

Level 2, 159 Adelaide Terrace East Perth WA 6004 PO Box 3233 East Perth WA 6892 T: +61 8 9215 7888 F: +61 8 9215 7889 E: info@focusminerals.com.au

28 April 2016

Focus Minerals Ltd Exploration Update

Overview of Exploration Activities at Coolgardie and Laverton

Focus Minerals Ltd ("Focus" or "the Company") is pleased to provide an update on exploration activities at Coolgardie and Laverton since the start of 2016. Recent exploration results have progressed Focus' exploration strategy of extending and improving current resources and discovering new ore bodies within our project areas.

Coolgardie

At Coolgardie a total of 53 RC holes have been completed for 10,394m and three diamond tails have been completed for 890m, since the start of 2016. Key programmes have included:

- RC and Diamond Drilling at Bonnie Vale, demonstrating the potential for lode extensions to the Westralia Reef and Quarry Reef systems.
- RC Drilling at Possum targeting a newly-discovered extension to the New Australasia-Possum lode system.
- RC Drilling at Brilliant highlighting the potential for lode extensions in the hanging wall and foot wall of the known Mineral Resource.
- RC Drilling at Lady Charlotte / Undaunted identifying down-dip and along-strike extensions to the known mineralisation.
- A 2D seismic survey across Tindals imaging the major district-scale structures to a depth of approximately 3.5km highlighting the potential for deeper exploration targets in the district.

The Bonnie Vale, Possum, Brilliant, and Undaunted programmes have all generated strong intersections, including:

	Highlight Intersections from Recent Coolgardie Drilling*						
Bonnie Vale	1m @ 10.15 g/t Au from 85m and 1m @ 15.00 g/t Au from 92m in BONC123						
Bonnie vale	1m @ 10.30 g/t Au from 97m and 0.93m @ 15.25 g/t Au from 366.27m in BONCD070						
Possum	1m @ 8.99 g/t Au from 33m and						
POSSUIII	7m @ 10.92 g/t Au from 66m, including 1m @ 45.9 g/t Au from 71m in TND16024						
Brilliant	1m @ 11.65 g/t Au from 172m in TND16037						
	2m @ 4.14 g/t Au from 150m and 2m @ 4.85 g/t Au from 165m in TND16035						
Undaunted	1m @ 5.03 g/t Au from 233m in TND16010						
Unuaunted	1m @ 4.30 g/t Au from 126m in TND16014						

*Full significant results are reported in Table A (Coolgardie) on Page 22

Drilling is currently ongoing at Coolgardie with additional diamond drilling being completed at Bonnie Vale and Brilliant and additional RC drilling being completed along the Perseverance– Empress trend. In addition, further exploration drilling is being planned. The goals of these programmes are to build upon current Mineral Resources and identify new ore bodies.

For a detailed overview of work at Coolgardie, please refer to page three of this release.

Laverton

At Laverton a total of 25 infill RC holes have been completed at Karridale for 5,158m since the start of 2016. Results from the first phase of infill drilling support the Company's geology interpretations. Some highlight intersections are presented below:

	Highlight Intersections from Recent Karridale Drilling*
2m @ 29.40g/	t Au from 168m in hole KARC176
7m @ 8.98g/t	Au from 150m in hole KARC173
5m @ 8.51g/t	Au from 170m in hole KARC171
3m @ 17.76g/	't Au from 69m in hole KARC182, including 1m @ 47.0g/t from 69 m
3m @ 17.49g/	(t Au from 134m in hole KARC185 , including 1m @ 44.5 g/t Au from 134m
*Full significant result	s are reported in Table A (Laverton) on Page 15

Modelling is ongoing and Focus is currently planning the next phase of infill drilling for Karridale. For a detailed overview of recent work at Karridale, please refer to page 12 of this release.

Coolgardie Exploration Update

Since the start of 2016, Focus has undertaken an aggressive brownfields exploration programme at Coolgardie focussed on Bonnie Vale and the Greater Tindals District. The programme was designed to test and refine Focus' understanding of several high-priority exploration targets. Recent activities at Coolgardie include:

- RC and Diamond Drilling at Bonnie Vale (15 RC holes completed for 2,726m; three diamond tails completed for 890m to date this year).
- RC Drilling within the Greater Tindals District (38 RC holes completed for 7,668m this year).
- An approximately 7.5 line km 2D seismic survey at Tindals.

Drill results have been encouraging at both Bonnie Vale and Greater Tindals and preliminary interpretations of the seismic data have highlighted several potential exploration target areas. Highlights from current activities are presented below and a map of the locations referred to is presented in Figure 1.

	Highlight Intersections from Recent Coolgardie Drilling*
Bonnie Vale	1m @ 10.15 g/t Au from 85m and 1m @ 15.00 g/t Au from 92m in BONC123
Westralia	1m @ 6.93 g/t Au from 33m in BONC125
Bonnie Vale	1m @ 10.30 g/t Au from 97m and 0.93m @ 15.25 g/t Au from 366.27m in BONCD070
Quarry Reef	1m @ 15.05 g/t Au from 272m in BONC119
	1m @ 8.99 g/t Au from 33m and
Possum	7m @ 10.92 g/t Au from 66m, including 1m @ 45.9 g/t Au from 71m in TND16024
	1m @ 19.8 g/t Au from 212m and 1m @ 5.41 g/t Au from 242m in TND16026
Drilliont	1m @ 11.65 g/t Au from 172m in TND16037
Brilliant	2m @ 4.14 g/t Au from 150m and 2m @ 4.85 g/t Au from 165m in TND16035
Undaunted	1m @ 5.03 g/t Au from 233m in TND16010
Undaunied	1m @ 4.30 g/t Au from 126m in TND16014

*Full significant results are reported in Table A (Coolgardie) on Page 22

Exploration is ongoing at both Bonnie Vale and Greater Tindals, including diamond drilling at Quarry Reef (Bonnie Vale), diamond drilling at Brilliant (Greater Tindals) and RC drilling at Perseverance-Empress (Greater Tindals). For more detail on these programmes, see the following section.

Figure 1: Coolgardie Exploration Locations

Bonnie Vale

Since the start of 2016, Focus has completed a 15 hole RC programme (2,726m) in two prospect areas at Bonnie Vale: Westralia and Quarry Reef (*Figure 2*). Drilling at Westralia was designed to test for near-surface, along-strike continuation of the historically-mined Westralia Reef. At Quarry Reef, the deep drilling was designed to test for down-dip and along-strike continuation of the Quarry Reef lode system with the aim of identifying opportunities for growth of the Quarry Reef Mineral Resource.

At Westralia, seven RC holes have been completed (1,244m) testing for along strike continuity of the Westralia Reef system (*Figures 2 and 3*). At Quarry Reef, two deep RC holes have been completed (674m) and 6 RC holes (858m) have been drilled as pre-collars for a diamond drill programme (*Figures 2 and 4*). To date, the first three diamond tails have been completed (890m) testing for down-dip continuity of the Quarry Reef lode system (*Inferred + Indicated Mineral Resource of 215kt @ 16.9g/t Au for 117,000 Oz Au – see ASX release dated 16 November 2015*). Full results from the Quarry Reef extension drilling have not been received, although results to date are encouraging, including:

- BONC119 1m @ 15.05g/t Au from 272m representing an approximately 50m down-dip step-out from previously identified mineralisation.
- BONCD070 1m @ 10.30g/t Au from 97m potentially a new lode.

 0.93m @ 15.25g/t Au from 366.27m – representing an approximately 50m downdip step-out from the Quarry Reef.

Diamond drilling at Quarry Reef is ongoing, and geologic logging suggests that the lode system is present in the other holes completed to date down-dip from the previously-reported resource.

Drill results from Westralia are also encouraging and include:

- BONC122 1m @ 4.93g/t Au from 60m
- BONC123 1m @ 10.15g/t Au from 85m
 0 1m @ 15.00g/t Au from 92m
- BONC125 1m @ 6.93g/t Au from 33m

Figure 2: Bonnie Vale Plan

Figure 3: Bonnie Vale (Westralia) Indicative Section

Figure 4: Bonnie Vale (Quarry Reef) Indicative Section

Additional drilling is planned to follow up on the encouraging results at Westralia to continue following the system along strike. Depending on results from the diamond drilling, additional infill drilling will be planned at Quarry Reef with the goal of expanding the Mineral Resource.

Greater Tindals Drill Programme

Carrying on from exploration activities in late 2015, Focus has continued an aggressive exploration programme within the Greater Tindals District since the start of 2016. To date this year, Focus has completed 38 RC holes (7,668m) testing several prospects, including Possum, Brilliant and Undaunted/Lady Charlotte. Positive results have been returned from all three of these prospect areas and, as explained below, follow up work is planned.

Greater Tindals Drill Programme – Possum Prospect

Since the start of 2016, 21 RC holes (4,080m) have been completed at the Possum prospect following up on results from a regional slimline RC programme and preliminary RC programme completed in late 2015 (*Figure 5*). Scout slimline RC drilling in the Possum area during the December 2015 Quarter (87 holes, 2,433m) identified anomalous, near-surface mineralisation to the south of the Possum Open Pit along an approximately 300m strike length, including:

- FCSL083 4m @ 1.05g/t Au from 28m (4m composite samples)
 - Incl. 1m @ 4.74g/t Au from 11m (1m spear sample)
- FCSL081 4m @ 1.57g/t Au from 8m (4m composite samples)
- FCSL122 8m @ 1.17g/t Au from 8m (4m composite samples)
 - Incl. 1m @ 7.39g/t Au from 14m (1m spear sample)
- FCSL129 24m @ 1.51g/t Au from surface (4m composite samples)
 - o Incl. 1m @ 25.0g/t Au from 7m (1m spear sample)
 - Incl. 1m @ 3.77g/t Au from 10m (1m spear sample)

Follow-up RC drilling in December 2015 consisted of two RC holes immediately south of the Possum Open Pit, both of which returned encouraging results:

- TND1525 4m @ 2.68g/t Au from 51m
 - Incl. 1m @ 3.35g/t Au from 52m
 - Incl. 1m @ 4.6g/t Au from 54m
- TND1524 2m @ 6.19g/t Au from 101m

Figure 5: Possum Plan

RC drilling since the beginning of 2016 at Possum has focussed on further delineating the mineralised system to the south of Possum Open Pit. This round of wide-spaced drilling has helped to define a potentially significant mineralised system approximately 1.2km in strike extent extending from New Australasia in the north to Possum South, with mineralisation remaining open to the south (*Figures 5 and 6*)

At Possum, mineralisation consists of at least three sub-parallel lodes within a black shale unit along the contact between footwall basalts and hanging wall gabbros. Mineralisation is generally hosted within or near the contacts of narrow silicified diorites in the black shale, although two additional styles have been recognised (within a sulphidic black shale in the absence of diorite and within a massive quartz vein).

Significant results from the recent drilling include:

- TND16015 1m @ 13.0g/t Au from 110m
- TND16018 1m @ 4.65g/t Au from 104m
- TND16019 1m @ 3.46g/t Au from 114m
 0 1m @ 5.55g/t Au from 154m
- TND16021 1m @ 7.19g/t Au from 125m
- TND16022 1m @ 3.87g/t Au from 172m
- TND16024 1m @ 8.99g/t Au from 30m
 - 7m @ 10.92g/t Au from 66m
 - Incl. 1m @ 5.46g/t Au from 67m
 - Incl. 1m @ 8.10g/t Au from 68m
 - Incl. 1m @ 11.40g/t Au from 70m
 - Incl. 1m @ 45.90g/t Au from 71m
 - Incl. 1m @ 9.11g/t Au from 74m
- TND16026 1m @ 19.80 g/t Au from 212m
 - 5.41 g/t Au from 242m

Figure 6: Possum Indicative Long Section

Following these strong results, additional drilling is being planned for Possum, including:

- Step-out drilling to the south to continue delineating the extent of the mineralised system
- Follow-up drilling testing the extent of high-grade mineralisation around the Possum Pit (e.g. TND16024 1m @ 45.90g/t Au)
- In-fill drilling to increase the confidence in the identified mineralised system with the potential aim of delineating an Inferred Mineral Resource

Greater Tindals Drill Programme – Brilliant Prospect

Drilling at Brilliant consisted of 9 RC holes (1,806m) testing for near-surface extensions of known mineralisation in the footwall and hanging wall of the existing resource (*Figure 7*). Four holes were completed to the east of the pit testing for lode continuity in the hanging wall of the system and four holes were completed to the west of the pit testing for lode mineralisation within the poorly tested footwall of the system. The final RC hole was drilled to the north of Brilliant as a precollar for a diamond tail to be completed later in the year. Three additional diamond tails are planned from RC holes drilled on the eastern side of the pit.

Drilling on the eastern side of the pit has identified the potential for extending known lodes down dip from the existing resource boundary. Significant results from these holes include:

- TND16032 1m @ 5.38g/t Au from 72m
- TND16033 4m @ 3.22g/t Au from 178m
 - \circ $\,$ Incl. 1m @ 4.18g/t Au from 178m $\,$
 - Incl. 1m @ 3.83g/t Au from 179m
 - TND16035 2m @ 4.14g/t Au from 150m
 - o 2m @ 4.85g/t Au from 165m

Drilling on the western side of the pit has intersected potentially new lode mineralisation in the footwall of the system, with the best intersection being 1m @ 11.65g/t Au from 172m in TND16037 (*Figure 8*). Additional drilling is planned for Brilliant, including:

- A four hole diamond drill programme (of around 1,000m) testing for deeper extensions to known lodes.
- RC drilling on the western side of the Brilliant Pit to further investigate the potential for footwall lodes around Brilliant.
- In-fill drilling to the northeast of Brilliant following up on encouraging results from the current programme with the goal of growing the current Mineral Resource.

Figure 7: Brilliant Plan

Figure 8: Brilliant Long Section

Greater Tindals Drill Programme – Lady Charlotte/Undaunted Prospect

Drilling at Lady Charlotte/Undaunted consisted of six RC holes (1,374m) since the start of the year, following up on encouraging results from the seven RC holes completed during the December 2015 Quarter (*Figure 9*). The combined drill programme was designed to test for lode continuity down-dip and along-strike from known mineralisation and results suggest that the system continues down-dip and along strike to the north, and remains open in both directions. Drilling to date indicates that the Undaunted/Lady Charlotte system consists of several narrow reefs that together define a gently north-plunging mineralised system. Significant results (>1m @ 3g/t Au) from the recent programme include:

- TND16010 1m@ 3.76g/t Au from 213m and 1m @ 5.03g/t Au from 233m
- TND16014 1m @ 3.54g/t Au from 109m and 1m @ 4.30g/t Au from 126m

Additional drilling is being planned for Lady Charlotte/Undaunted to continue testing the strike extent of the system before making decisions on any in-fill drilling.

Tindals Seismic Survey

An approximately 7.5 line km 2D seismic survey was completed at Tindals in February 2016 and final processed data has been received. The survey was designed to image prospective structures within the Tindals District to a depth of ~3km with the aim of assisting FML to update the 3D geology model of the district beyond the limit of current drilling. Interpretation work is ongoing, but preliminary results have identified the major district-scale structures in the seismic data as well as some potential fold structures at depth. Once the interpretations are finalised, Focus intends to drill test favourable targets identified from this survey.

Figure 9: Undaunted Plan

Karridale Exploration Update

Results have been received from 25 holes drilled to infill around previous high grade gold intersections (see ASX releases dated 13 April 2015 and 27 January 2016) on the Karridale Project, near Laverton in Western Australia (*Figure 10*). All holes were by reverse circulation (RC) technique using a face sampling hammer and total metreage was 5,158m.

Initially a 34 hole programme was planned with three distinct aims in mind:

- 40m spaced infill drilling on a mineralised pod down dip from the historic Karridale workings to resolve gold grade distribution (plunge)
- 40m spaced drilling around the historic Boomerang mine to resolve gold grade distribution
- 80m spaced drilling down dip from Boomerang to confirm the link between the Karridale and Boomerang sites

Logistical access problems and wet weather meant nine holes were not able to be drilled. Out of the 25 holes drilled, five were terminated early due to excessive groundwater flow and one due to equipment failure (collar locations illustrated in *Figure 11*).

Despite the logistical challenges of this campaign, the results affirm Focus' belief in the potential of this project. Highlights from the recent Karridale drilling program include:

Highlight Intersections from Recent Karridale Drilling*
2m @ 29.40g/t Au from 168m in hole KARC176
7m @ 8.98g/t Au from 150m in hole KARC173
5m @ 8.51g/t Au from 170m in hole KARC171
3m @ 17.76g/t Au from 69m in hole KARC182, including 1m @ 47.0g/t from 69 m
3m @ 17.49g/t Au from 134m in hole KARC185 including 1m @ 44.5 g/t Au from 134m

*These and other significant intersections are presented in Table A (Laverton) on page 15

Karridale Project

The Karridale Project is located across four tenements within the Burtville district, 30km from Laverton and some 2km south of the Burtville open cut owned by Focus Minerals. M38/8 and E38/2032 are wholly owned by Focus. M38/73 and M38/89 are held under the Merolia Joint Venture between Focus Minerals (Laverton) Pty Ltd and GSM Mining Company Pty Ltd (a wholly owned subsidiary of Gold Fields Limited). Focus holds a 91% interest in these tenements.

This recent drilling confirmed that gold mineralisation at the Karridale Project is primarily associated with multiple, stacked, broad shear zones, flatly dipping to the northwest (Figure 12). The drilling also supports the theory that the deep intersection in hole KARD154 (See ASX release 13 April 2015) is the down dip extension of the Boomerang Mine, some 600m to the southeast. Unfortunately the curtailment of the programme, due to weather conditions affecting ground access and sample quality, has meant some holes that would have assisted with interpretation could not be drilled in the most recent programme.

Figure 10: Focus Minerals Karridale Location Plan

Figure 11: Selected Karridale drill collar locations

As the recent RC drilling was designed to infill previous drilling, it has not changed the known extent of the mineralised system (some 600m strike and 400m thickness). Drill hole traces are believed to be close to orthogonal relative to the mineralised structures. Final assay data has only recently been received and interpretation of results is ongoing. The recent drill results will assist in delineating gold grade plunge direction and are expected to lead to further focussed infill and later extensional drilling.

Figure 12: Karridale Project looking north. RC / DD drill traces shown in black. Yellow / red / grey shapes are 3D contours of low-level gold grade (0.13g/t / 0.15g/t / 0.17g/t respectively) to illustrate gold grade trends. The mineralisation is considered open down dip and along strike. The most southwestern drill traverse failed to reach sufficient depth to test either the Karridale or Boomerang structures.

For further information please contact:

Dane Etheridge

Company Secretary and GM Business Development Focus Minerals Ltd Phone: +61 8 9215 7888 Michael Guo GM Exploration & Geology Focus Minerals Ltd Phone: +61 8 9215 7888

Forward Looking Statements

This release contains certain "forward looking statements". Forward-looking statements can be identified by the use of 'forward-looking' terminology, including, without limitation, the terms 'believes', 'estimates', 'anticipates', 'expects', 'predicts', 'intends', 'plans', 'propose', 'goals', 'targets', 'aims', 'outlook', 'guidance', 'forecasts', 'may', 'will', 'would', 'could' or 'should' or, in each case, their negative or other variations or comparable terminology. These forward-looking statements include all matters that are not historical facts. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors because they relate to events and depend on circumstances that may or may not occur in the future, assumptions which may or may not prove correct, and may be beyond Focus' ability to control or predict which may cause the actual results or performance of Focus to be materially different from the results or performance expressed or implied by such forward-looking statements. Forward-looking statements are based on assumptions and contingencies and are not guarantees or predictions of future performance. No representation is made that any of these statements or forecasts will come to pass or that any forecast result will be achieved. Similarly, no representation is given that the assumptions upon which forward-looking statements may be based are reasonable. Forward-looking statements speak only as at the date of this document and Focus disclaims any obligations or undertakings to release any update of, or revisions to, any forward-looking statements in this document.

Table A: Significant Intersections (LAVERTON)

Intersections are length-weighted averages.

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Intersection
	(MGA 94)			(m)		MGA94	(m)	(m)	(Au)
	(10	ا g/t Au lower				N GOLD P . 1m maxi		nal dilutio	on)
	465494.7	6815757	467.1	240	-61	145	38	39	1m @ 2.14ppm
						and	164	165	1m @ 1.10ppm
KARC169						and	174	176	2m @ 2.50ppm
						and	204	205	1m @ 1.13ppm
	465449.4	6815822	467.0	240	-61	145	46	48	2m @ 3.95ppm
						and	117	120	3m @ 6.31ppm
KARC170						and	187	188	1m @ 2.93ppm
						and	207	208	1m @ 1.46ppm
						and	237	238	1m @ 1.02ppm
	465440.2	6815767	467.1	240	-61	145	34	37	3m @ 1.04ppm
KADC171						and	110	111	1m @ 1.74ppm
KARC171						and	121	122	1m @ 1.07ppm
						and	170	175	5m @ 8.51ppm
	465418	6815800	467.1	246	-60	150	33	34	1m @ 2.28ppm ^
						and	125	128	3m @ 5.55ppm
						and	131	132	1m @ 1.49ppm
KARC172						and	142	143	1m @ 1.61ppm
						and	163	164	1m @ 1.20ppm
						and	191	193	2m @ 3.42ppm
						and	220	221	1m @ 2.17ppm
	465393.6	6815835	466.9	264	-61	149	150	157	7m @ 8.98ppm
						and	159	160	1m @ 1.47ppm
KARC173						and	201	204	3m @ 1.20ppm
						and	215	220	5m @ 1.81ppm
						and	229	230	1m @ 1.64ppm
	465386.8	6815776	467.1	240	-60	150	34	35	1m @ 1.33ppm
						and	79	80	1m @ 1.17ppm
						and	86	87	1m @ 1.79ppm
KARC174						and	136	137	1m @ 2.44ppm
KANC1/4						and	158	159	1m @ 3.36ppm
						and	185	186	1m @ 1.73ppm
						and	188	189	1m @ 3.88ppm
						and	220	221	1m @ 5.55ppm
	465353.2	6815754	466.7	240	-59	155	144	145	1m @ 3.10ppm
						and	179	180	1m @ 3.85ppm
KARC175						and	194	196	2m @ 2.46ppm
						and	213	214	1m @ 4.31ppm
						and	234	235	1m @ 1.32ppm
	465327.2	6815787	466.6	267	-60	145	127	128	1m @ 1.36ppm
						and	168	170	2m @ 29.40ppm
KARC176						and	191	194	3m @ 4.54ppm
						and	213	214	1m @ 1.16ppm
						and	217	218	1m @ 4.23ppm

						and	222	223	1m @ 4.29ppm
	465304.5	6815820	466.6	282	-60	145	76	77	1m @ 1.12ppm
KARC177	+05504.5	0013020	400.0	202	00	and	197	199	2m @ 2.07ppm
KANCI//						and	219	220	1m @ 4.05ppm
	465979	6815559	470.3	150	-59	145	0	1	1m @ 1.65ppm
	403979	0010009	470.5	150	-39	and	35	36	1m @ 1.09ppm
KARC178						and	38	39	1m @ 3.51ppm
						and	77	81	4m @ 3.69ppm
	465056.0	6045504	470.4	100	60	and	89	90	1m @ 1.71ppm
	465956.2	6815591	470.1	186	-60	145	101	102	1m @ 18.00ppm
KARC179						and	112	113	1m @ 1.02ppm
						and	137	138	1m @ 1.19ppm
						and	178	180	2m @ 1.45ppm
	465944.8	6815536	469.9	150	-59	145	0	1	1m @ 3.13ppm
KARC180						and	94	97	3m @ 1.27ppm
						and	100	101	1m @ 1.07ppm
	_		-			and	107	108	1m @ 1.26ppm
	465900	6815600	469.9	217	-61	145	36	39	3m @ 2.25ppm
KARC181						and	95	96	1m @ 1.64ppm
						and	133	134	1m @ 1.36ppm
						and	214	216	2m @ 1.15ppm *
	465957.8	6815448	469.5	132	-61	145	0	1	1m @ 4.10ppm
						and	30	31	1m @ 3.81ppm
KARC182						and	65	66	1m @ 1.75ppm
						and	69	72	3m @ 17.76ppm
						Incl.	69	70	1m @ 17.0ppm
	465934.1	6815476	469.9	120	-59	145	0	1	1m @ 8.42ppm
						and	36	37	1m @ 1.74ppm
KARC183						and	61	62	1m @ 1.36ppm
						and	79	80	1m @ 1.45ppm
						and	91	92	1m @ 11.60ppm
	465911.6	6815512	469.6	150	-60	145	8	9	1m @ 2.06ppm
						and	25	27	2m @ 2.53ppm
						and	41	42	1m @ 1.61ppm
						and	44	46	2m @ 1.93ppm
KARC184						and	60	61	1m @ 1.83ppm
						and	80	82	2m @ 2.25ppm
				1		and	92	95	3m @ 1.46ppm
			1	1		and	100	101	1m @ 2.35ppm
	465865.1	6815577	469.6	222	-61	146	85	86	1m @ 1.41ppm
			1			and	126	128	2m @ 2.25ppm
			1			and	134	137	3m @ 17.49ppm
				1		Incl.	134	135	1m @ 44.5ppm
KARC185						and	144	145	1m @ 1.02ppm
			1			and	153	154	1m @ 1.15ppm
				<u> </u>		and	177	178	1m @ 1.92ppm
						and	182	178	1m @ 1.03ppm
								102	Lin @ T.Oobhill

						and	98	99	1m @ 3.22ppm	
	465678.3	6815640	469.1	288	-61	145	98	102	4m @ 4.70ppm	
KARC187						and	129	130	1m @ 2.10ppm	
KARC187						and	211	212	1m @ 1.92ppm	
						and	236	237	1m @ 5.52ppm	
	465811.4	6815586	469.6	144	-60	145	0	1	1m @ 1.20ppm	
KADC100						and	81	88	7m @ 3.02ppm	
KARC188						and	90	91	1m @ 1.33ppm	
						and	141	143	2m @ 1.42ppm * [#]	
	465857.1	6815520	469.3	174	-62	145	45	48	3m @ 1.83ppm [#]	
						and	57	59	2m @ 2.16ppm [#]	
						and	102	103	1m @ 7.05ppm [#]	
KARC189						and	116	117	1m @ 1.18ppm * ^	
	-					and	129	130	1m @ 6.76ppm * ^	
						and	146	148	2m @ 2.62ppm * ^	
	465619.2	6815400	468.4	210	-60	145	23	24	1m @ 1.23ppm [#]	
KAR6400						and	138	139	1m @ 2.90ppm *	
KARC190						and	162	163	1m @ 1.94ppm	
						and	169	171	2m @ 3.21ppm *	
	465749.6	6815395	469.0	180	-61	145	30	31	1m @ 1.75ppm [#]	
						and	34	35	1m @ 4.33ppm [#]	
KARC191						and	100	102	2m @ 3.04ppm [#]	
						and	118	119	1m @ 2.96ppm [#]	
						and	175	176	1m @ 1.11ppm	
	465876.3	6815487	469.5	150	-61	145	24	25	1m @ 1.28ppm	
KADC102						and	35	37	2m @ 1.69ppm	
KARC192						and	43	44	1m @ 3.93ppm	
						and	78	82	4m @ 2.13ppm	
	465766.2	6815653	470.2	300	-60	145	34	37	3m @ 3.35ppm [#]	
						and	83	84	1m @ 1.01ppm	
						and	100	101	1m @ 1.18ppm	
KADC102						and	120	122	2m @ 1.46ppm	
KARC193						and	147	149	2m @ 1.75ppm	
						and	151	152	1m @ 1.92ppm	
						and	202	204	2m @ 3.52ppm [#]	
						and	260	261	1m @ 1.24ppm	

* = wet sample. [#] = moderate recovery. ^ = poor recovery

Collar azimuth by compass and dip by gyroscope.

JORC Code, 2012 Edition – Table 1 report (**LAVERTON**) <u>Section 1 Sampling Techniques and Data</u> (Criteria in this section apply to all succeeding sections.)

Criteria	Commentary						
	This part of the report relates to results from Reverse Circulation (RC) drilling. The information of sampling techniques below applies to the drill holes drilled by Focus only.						
Sampling techniques	RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis with the bulk drill sample collected in plastic bags and stored on site pending programme completion.						
	RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. Samples were collected in uniquely numbered calico bags.						
Drilling techniques	All RC drilling was completed using a face sampling hammer. At completion, a gyroscope was used to survey the entire hole from within the rods. Post drilling collar azimuth survey is required to process the down-hole survey.						
	RC sample recovery / quality was visually checked and recorded during the logging process (good / moderate / poor and dry / moist / wet).						
Drill sample	RC samples were generally dry and had typically good recovery.						
recovery	No formal study of grade verses recovery has yet been done. However no apparent bias has been observed. Few significant grade intersections have had sampling issues.						
	All RC material was geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.						
Logging	Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.						
	The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete.						
	Samples from RC holes were photographed and archived in standard plastic chip trays.						
	RC samples were cone split, by a splitter mounted beneath the rig cyclone, to a nominal 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag.						
	Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths well below the water table. Sample condition was recorded (wet, dry or damp) at the time of sampling and recorded in the database.						
	RC samples were processed by Bureau Veritas Minerals Pty Ltd. The Kalgoorlie facility handled sample preparation and fire assay. Multi-element and overflow handled was by the Perth facility.						
Sub-sampling techniques and	Samples were oven dried, weighed and pulverised to 75µm prior to digest. RC samples in excess of 3kg were riffle spilt to sub 3kg. Gold analysis was by 40g fire assay with 0.01ppm lower detection limit. Other multi-element (not gold) analysis utilised 0.2g subsamples.						
sample preparation	The bulk pulps of samples that returned fire assay gold values in excess of 10g/t were, as a precaution, routinely re-assayed using a nominal 1kg screen fire assay technique that is designed to minimise the influence of any coarse gold particles. A comparison of technique results is awaited.						
	The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.						
	Focus inserts 3 standards and takes 5 duplicates for every 100 samples. Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples, excluding the 100th sample as this was a standard. Blank standards are not used as non-consecutive sample flow used many laboratories limits the effectiveness of blanks. Focus instead prefers using standards with a range of gold contents.						

Criteria	Commentary
	Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out.
	The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.
	The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. Gold analysis was determined by a 40g fire assay with lead collection, aqua regia digest and AAS finish. This technique was considered appropriate as it gives (effectively) a complete digest for gold.
Quality of assay	Every 4 th RC sample was run for multi-element (Ag, As, Cd, Cr, Pb, Sb, Zn, Zr, and Ti) by 0.2g 4-acid digest and ICP-MS or ICP-OES finish. Digests such as 4-acid are not considered complete for some elements, but are sufficient for multi-element lithochemistry and mineralisation pathfinder purposes.
data and laboratory tests	No geophysical tools, field spectrometers or handheld XRF instruments were used in analysis of results provided. All analytical work detailed in this release was carried out by a certified major laboratory with appropriate expertise.
	Focus regularly ran internal QA / QC checks on its standards and duplicates. The laboratory had its own independent QA / QC procedures and materials.
	The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision.
	All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances, with appropriate follow-up if required.
	Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process.
	Historic data is not going to be used in any future resource calculations, so no historic holes have been twinned.
Verification of sampling and assaying	Field data was sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imported the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project.
	Assay data is reported as supplied by the laboratory. Where multiple assays exist for a sample, the most rigorous technique is given priority – e.g.; screen fire assay results are prioritised over fire assay results.
	Drill collars were surveyed after completion using a DGPS instrument. Downhole surveys as discussed above.
	All coordinates and bearings use the MGA94 Zone 51 grid system.
Location of data points	Focus utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments.
	For purposes of exploration or drill planning, historic collar RL data was adjusted to match modern DTMs (digital terrain models). It is not intended to use historic (pre-Focus Minerals) data in future resource calculations.
	Drill collar spacing was nominally 40m by 40m.
Data spacing and distribution	Drill direction (dip and azimuth) is consistent for all Focus Minerals holes (-60 / 145 or as close as can be achieved at a particular site).
	Only 1m samples collected for gold assaying. No sample compositing. Analysis of every 4 th metre for multi-element data was considered sufficient for the intended purpose.
Orientation of data in relation to geological structure	Drill azimuth and dip directions considered close to optimum (orthogonal to gold zone surface) for approximately 30° northwest dipping mineralisation.
Sample security	All samples received from the laboratory were reconciled against the sample submission with any omissions or variations reported to Focus.
	All samples were bagged in tied numbered calico bags, grouped into zip locked or wire tied green plastic bags. The bags were placed into open woven polypropylene bulk bags and

Criteria	Commentary
	delivered by company personnel to a public courier service for delivery to the laboratory. Consignment notes tracked the courier's sample delivery.
Audits or reviews	A review of sampling techniques was carried out by an external consulting group in late 2013 as part of a database amalgamation project. No significant changes were recommended for the Focus Laverton system of sampling. All results are continually reviewed by experienced in-house geologists and the database administrator.

<u>Section 2 Reporting of Exploration Results</u> (LAVERTON) (Criteria listed in the preceding section also apply to this section.)

Criteria	Commentar	y								
Mineral tenement	Tenements M38/73 and M38/89 are 91% beneficially held by Focus Minerals (Laverton) Pty Ltd under the Merolia JV with GSM Mining Company Pty Ltd. All other tenements worked in the drilling covered by this announcement are held 100% by Focus Minerals (Laverton) Pty Ltd.									
and land tenure status	Privately hel 18/04/2016.	d royalties exis	t. Refer to the	Focus N	linerals 20	14 Annu	ual Report re	eleased		
	The tenemer are known.	The tenements are in good standing and no impediments to future exploration or permitting are known.								
Exploration done	Sons of Gwa		mine workings. ed in the area. P I Petroleum.							
by other parties			pration by other such work in de					guide.		
	polyphase in tholeiitic gab arkosic sedii tenements of The sequence of northeasts are displaced	Two km to the north of Karridale, the Burtville granodiorite is interpreted to be at the core of a polyphase intrusive complex that are interpreted to include more mafic rocks such as tholeiitic gabbro and calc-alkaline dolerite. The intrusives are focused within pelitic and arkosic sediments at the core of the Burtville syncline (covered largely by the Burtville tenements of Focus). Stratigraphically below the sediments are basalts and then ultramafics. The sequence appears to be repeated by early thrusts, now striking north – south. A number of northeast striking thrusts are considered broad targets form gold exploration. These thrusts are displaced by north – south normal faults. The Black Swan granodiorite, 6km SSW of the Burtville granodiorite is also a focus for exploration. A third possible granodiorite is located 2								
Geology	Mineralisatio	n styles identifie	d at Karridale in	clude:						
	 Geology Mineralisation styles identified at Karridale include: 30° to northwest dipping shear zones with silica – sericite – carbonate – pylarsenopyrite alteration and quartz carbonate veining. Steep dipping, narrow north trending quartz veins, with silica – sericite – carbonate + sulphide alteration and visible gold. Associated with strongly sheared selvage Hydrothermal breccia of unknown morphology and orientation. Strong silicarbonate – sericite – arsenopyrite – pyrite alteration. Visible gold in associated with selvage of generally fine grained intermet volcanics or sediments intruded by dolerite or gabbro / diorite units. 							bonate ges. silica – ociated		
	Hole Number	East GDA94z51	North GDA94z51	RL AHD	Azimuth	Dip	Total Depth (m)			
	KARC169	465494.7	6815757.4	467.1	145	-61	240			
Drill hole	KARC170	465449.4	6815821.8	467.0	145	-61	240			
Information	KARC171	465440.2	6815766.9	467.1	145	-61	240			
	KARC172	465418.0	6815800.2	467.1	150	-60	246			
	KARC173	465393.6	6815835.0	466.9	149	-61	264			
	KARC174	465386.8	6815776.0	467.1	150	-60	240			
	KARC175	465353.2	6815754.1	466.7	155	-59	240			

Criteria	Commentary									
	KARC176	465327.2	6815786.8	466.6	145	-60	267			
	KARC177	465304.5	6815819.7	466.6	145	-60	282			
	KARC178	465979.0	6815559.5	470.3	145	-59	150			
	KARC179	465956.2	6815591.4	470.1	145	-60	186			
	KARC180	465944.8	6815536.2	469.9	145	-59	150			
	KARC181	465900.0	6815599.6	469.9	145	-61	217			
	KARC182	465957.8	6815447.6	469.5	145	-61	132			
	KARC183	465934.1	6815475.7	469.9	145	-59	120			
	KARC184	465911.6	6815512.0	469.6	145	-60	150			
	KARC185	465865.1	6815577.4	469.6	146	-61	222			
	KARC186	465725.0	6815571.7	468.8	148	-60	126			
	KARC187	465678.3	6815640.5	469.1	145	-61	288			
	KARC188	465811.4	6815586.0	469.6	145	-60	144			
	KARC189	465857.1	6815520.1	469.3	145	-62	174			
	KARC190	465619.2	6815399.9	468.4	145	-60	210			
	KARC191	465749.6	6815395.2	469.1	145	-61	180			
	KARC192	465876.3	6815487.5	469.5	145	-61	150			
	KARC193	465766.2	6815653.0	470.3	145	-60	300			
Data aggregation methods Relationship between mineralisation widths and	No grade cu No metal eq Holes were	Relevant drill intercept selection techniques given in the header of a table. No grade cutting was used on drill intercepts. No metal equivalents were used. Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases.								
intercept lengths										
Diagrams	Refer to Fig	ures and Table	es in body of the	release						
Balanced reporting			as commenced a nuity of mineralisa		ore it is t	too early	to define mi	ineralised		
Other substantive exploration data		udies (e.g. der	al exploration dansity and metallu							
	It is anticipated that analysis of the data from this round of RC will assist in delineating grade plunge directions and to better understand geological controls. It should also confirm maximum collar spacing required in future programmes.									
Further work	Follow-up drilling is expected to be RC again, with the aim of getting a significant part of the Karridale to a likely 40m x 40m collar spacing to allow the calculation of a mineral resource. The work will be undertaken in stages and each stage dependent on prior results. Should the RC stages prove successful, work will resume on deeper diamond core drilling.									

Competent Person's Statement (LAVERTON)

The information in this announcement that relates to Laverton Project Exploration Results is based on information compiled by Mr Jeff Ion, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and a Member of the Australian Institute of Geoscientists (AIG). Mr Ion holds shares in Focus Minerals Limited and is a director of Jeffrey Geo Pty Ltd, under contract to Focus Minerals Limited. Mr Ion has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Ion consents to the inclusion in the announcement of the matters based on the information compile by him in the form and context in which it appears.

Table A: Significant Intersections (COOLGARDIE)

Intersections are length-weighted averages with minimum cut-offs of 1m @ 1g/t Au

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Intersection
	(MGA	A94 Zone 5 ^r	1)	(m)		MGA94	(m)	(m)	Au
				BONN	IE VA	LE			
BONC118	324,650	6,584,284	382	348	-60	220	1	2	1m @ 1.02 g/t
BONC119	324,403	6,584,314	384	276	-60	220	272	273	1m @ 15.05 g/t
BONC120	323,686	6,584,596	386	180	-60	270			NSR
BONC121	323,727	6,584,528	387	210	-60	270			NSR
BONC122	323,634	6,584,511	386	150	-60	270	60	61	1m @ 4.93g/t
	323,650	6,584,463	386	140	-60	270	85	86	1m @ 10.15g/t
BONC123	010,000			1.0			87	88	1m @ 1.29g/t
							92	93	1m @ 15.00g/t
	323,792	6,584,411	388	114	-55	270	53	54	1m @ 1.16g/t
BONC124	010)/01	0,001,111	000				62	63	1m @ 1.50g/t
50110121							109	111	2m @ 1.92g/t
	323,784	6,584,507	388	228	-60	270	33	34	1m @ 6.39g/t
BONC125	525,764	0,504,507	500	220	00	270	178	179	1m @ 2.70g/t
	323,785	6,584,454	388	222	-55	270	58	59	1m @ 2.66g/t
BONC126	323,703	0,364,434	300		-55	270	99	100	1m @ 2.86g/t 1m @ 3.34g/t
BONCD069	224 665	6 594 340	201	459.7	-55	265	33	100	NSR
BUNCDU09	324,665 324,543	6,584,249 6,584,366	381 383	459.7	-55	265	97	98	1m @ 10.30g/t
BONCD070	524,543	0,384,300	303	402.7	-00	220			
DONODA71	224.620		201	400	<u> </u>	245	366.27	367.2	0.93m @ 15.25g/t
BONCD071	324,620	6,584,414	381	466	-60	215			
BONCD072*	324,550	6,584,466	384	150**	-60	215			
BONCD073*	324,486	6,584,466	384	150**	-60	220			
BONCD074*	324,268	6,584,488	388	120**	-60	220			
TINDALS DIS			1			Г			l - :
TND1524	326,443	6,569,605	429	78	-60	270	51	56	5m @ 2.25g/t
TND1525	326,502	6,569,608	435	159	-60	270	101	104	3m @ 4.34g/t
	326,515	6,569,660	435	185	-65	275	12	14	2m @ 2.26g/t
							20	22	2m @ 1.99g/t
TND16005							28	30	2m @ 1.76g/t
							32	33	1m @ 1.36g/t
							34	36	2m @ 1.42g/t
							76	77	1m @ 1.41g/t
	326,487	6,569,365	431	210	-55	085	140	141	1m @ 1.45g/t
							142	143	2m @ 2.01g/t
TND16006							145	146	1m @ 2.01g/t
							148	149	1m @ 1.63g/t
							184	185	1m @ 1.05g/t
TND16007	326,533	6,569,199	444	138	-55	090			NSR
TND16008	326,513	6,569,416	432	150	-55	090	58	59	1m @ 1.51g/t
TND16015	326,530	6,569,801	447	186	-60	145	110	111	1m @ 13.00g/t
TND16016	326,557	6,568,871	448	168	-60	125			NSR
TND16017	326,638	6,569,866	453	168	-60	290	1	1	NSR
	326,564	6,569,795	445	150	-55	290	104	105	1m @ 4.65g/t
TND16018	.,	, , ,	1	1	1		112	113	1m @ 1.24g/t
	326,553	6,569,751	439	204	-60	290	35	36	1m @ 1.95g/t
		-,,		1			95	96	1m @ 1.03g/t
		1	ł	1		1	98	99	1m @ 1.43g/t
							106	107	1m @ 1.94g/t
TND16019							110	111	1m @ 2.0g/t
		1					113	115	2m @ 2.87g/t
				+	+	-	113	115	-
									1m @ 5.55g/t
	226 502		420	222	66	200	155	156	1m @ 1.13g/t
	326,582	6,569,700	439	222	-60	290	114	115	1m @ 1.01g/t
							136	138	2m @ 1.82g/t
TND16020							143	144	1m @ 2.15g/t
							147	150	3m @ 1.32g/t
							154	155	1m @ 2.46g/t

		T	T				158	159	1m@116a/t
	326,594	6,569,629	444	216	-60	290	158	119	1m @ 1.16g/t 1m @ 1.17g/t
TND16021	320,594	0,509,029	444	210	-60	290	118	119	1m @ 1.17g/t 1m @ 1.07g/t
INDIGUZI							124	125	1m @ 1.07g/t 1m @ 7.19g/t
	326,620	6,569,685	441	207	-60	290	156	158	2m @ 1.53g/t
	520,020	0,509,065	441	207	-00	290	168	170	2m @ 1.15g/t
							171	170	1m @ 1.71g/t
TND16022							171	172	1m @ 3.87g/t
IND10022							172	175	2m @ 1.18g/t
							174	186	1m @ 1.27g/t
							185	190	1m @ 1.02g/t
	326,586	6,569,567	451	216	-60	290	164	165	1m @ 1.07g/t
TND16023	320,380	0,309,307	451	210	-00	290	187	188	1m @ 1.01g/t
	326,430	6,569,629	427	180	-60	290	30	31	1m @ 8.99g/t
	520,450	0,505,025	427	100	-00	230	66	73	7m @ 10.92g/t
						Incl.	67	68	1m @ 5.46g/t
TND16024						Incl.	68	69	1m @ 8.10g/t
11010024						Incl.	70	71	1m @ 11.40g/t
						Incl.	70	72	1m @ 11.40g/t 1m @ 45.90g/t
							74	75	1m @ 45.90g/t 1m @ 9.11g/t
TND16025	326,467	6,569,554	431	174	-65	290	/4		NSR
	326,693	6,569,264	462	252	-60	250	178	179	1m @ 1.11g/t
TND16026	520,095	0,009,204	702	2.32	00	230	212	213	1m @ 19.80g/t
							242	243	1m @ 19.80g/t 1m @ 5.41g/t
	326,653	6,569,379	457	204	-60	240	99	100	1m @ 1.51g/t
	520,055	0,505,575	437	204	00	240	128	129	1m @ 2.18g/t
							137	138	1m @ 2.62g/t
TND16027							144	145	1m @ 1.21g/t
							157	159	2m @ 1.47g/t
							162	163	1m @ 1.47g/t
TND16028	326,620	6,569,463	452	252	-55	250	102	100	NSR
TND16029	326,599	6,569,508	451	148	-60	255	126	127	1m @ 1.88g/t
111010010	326,547	6,569,253	449	198	-60	70	100	101	1m @ 1.15g/t
	320,517	0,000,200	115	150			109	111	2m @ 1.37g/t
TND16030							112	114	2m @ 1.56g/t
							120	121	1m @ 1.45g/t
							133	136	3m @ 1.20g/t
	326,413	6,569,789	439	252	-55	110	12	13	1m @ 1.00g/t
							142	149	7m @ 1.50g/t
TND16031							153	156	3m @ 2.01g/t
							157	161	4m @ 1.74g/t
							162	164	2m @ 1.54g/t
	326,415	6,569,620	430	30	-60	090	8	12	4m @ 1.57g/t****
FCSL081						Incl.	11	12	1m @ 4.74g/t****
FCSL082	326,454	6,569,605	431	24	-60	090			Ŭ
FCSL083	326,547	6,569,609	435	42	-60	090	28	32	4m @ 1.05g/t****
FCSL084	326,470	6,569,607	433	24	-60	090			NSR
FCSL085	326,406	6,569,546	430	30	-60	090			NSR
FCSL086	326,452	6,569,558	430	48	-60	090			NSR
FCSL087	326,397	6,569,475	429	42	-60	090			NSR
FCSL088	326,445	6,569,497	432	30	-60	090	25	26	1m @ 2.0g/t****
FCSL089 FCSL090	326,488	6,569,500	434	48	-60	090			NSR NSR
FCSL090 FCSL091	326,502 326,454	6,569,434 6,569,436	432	24 18	-60	090 100			NSR NSR
FCSL091 FCSL092	326,454 326,403	6,569,436	428 425	33	-60 -60	090			NSR NSR
FCSL092	326,504	6,569,379	425	30	-60	090			NSR
FCSL095	326,597	6,569,550	451	18	-60	090			NSR
FCSL094	326,610	6,569,606	447	30	-60	090		+	NSR
FCSL096	326,648	6,569,625	442	30	-60	090			NSR
FCSL097	326,691	6,569,618	438	48	-60	100			NSR
FCSL098	326,766	6,569,640	440	24	-60	105	18	19	1m @ 2.22g/t****
FCSL099	326,772	6,569,782	443	24	-60	140			NSR
	326,729	6,569,672	441	24	-60	140	5	6	1m @ 1.18g/t****
FCSL100		1	1				16	24	8m @ 1.02g/t****

		1	1		1	I	1.0	1	
						Incl.	16	17	1m @ 2.49g/t****
FCSL101	326,699	6,569,730	446	30	-60	140			NSR
FCSL102	326,664	6,569,758	446	24	-60	150			NSR
FCSL103	326,626	6,569,798	448	24	-60	140			NSR
FCSL104	326,450	6,569,365	428	24	-60	140			NSR
FCSL105	326,404	6,569,366	425	45	-60	90			NSR
FCSL106	326,516	6,569,530	439	24	-60	90			NSR
FCSL107	326,561	6,569,548	450	24	-60	90			NSR
FCSL108	326,811	6,569,737	442	24	-60	90			NSR
FCSL109	326,747	6,569,826	450	24	-60	140			NSR
FCSL110	326,725	6,569,847	455	30	-60	140			NSR
FCSL111	326,771	6,569,920	465	48	-60	140			NSR
FCSL112	326,818	6,569,878	454	24	-60	140			NSR
FCSL113	326,844	6,569,835	447	54	-60	140			NSR
FCSL114	326,868	6,569,805	441	24	-60	140			NSR
FCSL115	326,913	6,569,764	440	24	-60	140			NSR
FCSL116	326,861	6,569,981	468	24	-60	140			NSR
FCSL117	326,902	6,569,933	459	24	-60	140			NSR
FCSL118	326,920	6,569,897	454	24	-60	140			NSR
FCSL119	326,470	6,569,607	433	24	-60	140	1		NSR
1002113	326,470	6,569,607	453	24	-60 -60	90	8	16	8m @ 1.17g/t****
FCSL122	320,393	0,009,240	400	24	-00	90 Incl.	8	16	1m @ 7.39g/t****
FCSL122 FCSL123	226 552	6,569,249	449	10	60	90	14	15	NSR
FCSL123 FCSL124	326,553		449 445	18 18	-60 -60	90			NSR
FCSL124 FCSL125	326,502	6,569,244							
	326,451	6,569,252	439	18	-60	90			NSR
FCSL126	326,410	6,569,240	436	18	-60	90		-	NSR
FCSL127	326,405	6,569,304	428	18	-60	90			NSR
FCSL128	326,462	6,569,304	436	24	-60	90	-		NSR
	326,566	6,569,365	438	30	-60	270	0	24	24m @ 1.51g/t****
						Incl.	7	8	1m @ 25.0g/t****
						Incl.	10	11	1m @ 3.77g/t****
						Incl.	13	14	1m @ 1.24g/t****
FCSL129						Incl.	19	20	1m @ 1.22g/t****
FCSL129 TINDALS DI	STRICT – BI	RILLIANT							
	STRICT – BI 326,448	RILLIANT 6,572,970	404	180**	-60	Incl. 250	60	61	1m @ 1.22g/t**** 1m @ 2.38g/t
			404	180**	-60				
			404	180**	-60		60	61	1m @ 2.38g/t
			404	180**	-60		60 72	61 73	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t
TINDALS DI			404	180**	-60		60 72 81 92	61 73 82 93	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t
TINDALS DI			404	180**	-60		60 72 81 92 102	61 73 82 93 104	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t
TINDALS DI			404	180**	-60		60 72 81 92 102 106	61 73 82 93 104 107	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t
TINDALS DI	326,448	6,572,970				250	60 72 81 92 102 106 110	61 73 82 93 104 107 111	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t
TINDALS DI			404	180**	-60 -60 		60 72 81 92 102 106 110 113	61 73 82 93 104 107 111 114	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t
TINDALS DI	326,448	6,572,970				250 250 250 250	60 72 81 92 102 106 110 113 177	61 73 82 93 104 107 111 114 182	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t
TINDALS DI	326,448	6,572,970				250 250 250 250 Incl.	60 72 81 92 102 106 110 113 177 178	61 73 82 93 104 107 111 114 182 179	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t
TINDALS DI	326,448	6,572,970		228**	-60	250 250 250 250 Incl. Incl.	60 72 81 92 102 106 110 113 177 178 179	61 73 82 93 104 107 111 114 182 179 180	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t
TINDALS DI	326,448	6,572,970				250 250 250 250 Incl.	60 72 81 92 102 106 110 113 177 178	61 73 82 93 104 107 111 114 182 179	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t
TINDALS DI	326,448	6,572,970 6,572,970 6,572,979	404	228**	-60	250 250 250 250 Incl. Incl.	60 72 81 92 102 106 110 113 177 178 179	61 73 82 93 104 107 111 114 182 179 180	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t
TINDALS DIS TND16032* TND16033* TND16034*	326,448 326,534 326,534 326,545	6,572,970 6,572,979 6,572,979 6,572,770	404	228**	-60 -55	250 250 250 250 Incl. 250	60 72 81 92 102 106 110 113 177 178 179 52	61 73 82 93 104 107 111 114 182 179 180 53	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 1.78g/t
TINDALS DI	326,448 326,534 326,534 326,545	6,572,970 6,572,979 6,572,979 6,572,770	404	228**	-60 -55	250 250 250 250 Incl. 250 250 250	60 72 81 92 102 106 110 113 177 178 179 52 148	61 73 82 93 104 107 111 114 182 179 180 53 155	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t
TINDALS DIS TND16032* TND16033* TND16034*	326,448 326,534 326,534 326,545	6,572,970 6,572,979 6,572,979 6,572,770	404	228**	-60 -55	250 250 250 250 Incl. 250 250 250 Incl.	60 72 81 92 102 106 110 113 177 178 179 52 148 150	61 73 82 93 104 107 111 114 182 179 180 53 155 151	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 5.18g/t
TINDALS DI TND16032* TND16033* TND16034* TND16035	326,448 326,534 326,545 326,545 326,592	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611	404	228** 198** 240	-60 -55 -60	250 250 250 250 Incl. 250 250 250 Incl. Incl.	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151	61 73 82 93 104 107 111 114 182 179 180 53 155 151 151 152	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 5.18g/t 3m @ 3.61g/t
TINDALS DIS TND16032* TND16033* TND16034*	326,448 326,534 326,534 326,545 326,592 326,592 326,304	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265	404 405 417 410	228** 198** 240 120	-60 -55 -60 -55 -60	250 250 250 250 Incl. 250 250 250 Incl. Incl. 250 250 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168	1m @ 2.38g/t 1m @ 5.83g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 4.18g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 5.18g/t 3m @ 3.61g/t Not Sampled***
TINDALS DI TND16032* TND16033* TND16034* TND16035	326,448 326,534 326,545 326,545 326,592	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611	404	228** 198** 240	-60 -55 -60	250 250 250 250 Incl. 250 250 250 Incl. Incl.	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104	61 73 82 93 104 107 111 114 182 179 180 53 155 151 155 151 152 168 105	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 3.61g/t Not Sampled**** 1m @ 1.19g/t
TINDALS DIS TND16032* TND16033* TND16034* TND16035 TND16036	326,448 326,534 326,534 326,545 326,592 326,592 326,304	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265	404 405 417 410	228** 198** 240 120	-60 -55 -60 -55 -60	250 250 250 250 Incl. 250 250 250 Incl. Incl. 250 250 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168 105 134	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 5.18g/t 3m @ 3.61g/t Not Sampled**** 1m @ 1.19g/t 1m @ 2.20g/t
TINDALS DI TND16032* TND16033* TND16034* TND16035	326,448 326,534 326,534 326,545 326,592 326,592 326,304	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265	404 405 417 410	228** 198** 240 120	-60 -55 -60 -55 -60	250 250 250 250 Incl. 250 250 250 Incl. Incl. 250 250 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168 105 134 164	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 5.18g/t 3m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 2.24g/t
TINDALS DIS TND16032* TND16033* TND16034* TND16035 TND16036	326,448 326,534 326,534 326,545 326,592 326,592 326,304	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265	404 405 417 410	228** 198** 240 120	-60 -55 -60 -55 -60	250 250 250 250 Incl. 250 250 250 Incl. Incl. 250 250 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 172	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168 105 134 164 173	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 2.79g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 3.11g/t 1m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 2.24g/t 1m @ 11.65g/t
TINDALS DIS TND16032* TND16033* TND16034* TND16035 TND16036 TND16037	326,448 326,534 326,545 326,592 326,304 326,314	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,611 6,572,265 6,572,253 6,572,253	404 404 405 417 410 411	228** 228** 198** 240 120 252	-60 -55 -60 -55 -55 -55	250 250 250 250 Incl. 1ncl. 250 250 250 Incl. Incl. 070 070 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168 105 134 164	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 2.41g/t 1m @ 3.83g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 2.24g/t 1m @ 1.52g/t
TINDALS DIS TND16032* TND16033* TND16034* TND16035 TND16036 TND16037 TND16038	326,448 326,534 326,534 326,545 326,592 326,304 326,314 326,314 326,314	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265 6,572,265 6,572,253 1 6,572,253 6,572,471	404 404 405 417 410 411 411 411 411	228** 228** 198** 240 120 252	-60 -60 -55 -60 -55 -55 -55 -55 -55	250 250 250 250 Incl. 1ncl. 250 250 250 Incl. Incl. 070 070 070 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 174	61 73 82 93 104 107 111 114 182 179 180 53 155 151 155 151 152 168 105 134 164 173 175	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 3.11g/t 1m @ 1.1g/t 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 1.20g/t 1m @ 1.52g/t NSR
TINDALS DIS TND16032* TND16033* TND16034* TND16035 TND16036 TND16037 TND16038 TND16039	326,448 326,534 326,534 326,545 326,592 326,304 326,314 326,314 326,314 326,314	6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,611 6,572,265 6,572,253 6,572,253	404 404 405 417 410 411	228** 228** 198** 240 252 252 252 252	-60 -55 -60 -55 -60 -55 -55 -55 -55 -55 -55	250 250 250 250 250 Incl. 1ncl. 250 250 250 Incl. Incl. 070 070 070 070 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 172	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168 105 134 164 173	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 2.41g/t 1m @ 3.83g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 2.24g/t 1m @ 1.52g/t
TINDALS DIS TND16032* TND16033* TND16033* TND16035 TND16036 TND16037 TND16038 TND16039 TND16040*	326,448 326,534 326,534 326,545 326,592 326,592 326,304 326,314 326,314 326,225 326,179 326,314	6,572,970 6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265 6,572,265 6,572,253 6,572,265 6,572,265 6,572,471 6,572,471 6,572,471	404 404 405 417 410 411 411 411 411 411 411 411 411 411	228** 228** 198** 240 120 252	-60 -60 -55 -60 -55 -55 -55 -55 -55	250 250 250 250 Incl. 1ncl. 250 250 250 Incl. Incl. 070 070 070 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 174	61 73 82 93 104 107 111 114 182 179 180 53 155 151 155 151 152 168 105 134 164 173 175	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 3.11g/t 1m @ 1.18g/t 3m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 1.52g/t NSR
TINDALS DIS TND16032* TND16033* TND16034* TND16035 TND16036 TND16037 TND16038 TND16039	326,448 326,534 326,534 326,545 326,592 326,592 326,304 326,314 326,314 326,225 326,179 326,314	6,572,970 6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265 6,572,265 6,572,253 6,572,265 6,572,265 6,572,471 6,572,471 6,572,471	404 404 405 417 410 411 411 411 411 411 411 411 411 411	228** 228** 198** 240 252 252 252 252	-60 -55 -60 -55 -60 -55 -55 -55 -55 -55 -55	250 250 250 250 250 Incl. 1ncl. 250 250 250 Incl. Incl. 070 070 070 070 070	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 174	61 73 82 93 104 107 111 114 182 179 180 53 155 151 155 151 152 168 105 134 164 173 175	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 3.83g/t 1m @ 3.11g/t 1m @ 3.11g/t 1m @ 5.18g/t 3m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 1.20g/t 1m @ 1.52g/t NSR 2m @ 1.97g/t
TINDALS DIS TND16032* TND16033* TND16034* TND16035 TND16035 TND16037 TND16038 TND16039 TND16040* TINDALS DIS	326,448 326,534 326,534 326,545 326,592 326,592 326,304 326,314 326,314 326,314 326,314 STRICT - UN	6,572,970 6,572,979 6,572,979 6,572,979 6,572,770 6,572,611 6,572,611 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,471 6,572,665 6,573,283 IDAUNTED	404 404 405 417 410 411 411 411 411 411 411 411 411 411	228** 228** 198** 240 120 252 252 252 84**	-60 -60 -55 -60 -55 -55 -55 -55 -55 -55 -55 -55 -55 -5	250 250 250 250 1ncl. 1ncl. 250 250 1ncl. 1ncl. 070 070 070 070 070 070 070 07	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 172 174 54	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168 105 134 164 175 156	1m @ 2.38g/t 1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 3.83g/t 1m @ 3.83g/t 1m @ 3.11g/t 1m @ 5.18g/t 3m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.24g/t 1m @ 1.65g/t 1m @ 1.52g/t NSR 2m @ 1.97g/t NSR
TINDALS DIS TND16032* TND16033* TND16033* TND16035 TND16035 TND16037 TND16038 TND16039 TND16040* TINDALS DIS TND1511	326,448 326,534 326,534 326,545 326,592 326,592 326,304 326,304 326,314 326,314 326,314 STRICT - UN 326,407	6,572,970 6,572,979 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,471 6,572,665 6,573,283 IDAUNTED 6,570,389	404 404 405 417 410 411 410 411 411 408 408 408 408	228** 228** 198** 240 120 252 252 252 84** 186	-60 -55 -60 -55 -55 -55 -55 -55 -55 -55 -55 -60	250 250 250 250 1ncl. 250 250 250 250 1ncl. 1ncl. 070 070 070 070 070 070 070 07	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 174	61 73 82 93 104 107 111 114 182 179 180 53 155 151 155 151 152 168 105 134 164 173 175	1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 3.83g/t 1m @ 3.11g/t 1m @ 3.11g/t 1m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 1.52g/t NsR 2m @ 1.97g/t NSR 2m @ 1.39g/t
TINDALS DIS TND16032* TND16033* TND16033* TND16034* TND16035 TND16036 TND16037 TND16038 TND16039 TND16040* TINDALS DIS TND1511 TND1512	326,448 326,534 326,534 326,545 326,592 326,592 326,304 326,304 326,314 326,314 326,314 STRICT - UN 326,407 326,307	6,572,970 6,572,970 6,572,979 6,572,979 6,572,770 6,572,611 6,572,611 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,471 6,572,665 6,573,283 IDAUNTED 6,570,389 6,570,412	404 404 405 417 410 411 410 411 411 408 408 408 408 404	228** 228** 198** 240 120 252 252 252 84** 186 198	-60 -55 -60 -55 -55 -55 -55 -55 -55 -55 -55 -60 -60	250 250 250 250 250 1ncl. 1ncl. 250 250 1ncl. 1ncl. 070 070 070 070 070 070 070 270 2	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 172 174 54	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168 105 134 164 175 156	1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 3.83g/t 1m @ 3.11g/t 1m @ 5.18g/t 3m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 1.52g/t NSR 2m @ 1.97g/t NSR 2m @ 1.39g/t
TINDALS DIS TND16032* TND16033* TND16033* TND16035 TND16035 TND16037 TND16038 TND16039 TND16040* TINDALS DIS TND1511	326,448 326,534 326,534 326,545 326,592 326,592 326,304 326,304 326,314 326,314 326,314 STRICT - UN 326,407	6,572,970 6,572,979 6,572,979 6,572,979 6,572,770 6,572,611 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,265 6,572,471 6,572,665 6,573,283 IDAUNTED 6,570,389	404 404 405 417 410 411 410 411 411 408 408 408 408	228** 228** 198** 240 120 252 252 252 84** 186	-60 -55 -60 -55 -60 -55 -55 -55 -55 -55 -55 -60	250 250 250 250 1ncl. 250 250 250 250 1ncl. 1ncl. 070 070 070 070 070 070 070 07	60 72 81 92 102 106 110 113 177 178 179 52 148 150 151 165 104 133 163 172 174 54	61 73 82 93 104 107 111 114 182 179 180 53 155 151 152 168 105 134 164 175 156	1m @ 2.38g/t 1m @ 2.37g/t 1m @ 2.37g/t 1m @ 2.40g/t 2m @ 1.29g/t 1m @ 2.39g/t 1m @ 2.39g/t 1m @ 1.19g/t 1m @ 2.41g/t 5m @ 2.79g/t 1m @ 4.18g/t 1m @ 4.18g/t 1m @ 3.83g/t 1m @ 1.78g/t 7m @ 2.27g/t 1m @ 3.11g/t 1m @ 3.61g/t Not Sampled*** 1m @ 1.19g/t 1m @ 2.20g/t 1m @ 1.52g/t NsR 2m @ 1.97g/t NSR 2m @ 1.39g/t

		1				00	100	2m @ 7.06a/t
					_			2m @ 7.96g/t
						-		1m @ 1.83g/t
						197	205	8m @ 2.10g/t
326,385	6,571,102	424	108	-60	270			NSR
326,479	6,571,141	424	264	-60	265	103	105	2m @ 2.29g/t
						154	155	1m @ 1.26g/t
						244	245	1m @ 3.65g/t
326,214	6,570,778	434	342	-60	290	66	67	1m @ 2.82g/t
326,364	6,570,841	431	192	-70	271			NSR
326,453	6,571,046	435	300	-60	272	185	186	1m @ 1.53g/t
						210	211	1m @ 2.07g/t
						213	214	1m @ 3.76g/t
						220	222	2m @ 1.54g/t
						226	227	1m @ 1.06g/t
						233	234	1m @ 5.03g/t
326,323	6,571,100	436	102	-60	090			NSR
326,414	6,571,220	419	210	-60	271			NSR
326,340	6,570,944	458	228	-60	310	109	110	1m @ 3.54g/t
						126	127	1m @ 4.30g/t
						137	138	1m @ 1.71g/t
	326,479 326,214 326,364 326,453 326,453 326,414	326,479 6,571,141 326,214 6,570,778 326,364 6,570,841 326,453 6,571,046 326,323 6,571,100 326,323 6,571,220	326,479 6,571,141 424 326,214 6,570,778 434 326,364 6,570,841 431 326,453 6,571,046 435 326,453 6,571,046 435 326,453 6,571,046 435 326,453 6,571,046 435 326,453 6,571,20 436 326,323 6,571,220 419	326,479 6,571,141 424 264 326,214 6,570,778 434 342 326,364 6,570,841 431 192 326,453 6,571,046 435 300 326,453 6,571,046 435 300 326,453 6,571,046 435 300 326,453 6,571,046 435 300 326,453 6,571,206 436 102 326,323 6,571,220 419 210	326,479 6,571,141 424 264 -60 326,214 6,570,778 434 342 -60 326,364 6,570,841 431 192 -70 326,453 6,571,046 435 300 -60 326,453 6,571,046 435 300 -60 326,323 6,571,100 436 102 -60 326,323 6,571,220 419 210 -60	326,479 6,571,141 424 264 -60 265 326,214 6,570,778 434 342 -60 290 326,364 6,570,841 431 192 -70 271 326,453 6,571,046 435 300 -60 272 1 1 1 1 1 1 1 326,453 6,571,046 435 300 -60 272 1 1 1 1 1 1 1 326,453 6,571,046 435 300 -60 272 1 1 1 1 1 1 1 1 326,453 6,571,046 435 300 -60 272 1 1 1 1 1 1 1 1 1 326,323 6,571,100 436 102 -60 090 326,414 6,571,220 419 210 -60 271	326,479 6,571,141 424 264 -60 265 103 326,479 6,571,141 424 264 -60 265 103 326,214 6,570,778 434 342 -60 290 66 326,364 6,570,841 431 192 -70 271	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

* RC pre-collar with planned diamond tail

** Current RC depth, hole incomplete

*** lost hole, re-drilled as TND16037

**** spear sample from drill material in bags on the ground

JORC Code, 2012 Edition – Table 1 report (**COOLGARDIE**) Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

CRITERIA	COMMENTARY
Coolgardie Gold Project	This report relates to results for Reverse Circulation (RC) drilling and Slimline Reverse Circulation (SLRC) drilling of Focus Minerals Coolgardie Project area.
	RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis. In total 53 RC holes were drilled for 10,394 metres.
	For SLRC drilling, one metre drill samples were collected in plastic bags and laid out on the ground in 10-20m rows and four-metre composite samples (amounting to 2-3kg) were collected using spear sampling techniques. One metre sub-samples were collected from the same green bags for four-metre composite samples returning more than 0.5g/t Au over 4m.
	RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole using a bullseye level.
	One metre SLRC samples were collected and composited to 4 metres using spear sampling to produce a bulk 2-3kg sample.
	At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm.
	The samples were then prepared for fire assay.
	When visible gold was observed in RC chips, this sample was then flagged by the supervising geologist for the benefit of the laboratory.
Drilling techniques	All RC drilling was completed using a face sampling hammer. All holes were surveyed upon completion of drilling using a north-seeking gyroscope and all holes were surveyed open-hole.
	For SLRC drilling a face sampling hammer was used to collect drill material
Drill sample	Sample recovery was recorded by a visual estimate during the logging process.
recovery	All samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust.
	Study of sample recovery versus gold grade does not indicate a bias in the gold grade caused by any drop in sample recovery.

CRITERIA	COMMENTARY
Logging	All RC, RAB and AC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.
	The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete.
	Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.
	Samples from RC holes were archived in standard 20m plastic chip trays.
	For RAB/AC/SLRC holes only the last sample is collected in the plastic chip trays.
	The entire length of all holes are logged.
Sub-sampling techniques and sample	RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag.
preparation	Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table.
	Sample condition was recorded (wet, dry or damp) at the time of sampling and recorded in the database.
	For RAB/AC/SLRC drilling, one-metre drill samples were laid out onto the ground or in plastic bags on the ground in 10m rows, and four-metre composite samples, amounting to 2-3kg, were collected via spear sampling. 1m spear samples, amounting to 2-3kg, were collected and assayed for 4m intervals returning greater than 0.5g/t Au over 4m.
	The samples were collected in a pre-numbered calico bag bearing a unique sample ID.
	Samples were crushed to $75\mu m$ at the laboratory and riffle split (if required) to a maximum 3kg sample weight.
	Gold analysis was determined by a 30g fire assay with an AAS Finish with detection limits between 0.01 and 100 ppm Au.
	The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation.
	Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.
	FML inserts 3 standards and takes 5 duplicates for every 100 samples for RC drilling.
	Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples.
	For SLRC drilling, no duplicate samples were analysed and 4 standards were inserted for every 100 samples
	Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out.
	The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample.
Quality of	No geophysical tools, spectrometers or handheld XRF instruments were used on drill samples.
assay data and laboratory tests	The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision.
	All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.
	Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process.
Verification of sampling and	Normally if old historic drilling was present, twinned holes are occasionally drilled to test the veracity of historic assay data; however no twinned holes were drilled during this program.
assaying	Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory.

CRITERIA	COMMENTARY
	Once loaded, data was extracted for verification by the geologist in charge of the project.
	No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
	All drill collars were surveyed after completion, using a DGPS instrument.
	For RC drill holes, down-hole surveys were completed using a north-seeking gyroscope at the end of each programme by a contractor. SLRC holes were not surveyed down hole.
Location of	All coordinates and bearings use the MGA94 Zone 51 grid system.
data points	RC drilling and RAB/Aircore locations were determined by hand-held GPS, with a nominal accuracy of +/-5m in Northing and Easting. After finishing the drilling hole locations were picked up by DGPS with accuracy of +/-20cm.
	Drill spacing across the Coolgardie prospects varied depending on the exploration stage that the drill target currently existed (Figure 2, Figure 5).
Data spacing and distribution	The data spacing of the drilling across Focus's prospects during this campaign was not considered sufficient to be used in a Mineral Resource; the majority of drilling was completed to establish continuity of mineralisation and alteration at depth.
	Intercepted mineralisation will be digitized and incorporated into existing models or to create new models as required.
	Additional infill drilling would be required before this mineralisation can be used in the estimation of a Mineral Resource or Ore Reserve.
	Sample compositing has not been applied to the reporting of exploration results.
	Drilling was designed based on known geological models, field mapping, verified historical data, cross-sectional interpretation and 3D geology modelling.
	Where achievable, drill holes oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body.
Orientation of data in relation to geological structure	No orientation and sampling bias has been recognised in the drilling data to date.
Sample security	All samples were reconciled against the sample submission with any omissions or variations reported to FML.
	All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel on a semi-daily basis.
Audits or reviews	A review of sampling techniques was carried out by Roredata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria			Coo	Igardi	e Gold Pr	oject			
Mineral			d on tenem	ents 1	00% owi	ned by Foo		erals Limited or its	
tenement and land tenure	subsidiary companies Focus Operations Pty Ltd. All tenements are in good standing.								
status	There are currently no registered Native Title claims over the Coolgardie project areas.								
Exploration	Exploration at Coolgardie dates to the late 1800s. Modern exploration within the Coolgardie								
done by other parties		Project area includes several generations of drilling (RAB, AC, RC and diamond), airborne and ground geophysical surveys, surface and underground mapping, prospecting and open							
partico	pit/underground				undergre			pooling and opon	
Geology								e length) planar reef	
								overlying ultramafic tential extensions to	
	these structures					0.9.100 10 10	or 101 po		
								orite dykes within a	
								 Diorite dykes are n is typically related 	
	to brittle deform	ation of the	e competent o	dykes.	FML exp	loration acti	vities are	designed to test for	
	analogous setti			of kno	wn lode s	systems as	well as t	esting under-tested	
Drillhole	Hole ID	Easting	Northing	RL	Depth	Azimuth	Dip	Tenements	
Information					-	1			
	BONC118	324,650	6,584,284	382	348	220	-60	P15/5159	
	BONC119	324,403	6,584,314	384	276	220	-60	M15/595	
	BONC120	323,686	6,584,596	386	180	270	-60	M15/595	
	BONC121	323,727	6,584,528	387	210	270	-60	M15/595	
	BONC122	323,634	6,584,511	386	150	270	-60	M15/595	
	BONC123	323,650	6,584,463	386	140	270	-60	M15/595	
	BONC124	323,792	6,584,411	388	114	270	-55	M15/595	
	BONC125	323,784	6,584,507	388	228	270	-60	M15/595	
	BONC126	323,785	6,584,454	388	222	270	-55	M15/595	
	BONCD069*	324,665	6,584,249	381	459.7	265	-55	P15/5159	
	BONCD070*	324,543	6,584,366	383	402.7	220	-60	P15/5159	
	BONCD071*	324,620	6,584,414	381	466	215	-60	P15/5159	
	BONCD072*	324,550	6,584,466	384	150**	215	-60	P15/5159	
	BONCD073*	324,486	6,584,466	384	150**	220	-60	P15/5159	
	BONCD074*	324,268	6,584,488	388	120**	220	-60	P15/5159	
	TND1511	326,407	6,570,389	448	186	270	-60	M15/646	
	TND1512	326,307	6,570,412	439	198	265	-60	M15/646	
	TND1513	326,416	6,570,551	436	215	260	-60	M15/646	
	TND1514	326,431	6,570,789	437	276	270	-60	M15/1294	

Criteria			Coo	Igardie	e Gold Pr	oject		
	TND1515	326,417	6,570,928	437	300	270	-60	M15/646
	TND1516	326,385	6,571,102	424	108	270	-60	M15/646
	TND1517	326,479	6,571,141	424	264	265	-60	M15/646
	TND1524	326,443	6,569,605	429	78	270	-60	M15/23
	TND1525	326,502	6,569,608	435	159	270	-60	M15/23
	TND16001	326,214	6,570,778	434	342	290	-60	M15/646
	TND16005	326,515	6,569,660	435	185	275	-65	M15/23
	TND16006	326,487	6,569,365	431	210	085	-55	M15/23
	TND16007	326,533	6,569,199	444	138	090	-55	M15/966
	TND16008	326,513	6,569,416	432	150	090	-55	M15/23
	TND16009	326,364	6,570,841	431	192	271	-70	M15/646
	TND16010	326,453	6,571,046	435	300	272	-70	M15/646
	TND16011	326,323	6,571,100	436	102	090	-60	M15/646
	TND16012	326,414	6,571,220	419	210	271	-60	M15/646
	TND16014	326,340	6,570,944	458	228	310	-60	M15/646
	TND16015	326,530	6,569,801	447	186	145	-60	M15/966
	TND16016	326,557	6,568,871	448	168	125	-60	M15/966
	TND16017	326,638	6,569,866	453	168	290	-60	M15/966
	TND16018	326,564	6,569,795	445	150	290	-55	M15/966
	TND16019	326,553	6,569,751	439	204	290	-60	M15/966
	TND16020	326,582	6,569,700	439	222	290	-60	M15/23
	TND16021	326,594	6,569,629	444	216	290	-60	M15/23
	TND16022	326,620	6,569,685	441	207	290	-60	M15/966
	TND16023	326,586	6,569,567	451	216	290	-60	M15/23
	TND16024	326,430	6,569,629	427	180	290	-60	M15/23
	TND16025	326,467	6,569,554	431	174	290	-65	M15/23
	TND16026	326,693	6,569,264	462	252	250	-60	M15/966
	TND16027	326,653	6,569,379	457	204	240	-60	M15/966
	TND16028	326,620	6,569,463	452	252	250	-55	M15/966
	TND16029	326,599	6,569,508	451	148	255	-60	M15/966
	TND16030	326,547	6,569,253	449	198	070	-60	M15/966

Criteria			Coo	Igardie	e Gold Pr	oject		
	TND16031	326,413	6,569,789	439	252	110	-55	M15/966
	TND16032*	326,448	6,572,970	404	180**	250	-60	M15/646
	TND16033*	326,534	6,572,979	404	228**	250	-60	M15/646
	TND16034*	326,545	6,572,770	405	198**	250	-55	M15/646
	TND16035	326,592	6,572,611	417	240	250	-60	M15/646
	TND16036	326,304	6,572,265	410	120	070	-55	M15/646
	TND16037	326,314	6,572,253	411	252	070	-55	M15/646
	TND16038	326,225	6,572,471	408	252	035	-55	M15/646
	TND16039	326,179	6,572,665	408	252	070	-55	M15/646
	TND16040*	326,314	6,573,283	404	84**	270	-55	M15/646
	FCSL081	326,415	6,569,620	430	30	090	-60	M15/23
	FCSL082	326,454	6,569,605	431	24	090	-60	M15/23
	FCSL083	326,547	6,569,609	435	42	090	-60	M15/23
	FCSL084	326,470	6,569,607	433	24	090	-60	M15/23
	FCSL085	326,406	6,569,546	430	30	090	-60	M15/23
	FCSL086	326,452	6,569,558	430	48	090	-60	M15/23
	FCSL087	326,397	6,569,475	429	42	090	-60	M15/23
	FCSL088	326,445	6,569,497	432	30	090	-60	M15/23
	FCSL089	326,488	6,569,500	434	48	090	-60	M15/23
	FCSL090	326,502	6,569,434	432	24	090	-60	M15/23
	FCSL091	326,454	6,569,436	428	18	100	-60	M15/23
	FCSL092	326,403	6,569,416	425	33	090	-60	M15/23
	FCSL093	326,504	6,569,379	431	30	090	-60	M15/23
	FCSL094	326,597	6,569,550	451	18	090	-60	M15/23
	FCSL095	326,610	6,569,606	447	30	090	-60	M15/966
	FCSL096	326,648	6,569,625	442	30	090	-60	M15/966
	FCSL097	326,691	6,569,618	438	48	100	-60	M15/966
	FCSL098	326,766	6,569,640	440	24	105	-60	M15/966
	FCSL099	326,772	6,569,782	443	24	140	-60	M15/966
	FCSL100	326,729	6,569,672	441	24	140	-60	M15/966
	FCSL101	326,699	6,569,730	446	30	140	-60	M15/966

Criteria			Coo	laardi	e Gold Pi	roiect		
	FCSL102	326,664	6,569,758	446	24	150	-60	M15/966
	FCSL103	326,626	6,569,798	448	24	140	-60	M15/966
	FCSL104	326,450	6,569,365	428	24	140	-60	M15/966
	FCSL105	326,404	6,569,366	425	45	90	-60	M15/23
	FCSL106	326,516	6,569,530	439	24	90	-60	M15/23
	FCSL107	326,561	6,569,548	450	24	90	-60	M15/23
	FCSL108	326,811	6,569,737	442	24	90	-60	M15/23
	FCSL109	326,747	6,569,826	450	24	140	-60	M15/966
	FCSL110	326,725	6,569,847	455	30	140	-60	M15/966
	FCSL111	326,771	6,569,920	465	48	140	-60	M15/966
	FCSL112	326,818	6,569,878	454	24	140	-60	M15/966
	FCSL113	326,844	6,569,835	447	54	140	-60	M15/966
	FCSL114	326,868	6,569,805	441	24	140	-60	M15/966
	FCSL115	326,913	6,569,764	440	24	140	-60	M15/966
	FCSL116	326,861	6,569,981	468	24	140	-60	M15/966
	FCSL117	326,902	6,569,933	459	24	140	-60	M15/966
	FCSL118	326,920	6,569,897	454	24	140	-60	M15/966
	FCSL119	326,470	6,569,607	433	24	140	-60	M15/966
	FCSL122	326,595	6,569,240	453	24	90	-60	M15/966
	FCSL123	326,553	6,569,249	449	18	90	-60	M15/966
	FCSL124	326,502	6,569,244	445	18	90	-60	M15/966
	FCSL125	326,451	6,569,252	439	18	90	-60	M15/966
	FCSL126	326,410	6,569,240	436	18	90	-60	M15/966
	FCSL127	326,405	6,569,304	428	18	90	-60	M15/966
	FCSL128	326,462	6,569,304	436	24	90	-60	M15/966
	FCSL129	326,566	6,569,365	438	30	270	-60	M15/23
	•		ith planned d					<u> </u>
	• **curre	ent depth of	RC pre-colla	ar, dian	nond tail i	ncomplete		
	Drill hole location		-					
Data aggregation methods	Mineralised inte 1m, reported as					cut-off with a	a minimu	m reporting width of
Relationship between mineralization widths and								however the exact ctly in all cases.

Criteria	Coolgardie Gold Project
intercept lengths	
Diagrams	Accurate collar plans are included in this announcement. 3D perspective views and schematic cross-sections are included to illustrate the distribution of grade
Balanced reporting	Drilling results are reported in a balanced reporting style. The ASX announcement shows actual locations of holes drilled, and representative sections as appropriate.
	Holes shown on the collar location plan which are not reported in the table of significant intercepts did not intersect reportable mineralisation.
Other substantive exploration data	There is no other material exploration data to report at this time.
Further work	FML anticipates additional drilling to follow up on encouraging results at Bonnie Vale and Greater Tindals.

Competent Person's Statement (COOLGARDIE)

The information in this announcement that relates to Exploration Results is based on information compiled by Michael Guo (P Geo) who is a member of the Association of Professional Geoscientists of Ontario, Canada, which is a Recognised Professional Organisation (RPO). Mr Guo is employed by Focus Minerals Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Guo consents to the inclusion in this announcement of the matters based on the information compiled by him in the form and context in which it appears.