

Level 2, 159 Adelaide Terrace East Perth WA 6004 PO Box 3233 East Perth WA 6892 T: +61 8 9215 7888 F: +61 8 9215 7889 E: info@focusminerals.com.au

15 October 2015

Bonnie Vale Mineral Resource Modelling Commenced Following Further High Grade Intercepts

Focus Minerals Ltd. ("Focus" or "the Company") is pleased to report the exploration assay results for its recently completed drilling at Coolgardie. Focus' Interim CEO, Wanghong Yang, is pleased to announce that "following receipt of these most recent high grade results at Bonnie Vale, including the identification of a new mineralised reef, Focus is progressing Mineral Resource modelling for Bonnie Vale and expects to release a Maiden Resource in November."

Highlight Intersections from Recent Bonnie Vale Drilling*
2.0m @ 17.52 g/t Au from 134m in BONC090
2.0m @ 6.40 g/t Au from 115m in BONC103
3.0m @ 11.64 g/t Au from 102m in BONC110
4.0m @ 14.31 g/t Au from 117m in BONC114

*Other significant intersections are presented in Table A below

The most recent Coolgardie campaign included a total of 51 RC holes for 9,470m across several targets close to Focus' Three Mile Hill Processing Plant (Figure 1 shows the target locations).

Figure 1: Locations of Recent Drilling Campaign

Bonnie Vale

35 RC holes were drilled at Bonnie Vale for 6,138 m (Figure 2). The program was designed to test the extension and continuity of the high grade quartz reefs (See the 2014 ASX releases of July 30, October 9 and the 2015 ASX releases of January 21 and July 24) and to confirm the existence of additional high grade gold mineralisation in the area. Some infill holes were also drilled to enable Mineral Resource definition work to commence.

Several holes in the most recent drilling intersected high grade gold mineralisation, including holes BONC090 and BONC114, which returned high-grade gold mineralisation of 2m @ 17.52g/t Au from 134m and 4m @ 14.31g/t Au from 117m, respectively. This high grade gold mineralisation is particularly interesting as it is separate from the Main Quartz Reef and Focus believes it is an extension of the historically mined Westralia Lower Quartz Reef.

Westralia Lower Reef is located about 500m NW of the Main Quartz Reef and the mineralisation is controlled by a north-south structure. Focus believes this area has strong potential as limited exploration has been conducted in this area over the past 30 years, with most of historic drilling limited to 60m in depth. Further drilling in the area has been planned.

The drilling at Bonnie Vale's Main Quartz Reef has extended the known gold mineralisation along strike and up dip (Figures 3-5).

The Company is very pleased with the results at Bonnie Vale and a maiden Mineral Resource is expected to be released in early November.

Figure 2 Selected Bonnie Vale Drill Hole Locations

Figure 3: Bonnie Vale 500E Cross Section (Facing Northwest)

Figure 4: Bonnie Vale 550E Cross Section (Facing Northwest)

Figure 5: Bonnie Vale 600E Cross Section (Facing Northwest)

Bayleys Extension

The Bayleys style of mineralisation remains one of the most important mineralisation types in Coolgardie area; Bayleys UG produced 289,000oz @ 16.1g/t Au. Further review of the historic drilling and production data indicates that there is still good potential to locate additional high grade gold mineralisation at depth under the existing historic mining area and along the strike of Bayleys mineralisation trend. In the most recent campaign, 6 RC holes were completed for 1,476m. The best results include 1m @ 4.58g/t from 225m in BSEC004, 4m @ 2.06g/t from 124m and 6m @ 1.33g/t from 137m in BSEC002 (Table A).

The wide range of gold mineralisation intercepted in BSEC002 indicates the Bayleys style mineralisation continues to extend to the south, so further drilling is being planned to further explore the Bayleys SE extension.

Future Coolgardie Exploration

The Company is currently conducting further drilling in the Coolgardie area. As well as following up gold mineralisation anomaly areas delineated in the regional exploration program, the Company intends to target its future efforts on the Tindals and Bayleys areas.

For further information please contact: Dane Etheridge Company Secretary and GM Business Development Focus Minerals Ltd Phone: +61 8 9215 7888

Michael Guo GM Exploration & Geology Focus Minerals Ltd Phone: +61 8 9215 7888

Focus Minerals Limited - Focus owns two large gold projects in Western Australia's Eastern Goldfields. The company is the largest landholder in the Coolgardie Gold Belt, where it owns the 1.2Mtpa processing plant at Three Mile Hill. 250km to the northeast Focus has the Laverton Gold Project which comprises a significant portfolio of highly prospective tenure. Focus also owns the 1.45Mtpa Barnicoat mill in Laverton which has been on care and maintenance since 2009.

Forward Looking Statements

This release contains certain "forward looking statements". Forward-looking statements can be identified by the use of 'forward-looking' terminology, including, without limitation, the terms 'believes', 'estimates', 'anticipates', 'expects', 'predicts', 'intends', 'plans', 'propose', 'goals', 'targets', 'aims', 'outlook', 'guidance', 'forecasts', 'may', 'will', 'would', 'could' or 'should' or, in each case, their negative or other variations or comparable terminology. These forward-looking statements include all matters that are not historical facts. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors because they relate to events and depend on circumstances that may or may not occur in the future, assumptions which may or may not prove correct, and may be beyond Focus' ability to control or predict which may cause the actual results or performance of Focus to be materially different from the results or performance expressed or implied by such forward-looking statements. Forward-looking statements are based on assumptions and contingencies and are not guarantees or predictions of future performance. No representation is made that any of these statements or forecasts will come to pass or that any forecast result will be achieved. Similarly, no representation is given that the assumptions upon which forward-looking statements may be based are reasonable. Forward-looking statements speak only as at the date of this document and Focus disclaims any obligations or undertakings to release any update of, or revisions to, any forward-looking statements in this document.

Table A: Significant Intersections

Intersections are length-weighted averages. Intersections reported are a minimum of 1m @ 1g/t

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Intersection
		94 Zone 5		(m)		MGA94	(m)	(m)	(Au)
	(INGA		,	· · ·			. ,	(111)	(Au)
BONNIE VALE, COOLGARDIE GOLD PROJECT BONC084 324095 6584150 391 126 -61.1 222.1 9 10 1m @ 1.75g/t								1m @ 1 75 a/t	
									1m @ 1.75g/t
BONC085	324047	6584259	389	192	-60.8	223.2	82	83	1m @ 1.83g/t
BONC086	324100	6584435	389	150	-60.81	221.81	0	1	1m @ 1.12g/t
	324013	6584407	389	120	-60.21	222.51	57	58	1m @ 2.08g/t
BONC087						and	64	65	1m @ 1.86g/t
						and	99	100	1m @ 1.39g/t
BONC089	324104	6584537	389	228	-61	217.6	0	1	1m @ 1.92g/t
BONC090	323723	6584467	387	204	-61	258.9	128	129	1m @ 1.61g/t
DOINCOJO						and	134	136	2m @ 17.52g/t
BONC091	323602	6584222	388	150	-60	258.6	92	93	1m @ 1.55g/t
BONC092	323743	6584169	389	186	-61	269.8	137	138	1m @ 5.29g/t
DONCOOS	323527	6584092	390	126	-58.5	260.1	68	69	1m @ 1.89g/t
BONC093						and	74	75	1m @ 2.36g/t
DON COO A	323892	6584175	390	270	-58.1	269.6	208	209	1m @ 1.30g/t
BONC094						and	220	221	1m @ 4.32g/t
BONC095	324068	6583527	404	120	-61.2	185.3	111	112	1m @ 4.03g/t
	323750	6584590	389	228	-59.88	223.07	180	181	1m @ 1.11g/t
BONC098						and	192	193	1m @ 1.18g/t
						and	206	207	1m @ 1.20g/t
	324333	6584327	385	270	-59.98	218.17	128	129	1m @ 2.38g/t
BONC099	01.000	000.01			00.00	and	233	234	1m @ 1.10g/t
	324380	6584385	386	330	-59.38	221.94	298	301	3m @ 2.24g/t
BONC100	524500	0504505	500	550	55.50	and	305	306	1m @ 1.22g/t
Deneito						and	322	324	2m @ 1.52g/t
BONC102	324508	6583996	387	222	-60.6	221.24	140	141	1m @ 1.09g/t
DOINCIUZ	324308	6583963	387	204	-59.77	222.82	140	141	1m @ 1.02g/t
BONC103	524490	0202902	307	204	-59.77	and	109	110	1m @ 1.02g/t 1m @ 3.83g/t
DONCIOS									
	224450	6502020	207	100	50.24	and	115	117	2m @ 6.40g/t
BONC104	324458	6583920	387	180	-59.21	220.53	1	2	1m @ 3.29g/t
						and	125	126	1m @ 1.88g/t
BONC105	324426	6583883	388	162	-58.5	217.5	0	1	1m @ 3.69g/t
						and	112	113	1m @ 1.22g/t
BONC106	324445	6583990	380	252	-60.12	221.24	63	64	1m @ 1.30g/t
						and	133	135	2m @ 5.67g/t
BONC107	324420	6583944	388	132	-60.39	220.03	114	115	1m @ 1.29g/t
						and	118	122	4m @ 1.18g/t
BONC108	324373	6583993	388	126	-60.27	225.37	0	1	1m @ 1.81g/t
BONC109	324413	6584026	387	150	-59.8	222.58	68	69	1m @ 1.22g/t
	324446	6584064	386	162	-60.5	223.14	57	58	1m @ 1.31g/t
BONC110						and	85	86	1m @ 1.04g/t
DONCITO						and	102	105	3m @ 11.64g/t
						and	127	128	1m @ 3.32g/t
BONC111	324426	6583769	390	120	-60.8	264.4	30	31	1m @ 1.15g/t

	323678	6584473	387	168	-62.7	271.3	104	105	1m @ 2.99g/t
BONC114						and	114	115	1m @ 1.34g/t
						and	117	121	4m @ 14.31g/t
	323678	6584525	388	150	-61.5	267.9	29	30	1m @ 1.18g/t
						and	46	47	1m @ 1.34g/t
BONC115						and	59	60	1m @ 1.23g/t
						and	72	73	1m @ 4.07g/t
		NEW AL	JSTRAI	LASIAN,	COOLGAF	RDIE GOLD	PROJEC	т	-
AUSC003	326767	6570292	445	132	-59.4	283.5	68	70	2m @ 1.27g/t
	326679	6570119	458	150	-56.6	286.6	41	42	1m @ 1.00g/t
AUSC005						and	83	84	1m @ 1.69g/t
AUSC007	326700	6570002	463	180	-49.8	264	145	147	2m @ 1.09g/t
	326727	6570178	450	156	-56.2	289.7	99	101	2m @ 10.76g/t
AUSC008						and	133	134	1m @ 1.38g/t
		BRILL	IANT N	ORTH, C	OOLGARI	DIE GOLD P	ROJECT		
	326112	6573637	413	282	-57.1	245.6	90	92	2m @ 1.19g/t
						and	116	117	1m @ 4.82g/t
						and	126	128	2m @ 1.94g/t
BRRC038						and	171	172	1m @ 5.47g/t
						and	174	176	2m @ 2.88g/t
						and	192	193	1m @ 1.24g/t
						and	210	211	1m @ 1.76g/t
	326309	6573211	405	204	-59.4	246.5	17	18	1m @ 1.15g/t
						and	32	37	5m @ 1.35g/t
BRRC039						and	47	48	1m @ 1.25g/t
						and	51	52	1m @ 1.06g/t
						and	166	167	1m @ 1.78g/t
		LC	ORD BC	DB, COOL	GARDIE	GOLD PROJ	IECT		
	319121	6565839	444		-85.2	164	66	67	1m @ 3.35g/t
						and	85	86	1m @ 1.11g/t
LDBC001						and	88	90	2m @ 2.10g/t
LDDC001						and	99	102	3m @ 3.05g/t
						and	113	114	1m @ 3.61g/t
						and	120	121	1m @ 1.04g/t
	318974	6565776	447		-61.4	264	83	85	2m @ 6.79g/t
						and	100	101	1m @ 1.65g/t
LDBC002						and	123	124	1m @ 12.10g/t
						and	191	192	1m @ 8.56g/t
						and	196	197	1m @ 1.19g/t
		BAYLEY	S EXT	ENSION,	COOLGA	RDIE GOLD	PROJE	т	
	326812	6574529	402	300	-56.4	216.2	15	16	1m @ 1.04g/t
BSEC002						and	124	128	4m @ 2.06g/t
5520002						and	137	143	6m @ 1.33g/t
						and	146	147	1m @ 2.17g/t
BSEC003	326808	6574707	400	318	-55.5	208.3	260	261	1m @ 1.67g/t
						and	265	266	1m @ 1.26g/t
BSEC004	326850	6574463	404	300	-54.6	223.3	225	226	1m @ 4.58g/t

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Coolgardie Gold Project	This report relates to results for Reverse Circulation (RC) drilling of Focus Minerals Coolgardie area.							
	RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis. In total 51 RC holes were drilled for 9,470 meters.							
	RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole using a bullseye level.							
	At the assay laboratory all samples were oven dried and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 85% passing 75µm.							
	The samples were then prepared for fire assay.							
	When visible gold was observed in RC chips, this sample was then flagged by the supervising geologist for the benefit of the laboratory.							
Drilling techniques	All RC drilling was completed using a face sampling hammer. All holes were surveyed using DGPS to obtain the coordinates (MGA94) upon completion of drilling. Selected holes are surveyed with azimuth and dip using a north- seeking gyroscope.							
Drill sample recovery	Sample recovery was recorded by a visual estimate during the logging process.							
	All samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust.							
	Study of sample recovery versus gold grade does not indicate a bias in the gold grade caused by any drop in sample recovery.							
Logging	All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.							
	The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete.							
	Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.							
	Samples from RC holes were archived in standard 20m plastic chip trays.							
	The entire length of all holes are logged.							
Sub-sampling techniques and sample	RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag.							
preparation	Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table.							
	Sample condition was recorded (wet, dry or damp) at the time of sampling and recorded in the database.							
	The samples were collected in a pre-numbered calico bag bearing a unique sample ID.							

	Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight.
	Gold analysis was determined by a 50g fire assay with an AAS Finish.
	The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation.
	Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.
	FML inserts 2 standards and takes 4 duplicates for every 100 samples.
	Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples, excluding the 100th sample as this was a standard.
	Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out.
	The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.
	The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample.
Quality of	No geophysical tools, spectrometers or handheld XRF instruments were used.
assay data and	The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision.
laboratory tests	All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.
	Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process.
Verification of sampling and assaying	Normally if old historic drilling was present, twinned holes are occasionally drilled to test the veracity of historic assay data; however no twinned holes were drilled during this program.
	Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory.
	Once loaded, data was extracted for verification by the geologist in charge of the project.
	No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
	RC drill collars were surveyed after completion, using a DGPS instrument.
	Down-hole surveys were completed using a north-seeking gyroscope operated by a qualified contractor.
Location of	All coordinates and bearings use the MGA94 Zone 51 grid system.
data points	RC drilling locations were determined by hand-held GPS, with an accuracy of 5m in Northing and Easting. After finishing the drilling RC holes locations were picked up by DGPS with accuracy of 20cm.
	Drill spacing across the Coolgardie prospects varied depending on the

	exploration stage that the drill target currently existed.
Data spacing and distribution	The data spacing of the drilling across Focus's prospects during this campaign was not considered sufficient to be used in a Mineral Resource; the majority of drilling was completed to establish continuity of mineralisation and alteration at depth.
	Intercepted mineralisation will be digitized and incorporated into existing models or to create new models as required.
	Additional infill drilling would be required before this mineralisation can be used in the estimation of a Mineral Resource or Ore Reserve.
	Sample compositing has not been applied to the reporting of exploration results.
	Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation.
	Drill holes oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body.
Orientation of data in relation to geological structure	No orientation and sampling bias has been recognised in the drilling data to date.
Sample security	All samples were reconciled against the sample submission with any omissions or variations reported to FML.
	All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel on a daily basis.
Audits or reviews	A review of sampling techniques was carried out by Roredata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Coolgardie Gold Project
Mineral tenement and land	All drilling was conducted on tenements 100% owned by Focus Minerals Limited or its subsidiary companies Focus Operations Pty Ltd. All tenements are in good standing.
tenure status	There are currently no registered Native Title claims over the Coolgardie project areas.
Exploration done by other parties	Bonnie Vale is the site of a number of historic workings including the "Varischetti Mine" (Westralia). Modern exploration has been conducted by Coolgardie Gold NL, Gold Mines of Coolgardie and Focus Minerals.
	The Brilliant pit was initially mined by the Brilliant-Tindals Joint Venture. It was subsequently expanded after further drilling by Herald Resources' subsidiary Goldfan. More recent drilling was completed by Focus Minerals;
	Eltin Minerals and St Francis Mining conducted drilling projects at Lord Bob between 1993 and 1997. The drilling is dominantly RC to 70m vertical depth. St

nerals Ltd.								
Criteria			Coo	olgard	ie Gold Proj	ect		
	Francis mir control and		all trial pit	in 199	97 which re	conciled p	oorly betw	een grade
	At Bayleys extension the narrow shafts were initially mined at Hanover from 1897-1906, modern exploration work was done by Coolgardie Gold NL in 1990s.							
	There are two small historic mined open pits at New Australasian but little is known about the history. Recent drilling were mainly conducted by Focus Minerals							
Geology	Bonnie Vale mineralisation is historically contained within large (300m st length) planar reef structures on or near the contact of the Bonnie Vale tona and an overlying ultramafic unit. FML drilling is investigating potential extensi to these structures at depth and along strike.							ale tonalite
	The Brillian near shear are commo The minera veins hoste	ed mafic/ n. Ilisation a	ultramafic t Lord Bob	conta o is re	icts. Sulphi	de rich qu	artz vein s	stockworks
	At Bayleys, and felsic u and Prices ounces alor	nits along The Price	g lithologica s and Bay	al cont leys u	tacts. there	are two p I mines pr	arallel lode	s, Bayleys
	The New A and is as porphyries. regional E-V Tindals min	sociated The dep <i>N</i> D2 anti	with a N osit site lie icline that f	NE ti es on	rending sh the southe	ear and ern and N	associated E-trending	l intrusive limb of a
Drillhole	Hole ID	Easting	Northing	RL	Depth(m)	Azimuth	Dip	
Information	BSEC001	326703	6574762	400	294	209.3	-57.0	
	BSEC002	326812	6574529	402	300	216.2	-56.4	
	BSEC003	326808	6574707	400	318	208.3	-55.5	
	BSEC004	326850	6574463	404	300	223.3	-54.6	
	BSEC005	326886	6574253	416	150	213.7	-53.9	
	BSEC006	326884	6574197	417	114	220.5	-54.6	
	BONC083	324153	6584109	390	120	220.9	-60.0	
	BONC084	324095	6584150	391	126	222.1	-61.1	
	BONC085	324047	6584259	389	192	223.2	-60.8	
	BONC086	324100	6584435	389	150	221.8	-60.8	
	BONC087	324013	6584407	389	120	222.5	-60.2	
	BONC088	324023	6584496	390	150	222.9	-61.7	
	BONC089	324104	6584537	389	228	217.6	-61.0	
	BONC090	323723	6584467	387	204	258.9	-61.0	
	BONC091	323602	6584222	388	150	258.6	-60.0	
	BONC092	323743	6584169	389	186	269.8	-61.0	
	BONC093	323527	6584092	390	126	260.1	-58.5	
	BONC094	323892	6584175	390	270	269.6	-58.1	
	BONC095	324068	6583527	404	120	185.3	-61.2	
	BONC096	324162	6583566	400	162	181.9	-59.7	
	BONC097	324234	6583568	400	132	183.5	-60.0	
	BONC098	323750	6584590	389	228	223.1	-59.9	
	BONC099	324333	6584327	385	270	218.2	-60.0	
	BONC100	324380	6584385	386	330	221.9	-59.4	

Criteria			Coo	olgardi	ie Gold Proj	ect			
	BONC101	324407	6583636	395	210	266.0	-60.1		
	BONC102	324508	6583996	387	222	221.2	-60.6		
	BONC103	324490	6583963	387	204	222.8	-59.8		
	BONC104	324458	6583920	387	180	220.5	-59.2		
	BONC105	324426	6583883	388	162	217.5	-58.5		
	BONC106	324445	6583990	380	252	2217.5	-60.1		
	BONC100	324420	6583944	388	132	220.0	-60.4		
	BONC108	324373	6583993	388	132	225.4	-60.3		
	BONC100	324373	6584026	387	120	223.4	-59.8		
	BONC105	324446	6584064	386	150	222.0	-60.5		
	BONC110 BONC111	324440	6583769	390	102	264.4	-60.8		
	BONC112	324424	6583719	390	120	264.0	-59.2		
	BONC112 BONC113	323725	6584413	385	120	264.6	-61.0		
	BONC113 BONC114	323723	6584473	387	168	204.0	-62.7		
	BONC114 BONC115	323678	6584525	388	108	271.3	-61.5		
	BONC113 BONC116								
	-	323670	6584170	392	150	269.0	-61.2		
	BONC117	323753	6584116	392	186	268.6	-60.6		
	LDBC001	319121	6565839	444	164	349.2	-85.2		
	LDBC002	318974	6565776	447	264	62.5	-61.4		
	AUSC003	326767	6570292	445	132	283.5	-59.4		
	AUSC004	326770	6570222	451	180	284.3	-57.6		
	AUSC005	326679	6570119	458	150	286.6	-56.6		
	AUSC006	326677	6570068	457	144	286.0	-60.4		
	AUSC007	326700	6570002	463	180	264.0	-49.8		
	AUSC008	326727	6570178	450	156	289.7	-56.2		
	BRRC038	326112	6573637	413	282	245.6	-57.1		
	BRRC039	326309	6573211	405	204	246.5	-59.4		
Data aggregation methods	Mineralised reporting wi	idth of 1m	, reported a	as len	gth-weighte	d average	grades.		
Relationship between mineralisation widths and intercept lengths	Holes were the exact estimated e	relationsh	nip betwee						
Diagrams	Accurate co sections are								
Balanced reporting	Drilling results are reported in a balanced reporting style. The ASX announcement shows actual locations of holes drilled, and representative sections as appropriate.								
	Holes show significant in							e table o	
Other substantive exploration data	There is no	other ma	terial explo	ration	data to rep	ort at this t	ime.		
Further work	The compa Bayleys ext		gning drillir	ng pro	gram to follo	ow up resu	Ilts from Bo	nnie Vale	

Competent Person's Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Michael Guo (P Geo) who is a member of the Association of Professional Geoscientists of Ontario, Canada, which is a Recognised Professional Organisation (RPO). Mr Guo is employed by Focus Minerals Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Guo consents to the inclusion in this announcement of the matters based on the information compiled by him in the form and context in which it appears.