

Level 2, 159 Adelaide Terrace East Perth WA 6004 PO Box 3233 East Perth WA 6892 T: +61 8 9215 7888 F: +61 8 9215 7889 E: info@focusminerals.com.au

30 January 2015

Laverton Exploration Update

Focus Minerals Ltd's (ASX: FML) strategy in Laverton is to both extend known mineralisation and define new ore bodies. The Company is able to announce that our efforts to identify new ore bodies is progressing well, with recent work conducted on priority targets at Laverton producing strong results.

Highlight Intersections from Laverton Exploration					
Karridale	6.0m @ 5.20g/t Au from 168m and				
Narridale	1.0m @ 38.96g/t Au from 190m in KARC140				
Beemerene	5.0m @ 4.55g/t Au from 41m in KARC152				
Boomerang	2.0m @ 17.37g/t Au from 5m in KARC153				
Sickle Mirror 8.0m @ 4.26g/t Au from 144m in SKRC428					

*Other significant intersections are presented in Table A below

During its recent Laverton exploration campaign the Company drilled 45 holes at Laverton for 7,321m of RC. The project locations are shown on Figure 1. A full table of significant intersections is attached.

Karridale and Boomerang

The Karridale project area currently incorporates two prospects; Karridale and Boomerang.

The Karridale and Boomerang Prospects are part of the Burtville region. Focus considers the region to be very prospective with widespread gold and arsenic anomalism, mineralised granitoid intrusives and shearing related to thrust tectonics. Modern and historic gold mines in the Laverton area (e.g., Lancefield and Ida H within Focus Mineral's ground holdings) have evidence for similar thrust tectonics controlling gold mineralisation, particularly in structures striking in a northeast – southwest orientation. This orientation is evident at both Karridale and Boomerang

Karridale Prospect

At the Karridale Prospect, eight reverse circulation (RC) holes were drilled totalling 1,671m in a programme designed to provide additional structural and assay data. The programme followed up on the success of previous Karridale drilling completed in second half of 2013. The holes were drilled to the southeast, targeting stacked zones of north-westwardly dipping gold mineralisation within a volcanic host (Figure 2). All eight drill holes returned significant gold mineralisation, with the best result yielding 6m @ 5.2g/t Au (KARC140).

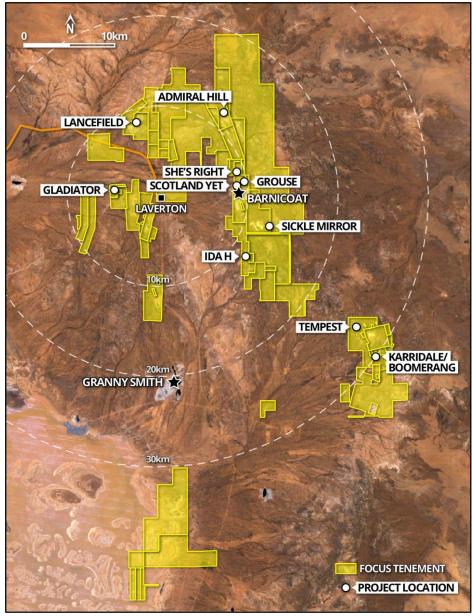


Figure 1 Project locations at Laverton

Drilling to date on the Karridale Prospect indicates a shallowly northwest dipping gold system associated with shearing, quartz carbonate veining and silica-carbonate-sulphide alteration (Figure 3). The prospect consists of multiple stacked gold zones, with the full width of the enclosing alteration system yet to be defined by drilling, but is believed to be in excess of 150m thick. The main host rock is considered to be fine grained intermediate volcanics in composition; with coarse grained gabbro and diorite also logged. The historic Karridale mine outcrops on a small hill and correlates with one of the stacked lenses. Extensive soil cover to the south and a broad creek drainage system to the north have masked the existence of the remaining series of stacked lenses

Geological control on the stacked gold lenses is not fully understood and will be the focus of future work. The broad alteration system is open down dip, along strike and with thickness still to be determined. Further drilling, aimed at extending the Karridale mineralisation, is planned for 2015. A recently completed deep diamond drill hole into the Karridale Prospect system is currently being logged and sampled.

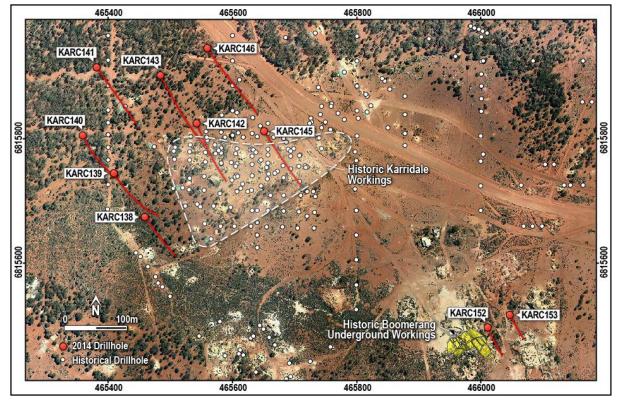


Figure 2 Karridale-Boomerang drill hole location

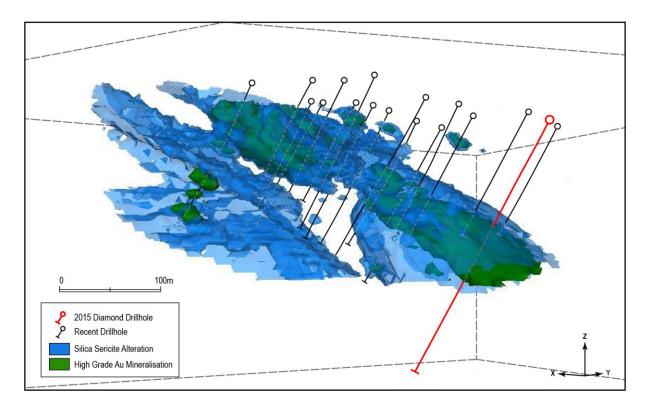


Figure 3 Oblique schematic of the Karridale Prospect (facing southwest from below)

Boomerang Prospect

The Boomerang Prospect is based around a historic underground mine of the same name, which was worked between 1940 and 1955. The mine extracted 2,402 tonnes of ore to produce 9,955oz of gold. The Boomerang shaft is located 400m to the southeast of Karridale. Two RC holes were drilled into the northwest extensions of the Boomerang mineralisation for 192m. The drilling, by Focus, represents the first documented drilling on the Boomerang mine. Both holes returned significant high grade gold mineralisation. KARC152 intercepted the Boomerang lode (5m @ 4.55g/t Au from 41m) at the target depth. KARC153 is thought to have intersected the Boomerang lode at a shallower depth (1m @ 1.10g/t Au from 30m). KARC153 also intercepted a deeper high-grade vein (2m @ 17.37g/t Au from 78m), with this mineralisation thought to be the down-dip extension of the nearby, north – south trending, Mystery Mine. The southwest and down-dip extensions of the Boomerang Prospect remain untested.

Further RC drilling to test the down-dip extension and continuity of the Boomerang prospect is planned for 2015. Aircore drilling to test for repeats of Karridale and Boomerang mineralisation is also planned for 2015.

Sickle Mirror

The Sickle Mirror Prospect is located 11.5km southeast of Laverton town and 600m east of the Sickle Pit. In the first half of 2014 the company conducted a helicopter electromagnetic (VTEM) survey across its exploration tenements on the Barnicoat trend. The survey was designed to provide bedrock stratigraphic and structural information in addition to identifying conductors for targeting gold and base metal mineralisation. Within the Sickle Mirror target area, east of the Sickle Pit, the VTEM survey identified three, well defined electromagnetic (EM) conductors interpreted to be sulphidic alteration and faulting, similar to that associated with the Sickle Pit. Expanding on historical drilling a small first stage RC program was completed into this new target zone, consisting of four RC holes totalling 679m (Figure 4).

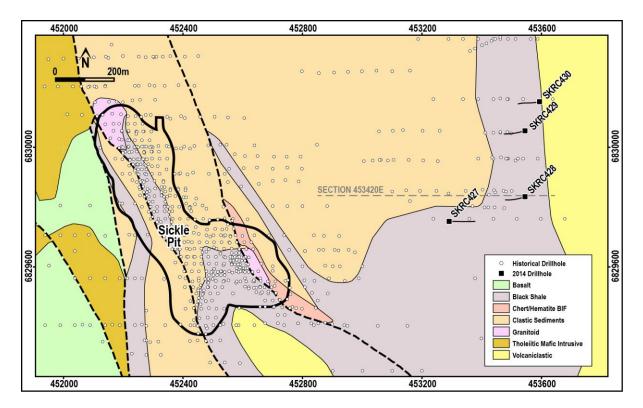


Figure 4 Sickle Mirror Prospect geological map and drill hole location

The logged geology consisted of folded mafic rock with an overlying sediment package including intermediate volcanic sediments and carbonaceous black shales with quartz veins. SKRC428 intercepted high-grade gold mineralisation with the best results yielding 8m @ 4.26g/t Au from 144m (Figure 4). Follow up aircore drilling is planned for 2015 to test the continuity and extension along strike of the identified mineralisation, which is untested to the southeast.

In addition to RC drilling the company has also drilled two diamond holes at Admiral Hill and Karridale for 828.6m, the results are pending.

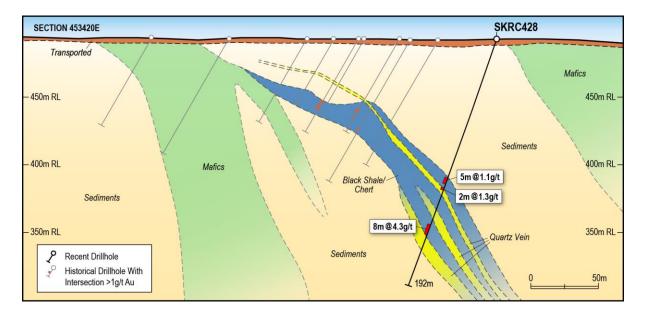


Figure 5 Sickle Mirror 453420E section map (facing north)

For further information please contact:

Dane Etheridge

Company Secretary and GM Business Development Focus Minerals Ltd Phone: +61 8 9215 7888

Michael Guo

GM Exploration & Geology Focus Minerals Ltd Phone: +61 8 9215 7888

Focus Minerals Limited - Focus owns two large gold projects in Western Australia's Eastern Goldfields. The company is the largest landholder in the Coolgardie Gold Belt, where it owns the 1.2Mtpa processing plant at Three Mile Hill. 250km to the northeast Focus has the Laverton Gold Project which comprises a significant portfolio of highly prospective tenure. Focus also owns the 1.45Mtpa Barnicoat mill in Laverton which has been on care and maintenance since 2009.

Forward Looking Statements

This release contains certain "forward looking statements". Forward-looking statements can be identified by the use of 'forward-looking' terminology, including, without limitation, the terms 'believes', 'estimates', 'anticipates', 'expects', 'predicts', 'intends', 'plans', 'propose', 'goals', 'targets', 'aims', 'outlook', 'guidance', 'forecasts', 'may', 'will', 'would', 'could' or 'should' or, in each case, their negative or other variations or comparable terminology. These forward-looking statements include all matters that are not historical facts. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors because they relate to events and depend on circumstances that may or may not occur in the future, assumptions which may or may not prove correct, and may be beyond Focus' ability to control or predict which may cause the actual results or performance of Focus to be materially different from the results or performance expressed or implied by such forward-looking statements. Forward-looking statements are based on assumptions and contingencies and are not guarantees or predictions of future performance. No representation is made that any of these statements or forecasts will come to pass or that any forecast result will be achieved. Similarly, no representation is given that the assumptions upon which forward-looking statements may be based are reasonable. Forward-looking statements speak only as at the date of this document and Focus disclaims any obligations or undertakings to release any update of, or revisions to, any forward-looking statements in this document.

Table A: Significant Intersections

Intersections are length-weighted averages. Intersections reported are a minimum of 1m @ 1g/t.

Hole ID	(MGA 94 Zone 51)			(m)	DIP	(MGA 94)	(m)	(m)	(g/t Au)		
	Easting	Northing	RL	Depth		Azimuth	From	То	Intersection		
Laverton											
Karridale											
KARC140	465359.2	6815805.0	466.9	192	-61	-61 149 38 39 1m @ 2.86 g/t					
						and	158	159	1m @ 1.44 g/t		
						and	168	174	6m @ 5.20 g/t		
						and	190	191	1m @ 38.96 g/t		
KARC141	465381.7	6815914.8	467.1	225	-60	145	157	159	2m @ 2.27 g/t		
						and	168	172	4m @ 3.13 g/t		
						and	194	195	1m @ 4.45 g/t		
KARC142	465542.0	6815823.5	467.8	198	-59	148	49	50	1m @ 2.86 g/t		
						and	170	171	1m @ 1.54 g/t		
KARC143	465484.5	6815901.3	467.6	263	-61	144	120	123	3m @ 2.24 g/t		
						and	238	239	1m @ 4.05 g/t		
						and	243	244	1m @ 5.10 g/t		
						and	254	256	2m @ 1.98 g/t		
KARC146	465560.1	6815944.9	468.1	252	-59	146	56	57	1m @ 1.86 g/t		
						and	125	126	1m @ 1.61 g/t		
KARC145	465651.0	6815811.8	469.0	202	-60	145	18	23	5m @ 1.31 g/t		
						and	33	34	1m @ 5.35 g/t		
						and	41	42	1m @ 1.77 g/t		
						and	59	60	1m @ 2.89 g/t		
						and	148	149	1m @ 1.17 g/t		
KARC139	465409.4	6815743.8	467.0	198	-60	146	96	97	1m @ 1.30 g/t		
						and	111	112	1m @ 3.58 g/t		
						and	127	128	1m @ 1.44 g/t		
						and	130	131	1m @ 1.56 g/t		
						and	170	171	1m @ 1.51 g/t		
KARC138	465458.9	6815673.8	467.3	144	-60	145	67	68	1m @ 1.92 g/t		
						and	85	86	1m @ 3.73 g/t		
						and	115	116	1m @ 1.94 g/t		
Boomerang											
KARC152	466010.5	6815496.0	470.0	102	-59	153	41	46	5m @ 4.55 g/t		
KARC153	466046.3	6815515.7	470.1	90	-60	149	30	31	1m @ 1.10 g/t		
						and	78	80	2m @ 17.37 g/t		
						and	85	86	1m @ 1.07 g/t		
Gladiator											
GMRC065	437425.5	6833501.6	454.0	102	-59	267	40	41	1m @ 1.40 g/t		
						and	47	50	3m @ 2.37 g/t		
GMRC064	437124.0	6833850.2	447.3	115	-56	266	102	103	1m @ 2.94 g/t		

GMRC066	437414.7	6833552.9	453.6	102	-59	268	29	30	1m @ 2.19 g/t		
						and	82	86	4m @ 1.91 g/t		
Sickle Mirror											
SKRC428	453543.3	6829832.9	491.0	192	-71	257	107	112	5m @ 1.07 g/t		
						and	114	116	2m @ 1.34 g/t		
						and	133	134	1m @ 1.85 g/t		
						and	138	139	1m @ 1.15 g/t		
						and	144	152	8m @ 4.26 g/t		
Ida H											
IDHRC029	451747.8	6824320.5	467.9	174	-70	262	168	170	2m @ 3.09 g/t		
IDHRC030	451699.5	6824399.7	467.6	162	-61	263	113	114	1m @ 1.34 g/t		
IDHRC031	451312.9	6826104.7	480.2	199	-90	0	27	28	1m @ 1.30 g/t		
						and	32	33	1m @ 1.11 g/t		
IDHRC026	451400.6	6825814.8	475.6	174	-62	264	17	20	3m @ 1.11 g/t		
						and	148	149	1m @ 1.41 g/t		
IDHRC028	451029.9	6825701.5	478.3	150	-72	94	24	25	1m @ 1.06 g/t		
IDHRC027	451032.0	6825800.0	479.3	150	-69	93	61	62	1m @ 1.62 g/t		
IDHRC025	451395.9	6825899.9	477.3	180	-58	264	36	39	3m @ 3.73 g/t		
IDHRC021	451307.0	6826105.2	480.5	120	-57	267	5	7	2m @ 2.57 g/t		
IDHRC023	451394.8	6825999.4	478.7	186	-59	248	7	8	1m @ 1.25 g/t		
						and	50	51	1m @ 2.34 g/t		
						and	67	68	1m @ 1.15 g/t		
						and	167	169	2m @ 2.26 g/t		
						and	171	172	1m @ 1.71 g/t		
IDHRC022	451421.1	6826106.8	478.3	144	-58	267	90	91	1m @ 1.45 g/t		
Admiral Hil	I										
BCRC109	449180.8	6841840.9	498.3	208	-74	67	54	55	1m @ 1.84 g/t		
						and	96	97	1m @ 1.02 g/t		
						and	124	125	1m @ 1.18 g/t		
						and	170	171	1m @ 1.04 g/t		
BCRC110	449130.7	6842020.3	498.2	184	-63	248	91	92	1m @ 2.23 g/t		
						and	163	164	1m @ 1.33 g/t		
BCRC111	449138.4	6842025.2	498.2	228	-80	65	62	63	1m @ 3.76 g/t		
						and	70	71	1m @ 1.31 g/t		
She's Right											
BCRC114	450224.5	6835701.1	483.6	210	-60	268	172	174	2m @ 4.60 g/t		
Scotland Ye	et										
BCRC116	450414.3	6834099.5	485.0	210	-54	268	138	139	1m @ 2.31 g/t		
Tempest											
TMRC001	463847.3	6818625.9	479.5	96	-62	92	76	77	1m @ 1.54 g/t		
Grouse											
BCRC115	451143.5	6834802.2	486.2	168	-63	266	45	46	1m @ 1.12 g/t		

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Laverton Gold Project	This report relates to results for Reverse Circulation (RC) drilling of Focus Minerals Laverton area.						
	The summary table below lists metres drilled by drill type. RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis.						
	In total 45 RC holes were drilled for 7,321 meters.						
	RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg.						
	At the assay laboratory all samples were oven dried and pulverised to 90% passing 75µm.						
	The samples were then prepared for fire assay.						
Drilling	All drilling was completed using an RC face sampling hammer						
techniques	Holes were surveyed during or upon completion of drilling using multishot electronic compass within the rod string. Stainless steel rods were used to minimise interference to the tool.						
Drill sample recovery	RC sample recovery was recorded by a visual estimate during the logging process.						
	All RC samples were drilled dry whenever possible to maximise recovery.						
	Sample recovery was generally good.						
Logging	All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.						
	The logging information was recorded into acQuire software format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete.						
	Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.						
	Samples from RC holes were archived in standard 20m plastic chip trays.						
	The entire length of all holes are logged.						
Sub-sampling techniques and sample	RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag.						
preparation	Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table.						
	Sample condition was recorded (wet, dry or damp) at the time of sampling and recorded in the database.						
	The samples were collected in a pre-numbered calico bag bearing a unique sample ID.						
	Samples were crushed to 75µm at the laboratory.						
	Gold analysis was determined by a 50g charge fire assay with an ICP-OES Finish.						

	The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation.
	Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.
	FML inserts 2 standards and takes 4 duplicates for every 100 samples.
	Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples, excluding the 100th sample as this was a standard.
	Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out.
	The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. The assay method and laboratory procedures were appropriate for this style of
	mineralisation. The fire assay technique was designed to measure total gold in the sample.
Quality of assay data	No geophysical tools, spectrometers or handheld XRF instruments were used for the reported gold results.
and laboratory	The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision.
tests	All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.
	Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process.
Verification of sampling and assaying	Regular duplicate samples and unmarked standards provided verification Additionally, significant intersections were considered in light of previous work and anticipated geology.
	Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory.
	Once loaded, data was extracted for verification by the geologist in charge of th project.
	No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
	Drill collars were surveyed after completion, using a DGPS instrument.
	Down-hole surveys were completed using a north-seeking gyroscope operate by a qualified contractor.
Location of	All coordinates and bearings use the MGA94 Zone 51 grid system.
data points	Focus utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments.
	Drill spacing across the Laverton prospects varied depending on the exploratio stage that the drill target currently existed.

Data spacing and distribution	The data spacing of the drilling across Focus's prospects during this campaign was designed to extend known mineralisation using regular grid pattern spacing for collar locations.
	Where appropriate, intercepted mineralisation will be digitised and incorporated into existing models or to create new models as required.
	Additional infill drilling will be required before this mineralisation can be used in the estimation of a Mineral Resource or Ore Reserve.
	Sample compositing has not been applied to the reporting of exploration results.
	Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation.
	Drill holes were oriented at right angles to the strike of the deposit, with dip optimised for drill capabilities and the dip of the mineralised body.
Orientation of data in relation to geological structure	No orientation and sampling bias has been recognised in the drilling data to date.
Sample security	All samples were reconciled against the sample submission with any omissions or variations reported to FML.
	All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel on a daily basis.
Audits or reviews	A review of sampling techniques was carried out by Roredata Pty Ltd in late 2013 as part of a database amalgamation project.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Laverton Gold Project
Mineral tenement and land tenure status	All drilling was conducted on tenements 100% owned by Focus Minerals Limited or its subsidiary companies Focus Operations (Laverton) Pty Ltd. All tenements are in good standing.
Exploration done by other parties	Modern exploration has been conducted by Sons of Gwalia NL and Focus Minerals.
Geology	All mineralisation is considered typical Archaean mesothermal gold style. At Karridale, gold mineralisation is associated with shallowly north-westwardly dipping shears suspected to be related to thrust faulting within a possible intermediate volcanic package. Mineralised zones display quartz carbonate veining and hydrothermal alteration including pyrite and arsenopyrite.
	At Gladiator, gold mineralisation is associated with banded iron units and shearing within mafic volcanics. The historic Gladiator workings dip moderately to the east and most mineralisation is interpreted to do the same.
	At Sickle Mirror, gold mineralisation is associated with quartz veining and sulphide alteration in a sediment package including intermediate volcanic sediments and carbonaceous black shales.

At Apollo, gold mineralisation is associated with steep east dipping, northnortheast striking shear zones around the contact between ultramafic rocks to the west and a package of sediments and felsic to mafic volcanics to the east. Syenite and other granitoids intrude the sequence. Although deeply weathered, strong carbonate and sulphide alteration is recognised.

On the Barnicoat and Ida H trends, mineralisation is associated with the Barnicoat shear zone, a major north - south trending vertical to east dipping shear crosscutting a package of ultramafic to felsic volcanics and clastic sediments including carbonaceous black shales. Minor banded iron units are recognised. Alteration includes carbonate, silica and sulphides.

Drill Hole	HOLE ID	EASTING	NORTHING	RL	DEPTH	AZIMUTH	DIP	TENEMENTS
Information	BCRC106	449672	6842099	502	150	264	-62.4	E3801864
	BCRC107	449871	6842099	504	192	267	-57.5	E3801864
	BCRC108	449179	6841837	498	168	257	-80	M3800376
	BCRC109	449181	6841841	498	208	67	-73.8	M3800376
	BCRC110	449131	6842020	498	184	257	-60	M3800376
	BCRC111	449138	6842025	498	228	65	-80.1	M3800376
	BCRC112	449601	6840802	505	210	232	-62.2	M3800377
	BCRC113	448785	6837948	497	96	266	-62.2	E3801349
	BCRC114	450224	6835701	484	210	268	-59.8	M3800318
	BCRC115	451143	6834802	486	168	266	-62.5	M3800318
	BCRC116	450414	6834099	485	210	268	-54.3	M3800318
	GMRC064	437124	6833850	447	115	266	-55.9	M3800363
	GMRC065	437426	6833502	454	102	267	-59.2	M3800364
	GMRC066	437415	6833553	454	102	268	-59.1	M3800364
	GWRC477	434130	6832413	435	84	270	-60	M3800101
	GWRC478	433639	6830110	442	152	263	-60	M3800535
	IDHRC021	451307	6826105	480	120	267	-56.6	M3800264
	IDHRC022	451421	6826107	478	144	267	-57.6	M3800264
	IDHRC023	451395	6825999	479	186	248	-59.4	M3800264
	IDHRC024	451319	6825899	477	156	265	-58.2	M3800264
	IDHRC025	451396	6825900	477	180	264	-58.3	M3800264
	IDHRC026	451401	6825815	476	174	264	-61.9	M3800264
	IDHRC027	451032	6825800	479	150	93	-68.9	M3800264
	IDHRC028	451030	6825702	478	150	94	-71.8	M3800264
	IDHRC029	451748	6824320	468	174	262	-69.6	M3800387
	IDHRC030	451700	6824400	468	162	263	-61.1	M3800387
	IDHRC031	451313	6826105	480	199	0	-90	M3800264
	KARC138	465459	6815674	467	144	145	-60.2	M3800008
	KARC139	465409	6815744	467	198	146	-59.6	M3800073
	KARC140	465359	6815805	467	192	149	-60.9	M3800073
	KARC141	465382	6815915	467	225	145	-60	M3800073
	KARC142	465542	6815824	468	198	148	-58.8	M3800073
	KARC143	465484	6815901	468	263	145	-60	M3800073
	KARC145	465651	6815812	469	202	145	-60.4	M3800008
	KARC146	465560	6815945	468	252	146	-58.8	M3800073
	KARC152	466011	6815496	470	102	153	-59.3	E3802032
	KARC153	466046	6815516	470	90	149	-60.1	E3802032

	SKRC427	453290	6829751	493	192	92	-70.3	M3801032	
	SKRC428	453543	6829833	491	192	257	-70.7	M3801032	
	SKRC429	453544	6830055	492	139	244	-59.6	M3801032	
	SKRC430	453593	6830151	493	156	260	-59.3	M3801032	
	SKRC431	452430	6828469	498	66	266	-68.2	E3801869	
	SKRC432	452500	6828428	496	138	268	-71	E3801869	
	TMRC001	463847	6818626	480	96	92	-61.5	E3801642	
	TMRC002	463846	6818715	480	102	88	-60.8	E3801642	
Data aggregation methods	reporting wi	Mineralised intersections are reported at a 1.00g/t Au cut-off with a minimum reporting width of 1m, reported as length-weighted average grades.							
Relationship between mineralisatior widths and intercept lengths	Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases.								
Diagrams	Accurate collar plans are included in this announcement. Representative cross sections are included to depict the attitude and style of mineralised structures.								
Balanced reporting	Drilling results are reported in a balanced reporting style. The ASX announcement shows actual locations of holes drilled, and representative sections as appropriate.								
	Holes shown on the collar location plan which are not reported in the table of significant intercepts did not intersect reportable mineralisation.								
Other substantive exploration data	There is no other material exploration data to report at this time.								
Further work	The company is designing drilling program to follow up results from Karridale and Sickle Mirror								

Competent Person's Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Jeff Ion who is a member of the Australasian Institute of Mining and Metallurgy (AusIMM) and a member of the Australian Institute of Geoscientists (AIG). Mr Ion is a fulltime employee by Focus Minerals Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Ion consents to the inclusion in this announcement of the matters based on the information compiled by him in the form and context in which it appears.