe.
 - a. The winter drilling program is now complete and TIG expects to report Indicated and Measured Resources in Q2 2013.
 - b. These Resources will form the basis for a Feasibility Study to be completed in early 2014.
- 2. Moving the Amaam Project through the Bankable Feasibility Stage.
 - a. Three drill rigs are currently completing a ~6,500m program focussed on Area 3 to provide an upgrade to the Resources in the initial production area, and to provide data for the conversion of the remaining part of Area 3 to a Mining Licence.
 - b. Undertaking a bulk sample for pilot plant processing, and further clean coal and coke testwork. Work on taking the bulk sample with an auger drill rig has commenced.
 - c. Undertaking field work, data collection and ongoing optimisation studies (based on the PFS) to fully define the BFS scope of works.
- 3. Continuing to expand the coal Resources across the two Licences through targeted exploration programs.
- 4. Continuing to progress permitting of the Projects to ensure milestones in the Project development schedule are met.

Project Funding

In 2012 TIG commenced a program to identify funding sources for the Amaam Coking Coal Project. The company has engaged with a number of potential capital providers including possible strategic industry partners, Russian sovereign wealth and infrastructure funds, off-take partners, fund managers and family offices. TIG is pleased with the high level of interest from these potential sources of funds and is confident of securing the capital required for the BFS and the development of the Project. The company considers that the funding for the infrastructure component of the Project may be provided in a funding package separate to that of the mine and CHPP, by a capital provider with a focus on infrastructure development.

The initial funding focus for TIG will be to fully fund the BFS for the Amaam Coking Coal Project before seeking to fund the development of the Project. TIG considers that the recently discovered Amaam North coking coal deposit provides the potential to stage development of its assets at Amaam and Amaam North in a manner that provides an optimal outcome for shareholders. In Feasibility Studies which have already commenced, TIG will examine the potential for Amaam North to be brought into production in 2015 as a low strip ratio, direct shipping quality coking coal Project utilising the existing Beringovsky port. This Project has the potential to be the core starter Project for TIG providing solid

earnings and cash flow to better support development of a large scale mine and associated infrastructure at Amaam; potentially see TIG rerated as an operating company with an established development track record and strong growth profile; and strongly position the Company to secure the capital required to fund development of Amaam.

Study Team

The PFS has been managed by a TIG Owner's team with consultants/engineers contributing to the various Project disciplines. The study team is detailed in the following table.

Project Area	Responsibility	
Resource Estimate	Resolve Geo – Brisbane, Australia	
Geotechnical Laboratory	St Petersburg University - Russia	
Mine Geotechnical	Pells Sullivan Meynick (PSM) – Sydney, Australia	
Mining	RungePincockMinarco – Sydney, Australia Owner's Team	
Environmental Baseline Data Collection	VNII-1 – Magadan, Russia	
ESIA	Golder – St Petersburg, Russia	
Hydrology	Karbon – Vladivostok, Russia	
Hydrogeology	Karbon - Vladivostok, Russia SRK – Perth, Australia	
Geochemical Laboratory	SGS – Chita, Russia	
Environmental Controls Engineering	SRK – Perth, Australia	
Coal Quality Laboratory	SGS – Novokuznetsk, Russia	
Coal Quality Assessment	AB Mylec – Brisbane, Australia Pearson Coal Petrography – Victoria, Canada	
CHPP Engineering	CETCO – Moscow, Russia AB Mylec – Brisbane, Australia	
Site Geotechnical Data Collection	Chukotka Trading Company – Chukotka, Russia	
Infrastructure Engineering	Ausenco – Vancouver, Canada	
Ice Conditions And Shipping Assessments	Aker Arctic – Finland Royal Haskoning - St Petersburg, Russia Ausenco – Vancouver, Canada Simpson, Spence & Young – Sydney, Australia	
Port Engineering	Ausenco – Vancouver, Canada	
Marketing	M Resources – Brisbane, Australia	
Risk Assessment	Ernst & Young - Australia	
Strategic Overlay, Capital and Operating Cost Consolidation, Financial Assessment	Owner's Team	

AMAAM COKING COAL PROJECT

Tigers Realm Coal is earning up to 80%^A in the Amaam Coking Coal Project which is located in the Chukotka Province of far eastern Russia. The Amaam Coking Coal Project consists of two tenements: Amaam (TIG is moving to 60% post the granting of a mining licence, and 80% on completion of a BFS) and Amaam North (TIG owns 80%).

Further details about Tigers Realm Coal can be found at www.tigersrealmcoal.com

For further information, contact:

Craig Parry, Chief Executive Officer +61 3 8644 1326

David George, Manager Investor Relations +61 3 8644 1322

About Tigers Realm Coal Limited (ASX: TIG)

Tigers Realm Coal Limited ("TIG", "Tigers Realm Coal" or "the Company") is an Australian based resources company. The Company's vision is to build a global coking coal company by rapidly advancing its projects through resource delineation, feasibility studies and mine development to establish profitable operations.

Competent Persons Statement

The information in this document relating to Exploration Results or Mineral Resources is based on information provided by TIG and compiled by Neil Biggs, who is a member of the Australasian Institute of Mining and Metallurgy and who is employed by Resolve Geo Pty Ltd. Neil has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the JORC Code. Neil Biggs consents to the inclusion in the Presentation of the matters based on his information in the form and context which it appears.

Note A - Tigers Realm Coal's interests in the Amaam Coking Coal Project

Amaam tenement: TIG's current beneficial ownership is moving to 60% as a licence has been issued that grants Northern Pacific Coal Company (the licence holder) the right to extract coal from Amaam; and 80% upon completion of a bankable feasibility study and cancellation of all loans made by TIG and its subsidiaries to Eastshore Coal Holding Limited (TIG is funding exploration and development by way of loans to Eastshore), the 100% parent of the licence holder.

Amaam North tenement: TIG moved to 80% beneficial ownership of the Russian company which owns the Amaam North exploration licence, Beringpromugol LLC, by acquiring 80% of Cyprus company Rosmiro Investments Limited from its former owner BS Chuchki Investments LLC ("BSCI"). In consideration for the acquisition, TIG made a cash payment to BSCI of US\$400,000. TIG has also agreed to fund all project expenditure until the completion of a bankable feasibility study. After completion of a bankable feasibility study each joint venture party is required to contribute to further project expenditure on a pro-rata basis. BSCI is also entitled to receive a royalty of 3% gross sales revenue from coal produced from within the Amaam North license.

Note B – Inferred Resources

According to the commentary accompanying the JORC Code, "the Inferred category is intended to cover situations where a mineral concentration or occurrence has been identified and limited measurements and sampling completed, but where the data are insufficient to allow the geological and/or grade continuity to be confidently interpreted. Commonly, it would be reasonable to expect that the majority of Inferred Mineral Resources would upgrade to Indicated Mineral Resources with continued exploration. However, due to the uncertainty of Inferred Mineral Resources, it should not be assumed that such upgrading will always occur. Confidence in the estimate of Inferred Mineral Resources is usually not sufficient to allow the results of the application of technical and economic parameters to be used for detailed planning. For this reason, there is no direct link from an Inferred Resource to any category of Ore Reserves. Caution should be exercised if this category is considered in technical and economic studies."

Note C - Indicated Resources

According to the commentary accompanying the JORC Code "An 'Indicated Mineral Resource' is that part of a Mineral Resource for which tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence. It is based on exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. The locations are too widely or inappropriately spaced to

confirm geological and/or grade continuity but are spaced closely enough for continuity to be assumed. An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource, but has a higher level of confidence than that applying to an Inferred Mineral Resource."

Note D - Exploration Target

The exploration target is based on drilling and associated exploration studies undertaken so far. The potential quality of the exploration target is conceptual in nature, and there has been insufficient exploration to date to define a mineral resource within the meaning of the 2004 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("JORC Code"). Furthermore, it is uncertain if further exploration at its exploration target will result in the determination of a mineral resource.