

ASX Announcement

ASX: DYL

11 July 2017

Successful Drilling Program Completed at Tumas 3

HIGHLIGHTS

- Current drilling campaign of 10,545m at Tumas 3 completed and has identified uranium mineralisation over a strike length of 4.4km open to the west and east
- Overall drilling success rate of the program high with 284 out of 400 holes returning mineralisation >100ppm eU₃O₈ over 1m
- Strongest intersections from the most recent drilling include:
 - \circ 7m at 635ppm eU₃O₈ from 9.1m
 - \circ 5m at 565ppm eU₃O₈ from 13.1m
 - \circ 5m at 651ppm eU₃O₈ from 13.1m
 - \circ 3m at 1044ppm eU₃O₈ from 8.1m
 - \circ 6m at 710ppm eU₃O₈ from 9.1m
- Mineralisation is calcrete associated and hosted in palaeochannels, similar to the Langer Heinrich uranium mine located 30km to the north east
- A maiden resource estimate for the Tumas 3 discovery is expected late in the current September quarter

Deep Yellow Limited (**DYL**) is pleased to report continued encouraging drilling results from the final phase of the ~10,000m drilling program carried out on EPL3496, held by DYL's wholly-owned subsidiary Reptile Uranium Namibia (Pty) Ltd (**RUN**).

The drilling program at Tumas 3 was completed 1 July 2017 with 400 RC holes for 10,545m drilled. The latest drilling of the target zone has delineated additional uranium mineralisation, extending the discovery even further since last reported (see DYL ASX announcement 22 June 2017) by an additional 1.2km length to a total of 4.4km. Of the total 400 holes drilled 284 returned positive results – an overall 71% success rate. Equivalent uranium oxide (eU_3O_8) values have been determined for all 400 holes completed in the program.

Although the mineralisation at the western margin of the drilled area has narrowed compared to the central mineralised zone, the Tumas 3 mineralisation still remains open to the west and east, strongly justifying future extension drilling. Drilling has been conducted on a 100m

x 100m spacing and is considered sufficient to define a maiden inferred resource, which is expected late in the current quarter.

The Tumas 3 discovery occurs as a distinct mineralised zone separate from the known uranium resources the Company has identified elsewhere within these palaeochannels in its Tumas 1 & 2 and Tubas Red Sands/Calcrete deposits (see Figure 1). The palaeochannels occurring away from these deposits and Tumas 3 have only been sparsely drilled along widely spaced regional lines with large sections completely untested. This leaves abundant opportunity both for continuing to determine the full extent of Tumas 3 and for making further discoveries within an insufficiently tested, highly prospective palaeochannel system of 100km in length.

Figure 1: EPLs 3496, 3497 showing Tumas 3 and main prospect locations over palaeochannels.

The mineralisation that has been extended with the additional drilling at Tumas 3 occurs with no surface radiometric expression. It clearly shows that, apart from the benefit gained by the re-interpretation of the existing airborne geophysical data to locate the prospective palaeochannel systems more accurately, discovery is only possible with drilling.

The Company is however, currently testing ground magnetic, gravity, EM and passive seismic geophysical methods over Tumas 3 to determine whether such surveys can help to better

define blind uranium targets for future drilling campaigns. The results of this work to further guide the ongoing drilling are expected to be available in the December quarter.

eU₃O₈ ppm Determinations

The down-hole gamma data for all 154 holes drilled from 10 June 2017 to completion have been converted to equivalent uranium oxide values (eU_3O_8). The additional 1.2km of palaeochannel identified from this drilling (506200mE to 505000mE - see drill data results with eU_3O_8 determinations Table 1 in Appendix 1) confirms a zone of essentially continuous though narrowing, mineralisation with eU_3O_8 grades ranging from 102 ppm to 2865 ppm (0.28%) eU_3O_8 over 1m.

The eU₃O₈ conversion of down-hole gamma data of all 400 holes drilled on this program has verified the existence of an extensive mineralising system. The drilling has delineated a zone of continuous uranium mineralisation with eU₃O₈ grades ranging from 101 ppm to 7100 ppm (0.71%) eU₃O₈ over 1m occurring within the 4.4km section tested to date.

The mineralisation remains open to the west and south-east. Contoured Grade Thickness (GT) values (eU_3O_8 ppm x thickness in metres) are shown in Figure 2. Mineralisation has been defined as anything having a GT of greater than 100ppm eU_3O_8 over a 1m interval as determined using a fully calibrated Auslog gamma down-hole logging unit. These GT values highlight the continuous, open nature of the uranium mineralisation showing a robust mineralisation well within the norms of this style of uranium occurrence. The average grade over 1 metre using a 100ppm eU_3O_8 cut-off is 311ppm and, at a 200ppm eU_3O_8 cut-off, rises to an average grade of 508ppm which compares very favourably with the average grades of Langer Heinrich at similar cut-off grades.

The mineralised channel system that has been identified varies from 200m to 900m in width and uranium mineralisation ranges in thickness from 1m to 12m occurring at depths varying between 1m to 21m.

Analysis

The drill program demonstrated that the Tumas 3 mineralisation is not confined to one simple, single channel but rather is associated with a complex palaeodrainage system containing several channels that head westward toward the ocean. The mineralisation is still open to the east and west and future drilling programs will test for extensions to this mineralisation.

Appendix 1 Table 1 lists the final 154 previously unreported drill holes of the program which have been drilled since 10 June (the subject of this release) showing eU_3O_8 ppm, thickness determinations with hole depth and coordinates provided as calculated from down-hole gamma logging. Approximately 750 check samples are also being submitted for geochemical analysis. These have been selected from across the full extent of the Tumas 3 mineralised zone required as part of the normal course of the verification process to validate the radiometrically derived eU_3O_8 ppm values before the forthcoming resource estimation of Tumas 3 is undertaken.

Drill-hole cross sections (see Figures 3 and 4) show the continuous nature of the uranium mineralisation and also the variability and complexity of the palaeochannel topography. It should be noted that these cross sections as shown are those used in the previous announcement and given here to show the palaeochannel setting and basic geology which has not changed within the drilled Tumas 3 area.

Conclusion

This first drilling campaign conducted under the direction of the new management team has produced a highly successful overall result. More than 70% of the 400 holes drilled (averaging 26m in depth) over the Tumas 3 target zone encountered mineralisation higher than the 100 ppm eU_3O_8 over 1 metre cut-off tested on a methodical 100m x 100m drill spacing. This work has identified a significant mineralised zone at Tumas 3. This is not only expected to add to the current uranium resource base of this project but, more significantly, emphasises the strong exploration potential of the uranium-fertile, extensive palaeochannel system within which the new Tumas 3 discovery occurs.

Tumas 3 is now the fourth mineralised zone identified (after Tumas 1 & 2 and Tubas Sand/calcrete deposits) occurring within the 125km of palaeochannels (see Figure 1) that occur within the Reptile project tenements. Some 80%, or approximately 100km, of these palaeochannels remain to be properly tested.

These new positive results both from drilling and reinterpretation of historic exploration data provide management with increasing confidence that the existing uranium resource base for Langer Heinrich style deposit/s within the Reptile project area can be further increased.

The next drilling campaign is planned to follow both the completion of the Tumas 3 resource estimation (expected to be reported late in the current September quarter) and analysis of the planned geophysics surveys.

Yours faithfully

JOHN BORSHOFF Managing Director/CEO Deep Yellow Limited

Exploration Competent Person's Statement

The information in this report as it relates to exploration results was compiled by Mr Martin Hirsch, a Competent Person who is a Member of the Institute of Materials, Mining and Metallurgy (IMMM) in the UK. Mr Hirsch, who is currently the Exploration Manager for Reptile Uranium Namibia (Pty) Ltd, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hirsch consents to the inclusion in this presentation of the matters based on the information in the form and context in which it appears. Mr Hirsch holds shares in the Company.

Figure 2: Drill hole locations showing contours of eU_3O_8 grade thickness values (GT: eU_3O_8 pmm x m).

Figure 3: Tumas 3 – Cross Section (Drill hole spacing 140 to 70m) from N7,464,000/506,700E to N7,465,400/508,100E

Figure 4: Long Section: 7,465,100N from 506,200E to 508,300E (Drill hole spacing 100m)

Table 1 - Drill Hole Status with the eU ₃ O ₈ Determinations										
(154 holes drilled from 10 June to 1 July 2017)										
	From	Thickness	eU₃O ₈	eU₃O ₈ max	From	Facting	Northing	RI	TD	
HOIE ID	(m)	(m)	(ppm)	(over 1m)	(m)	Lasting	Northing		(m)	
TB3R182	17.1	3	145	200	18.1	507300	7464500	406,281	36	
	24.1	2	176	242	25	507500	, 10 1000	1001201		
TB3R185	16.1	2	145	179	17.1	507299	7464400	406.531	51	
TB3R186	No	mineralisatio	on above	100 ppm cut	-off	507301	7464200	407.762	56	
TB3R187	12.1	8	337	701	18.1	507300	7464100	408.205	46	
TB3R188	No	mineralisatio	on above	100 ppm cut	-off	507198	7464400	405.539	55	
TB3R189	15.1	5	141	243	19.1	507201	7464199	406.835	49	
TB3R190	No	mineralisatio	on above	100 ppm cut	-off	507198	7464100	407.076	28	
TB3R191	15.1	2	159	182	15.1	507202	7463798	407.955	46	
TB3R192	No	mineralisatio	on above	100 ppm cut	-off	507201	7463600	409.625	31	
TB3R193	14.2	1	915	915	14.2	507099	7463600	409.033	19	
TB3R198	18.1	1	130	130	18.1	507309	7464000	408.598	31	
TB3R199	No mineralisation above 100 ppm cut-off				507300	7463900	408.641	26		
TB3R200	14.1	5	120	178	17.1	507301	7463800	408.818	46	
TB3R201	14.1	1	187	187	14.1	507302	7463600	409.831	21	
TB3R202	12.1	2	216	262	13.1	507300	7463500	410.898	21	
TB3R208	9.1	7	635	2865	14.1	507102	7463500	410.113	37	
TB3R209	10.1	3	277	439	12.1	507101	7463400	411.256	25	
TB3R210	5.1	3	171	239	7.1	507100	7463300	412.181	19	
TB3R211	4.1	4	320	446	5.1	507102	7463199	412.551	16	
TB3R212	No	mineralisatio	on above	100 ppm cut	-off	506903	7463300	410.111	13	
TB3R213	No	mineralisatio	on above	100 ppm cut	-off	506902	7463400	409.268	10	
TB3R214	No	mineralisatio	on above	100 ppm cut	-off	506900	7463500	408.684	10	
TB3R224	7.1	2	244	343	8.1	507300	7463400	412.031	11	
TB3R225	No	mineralisatio	on above	100 ppm cut	-off	507300	7463300	413.176	21	
TB3R226	No	mineralisatio	on above	100 ppm cut	-off	507400	7463600	410.62	11	
TB3R227	No	mineralisatio	on above	100 ppm cut	-off	506200	7465200	393.336	31	
TB3R228	No	mineralisatio	on above	100 ppm cut	-off	506200	7465300	392.894	16	
T D2D220	9.1	1	120	120	9.1	500000	7465400	202.002	24	
1B3R229	15.1	1	850	850	15.1	506200	7465400	393.092	21	
TB3R230	8.1	4	254	363	10.1	506200	7465500	392.475	26	
TB3R231	9.0	1	120	120	9	506200	7465600	392.054	21	
TB3R232	7.0	2	153	169	8	506200	7465700	391.586	16	
TB3R235	10.1	1	122	122	10.1	506200	7465800	391.524	16	

Appendix 1

Appendix 1 - Table 1 - Drill Hole Status with the eU_3O_8 Determinations									
(154 holes drilled from 10 June to 1 July 2017)									
TB3R236	No	mineralisatio	on above	100 ppm cut	-off	506697	7464199	402.192	16
TB3R237	No	mineralisatio	on above	100 ppm cut	-off	506702	7464600	400.526	46
TB3R239	15.12	2	258	189	16.1	506697	7464701	399.831	49
TB3R240	14.07	6	175	359	18.1	507100	7464700	404	37
TB3R241	12.1	1	119	119	12.1	506002	7464999	392.765	40
TB3R242	13.1	3	155	186	15.1	505999	7465100	392.263	22
TB3R2/13	0.1	1	273	273	0.1	505008	7/65201	301 00/	28
1031/243	13.1	5	651	1806	16.1	303338	7403201	391.994	20
TB3R244	7.1	2	106	106	8.1	506200	7465900	390.879	16
TB3R245	No	mineralisatio	on above	100 ppm cut	-off	506200	7465100	394.276	41
TB3R246	10.1	7	267	426	13.1	506200	7465000	394.479	41
TB3R247	No	mineralisatio	on above	100 ppm cut	-off	506100	7465000	393.647	46
TB3R248	12.1	1	135	135	12.1	506100	7465100	393.253	41
TB3R249	13.1	5	565	1003	16.1	506100	7465200	392.575	31
TB3R250	No mineralisation above 100 ppm cut-off					506100	7465300	391.745	31
TB3R251	No mineralisation above 100 ppm cut-off				506100	7465400	391.509	26	
TB3R252	9.0	3	122	135	10.1	506100	7465500	391.392	16
TB3R253	9.1	1	145	145	9.1	506100	7465600	390.929	16
TB3R254	No mineralisation above 100 ppm cut-off				506100	7465700	390.526	16	
TB3R255	No mineralisation above 100 ppm cut-off				506100	7465800	390.419	16	
TB3R256	No	mineralisatio	on above	100 ppm cut	-off	506001	7465300	391.461	31
TB3R257	15.1	2	213	308	16.1	506000	7465400	390.559	25
TB3R258	12.1	7	167	254	15.1	506000	7465500	390.6	22
TB3R259	12.1	2	147	171	12.1	506000	7465600	390.326	19
TB3R260	10.1	3	202	266	11.1	506000	7465700	389.666	16
TB3R261	9.1	3	142	186	10.1	506000	7465800	389.571	16
TB3R262	No	mineralisatio	on above	100 ppm cut	-off	506000	7465900	389.31	13
TB3R263	6.1	3	111	118	8.1	506100	7465900	389.896	16
TB3R264	8.0	1	109	109	8.1	506300	7465600	393.16	16
TB3R265	7.1	2	162	180	7.1	506300	7465700	392.237	16
TB3R266	No	mineralisatio	on above	100 ppm cut	-off	506400	7465700	393.203	16
TB3R267	No	mineralisatio	on above	100 ppm cut	-off	505900	7465000	391.831	16
TB3R268	15.1	3	158	229	16.1	505900	7465100	391.613	36
TB3R269	No	mineralisatio	on above	100 ppm cut	-off	505900	7465200	390.861	26
TB3R270	13.1	2	167	218	14.1	505900	7465300	390.509	21
TB3R271	No	mineralisatio	on above	100 ppm cut	-off	505900	7465400	389.849	21
TB3R272	9.1	4	248	308	11.1	505900	7465500	389.253	26
TB3R273	8.1	10	278	635	16.1	505900	7465600	389.389	26

Appendix 1 - Table 1 - Drill Hole Status with the eU_3O_8 Determinations										
	(154 holes drilled from 10 June to 1 July 2017)									
TB3R274	8.1	7	160	188	11.1	505899	7465700	388.756	21	
TB3R275	8.1	3	128	140	10.1	505900	7465800	388.604	21	
TB3R276	No	mineralisatio	on above	100 ppm cut	-off	505800	7465500	388.512	16	
	8.1	1	102	102	8.1					
TB3R277	12.1	2	168	183	13.1	505800	7465600	388.338	21	
	18.1	1	126	126	18.1					
TB3R278	12.1	5	169	287	13.1	505800	7465700	388.1	21	
TB3R279	7.1	1	102	102	7.1	505900	7465900	388.074	11	
TB3R280	No	mineralisatio	on above	100 ppm cut	-off	505800	7465000	391.22	21	
TB3R281	No	mineralisatio	on above	100 ppm cut	-off	505800	7465100	391.062	11	
TB3R282	No	mineralisatio	on above	100 ppm cut	-off	505800	7465200	390.399	26	
TB3R283	No	mineralisatio	on above	100 ppm cut	-off	505800	7465300	389.933	21	
TB3R284	No	mineralisatio	on above	100 ppm cut	-off	505800	7465400	389.085	21	
тророс	8.1	1	116	116	8.1		7465900	207 10	21	
1038203	11.1	1	103	103	11.1	505800	7405600	507.40	21	
TB3R286	8.1	3	116	127	8.1	505800	7465900	387.326	16	
TB3R287	No	mineralisatio	on above	505800	7466000	386.631	11			
TB3R288	No mineralisation above 100 ppm cut-off				505600	7465500	387.185	16		
TB3R289	19.1	3	868	2050	20.1	505600	7465600	386.458	26	
TB3R290	7.1	2	120	128	7.1	505600	7465700	385.822	21	
TB3R291	10.1	1	107	107	10.1	505600	7465800	385.971	16	
TB3R292	No	mineralisatio	on above	100 ppm cut	-off	505700	7465500	388.035	16	
TB3R293	14.1	4	294	338	15.1	505700	7465600	387.194	22	
TB3R294	8.1	11	106	304	18.1	505700	7465700	387.125	25	
TB3R295	8.1	1	125	125	8.1	505700	7465800	386.759	22	
TB3R296	7.1	2	147	169	7.1	505700	7465900	386.13	16	
TB3R297	7.1	1	120	120	7.1	505700	7466000	385.926	10	
TB3R298	No	mineralisatio	on above	100 ppm cut	-off	505700	7466100	385.846	7	
TB3R299	7.1	1	117	117	7.1	505600	7466000	384.954	16	
TB3R300	No	mineralisatio	on above	100 ppm cut	-off	505600	7465900	385.425	16	
TB3R301	No	mineralisatio	on above	100 ppm cut	-off	505500	7465500	386.598	26	
TB3R302	No	mineralisatio	on above	100 ppm cut	-off	505500	7465600	385.965	11	
TB3R303	8.1	1	110	110	8.1	505500	7465700	385.172	11	
TB3R304	7.1	2	113	120	7.1	505500	7465800	384.831	16	
TB3R305	No	mineralisatio	on above	100 ppm cut	-off	505500	7465900	384.509	16	
TB3R306	7.1	3	150	182	8.1	505500	7466000	383.997	16	
TB3R307	No	mineralisatio	on above	100 ppm cut	-off	505500	7466100	383.879	11	
TB3R309	No	mineralisatio	on above	100 ppm cut	-off	505400	7466300	382.676	11	
TB3R310	5.2	3	161	195	7.1	505400	7466200	382.552	11	

Appendix 1 - Table 1 - Drill Hole Status with the eU_3O_8 Determinations									
(154 holes drilled from 10 June to 1 July 2017)									
TB3R311	6.1	1	123	123	6.1	505400	7466100	382.563	16
TB3R312	No	mineralisatio	on above	100 ppm cut	-off	505400	7466400	381.995	6
TB3R313	8.1	2	105	107	9.1	505400	7466000	383.133	16
TB3R314	11.1	5	121	137	13.1	505400	7465900	383.485	26
TB3R315	8.1	1	124	124	8.1	505400	7465800	383.886	16
TB3R316	No	mineralisatio	on above	100 ppm cut	-off	505400	7465700	384.674	11
TB3R317	No	mineralisatio	on above	100 ppm cut	-off	505400	7465600	385.058	21
TB3R318	21.1	1	111	111	21.1	505400	7465500	385.754	36
TB3R319	No	mineralisatio	on above	100 ppm cut	-off	505400	7465400	386.242	56
TB3R320	No	mineralisatio	on above	100 ppm cut	-off	505300	7465600	384.587	21
TB3R321	No	mineralisatio	on above	100 ppm cut	-off	505100	7465600	382.793	58
TB3R322	20.1	8	124	191	27.1	505100	7465700	382.271	34
TB3R323	No	mineralisatio	on above	100 ppm cut	-off	505100	7465800	381.802	40
TB3R324	No mineralisation above 100 ppm cut-off				-off	505100	7465900	381.357	37
TB3R325	15.2	1	108	108	15.1	505100	7466000	380.379	31
TB3R326	7.1	1	181	181	7.1	507200	7463200	413.949	19
TB3R327	8.1	3	1044	2127	9.1	507200	7463300	412.889	25
TB3R328	12.1	1	485	485	12.1	507200	7463400	411.776	25
TB3R329	9.1	6	710	1625	13.1	507200	7463500	410.792	19
TB3R330	15.1	9	282	707	21.1	507400	7463800	410.078	49
TB3R331	No	mineralisatio	on above	505300	7465700	383.683	26		
тророор	11.1	1	106	106	11.1	505200	7465900	762 272	21
IDSKSSZ	20.1	1	143	143	20.1	505500	7405600	565.577	51
TB3R333	No	mineralisatio	on above	100 ppm cut	-off	505300	7465900	382.351	21
TB3R334	11.1	1	146	146	11.1	505300	7466000	382.323	26
TB3R335	No	mineralisatio	on above	100 ppm cut	-off	505300	7466100	381.866	21
TB3R336	6.1	1	106	106	6.1	505300	7466200	381.486	16
TB3R337	No	mineralisatio	on above	100 ppm cut	-off	505200	7466100	381.153	26
TB3R338	No	mineralisatio	on above	100 ppm cut	-off	505200	7466000	381.27	26
TB3R339	19.1	6	189	242	20.1	505200	7465900	382.001	31
TB3R340	No	mineralisatio	on above	100 ppm cut	-off	505200	7465800	382.61	26
TB3R341	20.1	8	134	191	22.1	505200	7465700	383.397	36
TB3R342	No	mineralisatio	on above	100 ppm cut	-off	505200	7465600	383.588	31
TB3R343	21.1	5	269	460	25.1	505300	7465500	384.843	46
TB3R344	22.1	1	114	114	22.1	505300	7465400	385.325	56
TB3R345	26.1	2	203	297	27.1	505400	7465300	386.486	56
TB3R346	No	mineralisatio	on above	100 ppm cut	-off	505400	7465200	387.015	41
TB3R347	No	mineralisatio	on above	100 ppm cut	-off	505400	7465100	387.202	26
TB3R348	30.2	1	107	107	30.1	505400	7465000	387.944	36

	Appendix 1 - Table 1 - Drill Hole Status with the eU_3O_8 Determinations										
(154 holes drilled from 10 June to 1 July 2017)											
TB3R349	No mineralisation above 100 ppm cut-off					505500	7465000	388.41	41		
TB3R351	10.1	13	134	182 21.1		507400	7463900	409.597	52		
TB3R352	No mineralisation above 100 ppm cut-off					507500	7463800	410.838	31		
TB3R353	No	mineralisatio	on above	100 ppm cut	-off	507500	7463900	410.655	34		
TB3R354	19.1	2	227	234	19.1	507500	7464000	410.33	49		
TB3R355		Н					7464100	409.839	55		
TB3R356	20.1	8	120	218	26.1	505300	7465000	387.183	46		
TB3R357	No mineralisation above 100 ppm cut-off					505600	7465000	389.478	31		

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The current drilling relies only on U₃O₈ values derived from down-hole total gamma counting (eU₃O₈). First geochemical assay data are expected in the early September quarter. Previous drill data used in this report includes both geochemical assay data (U₃O₈) and down hole gamma equivalent uranium derived values (eU₃O₈). Appropriate factors were applied to all downhole gamma counting results to make allowance for drill rod thickness, gamma probe dead times and incorporating all other applicable calibration factors. Total gamma eU₃O₈ 33 mm Auslog total gamma probes were used and operated by company personnel. Gamma probes were calibrated at Pelindaba, South Africa, in May 2007 and in December 2007. Between 2008 and 2013 sensitivity checks were conducted by periodic relogging of a test hole (Hole-ALAD1480) to confirm operation. Auslog probes were re-calibrated at the calibration pit located at Langer Heinrich Mine site in December 2014 and again in May 2015. Three probes (T010, T030 and T165) which are used at the current program were calibrated again at the Langer Heinrich calibration pit in early April 2017 shortly after the start of the current drilling program. During drilling, probes were checked daily against a standard source. Majority of probing was done with probe T010, T030 and T165. Gamma measurements were taken at 5 cm intervals at a logging speed of approximately 2 m per mute.
		approximately 2 m per minute.

Criteria	JORC Code explanation	•	Commentary
		•	Probing was done immediately after drilling mainly through the drill rods and in some cases in the open holes. Rod factors have be established once sufficient in rod and open hole data were available to compensate for the reduced gamma counts when logging was done through the drill rods. No correction for water was done. The drill holes were dry. All gamma measurements were corrected for dead time which is unique to each probe. All corrected (dead time and rod factor) gamma values were converted to equivalent eU_3O_8 values over the same intervals using the probe-specific K- factor.
		•	The corrections and conversions to eU_3O_8 ppm values were carried out by Resource Potentials, a Perth based geophysics consulting group that has the required expertise in this area.
		• Chem	Disequilibrium studies on 22 samples by ANSTO Minerals in 2008 confirmed that the U^{238} decay chains of the wider Tumas deposit are within an analytical error of ± 10%, in secular equilibrium. ical assay data
		•	Geochemical samples were derived from Reverse Circulation (RC) drilling at intervals of 1 m. Samples were spilt at the drill site using either a riffle or cone splitter to obtain a 1 to 4 kg sample from which 90 g will be pulverized to produce a subset for XRF-analysis.
		•	It is planned that 10 to 20% of the mineralisation from the Tumas 3 drilling will be assayed for U_3O_8 by loose powder XRF or ICP-MS. In the 2014 drill program 240 samples were taken for confirmatory assay and submitted to Bureau Veritas laboratory in Swakonmund for U ₂ O ₂ ICP-
		•	MS following the procedure above. These previous assay results confirm equivalent uranium grades correctly

Appendix 2: Table 1 Report (JORC Code 2012 addition)

Criteria	JORC Code explanation	Commentary
		correlated to the assay results and remain within a statistically acceptable margin of error.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling is being used for the Tumas 3 drilling program. All holes are being drilled vertically and intersections measured present true thicknesses.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill chip recoveries are good at around 90%. Drill chip recoveries were assessed by weighing 1 m drill chip samples at the drill site. Weights were recorded in sample tag books. Sample loss was minimized by placing the sample bags directly underneath cyclone/splitter
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes are being geologically logged. The logging is qualitative in nature. The lithology type is being determined for all samples. Other parameters routinely logged include colour, colour intensity, weathering, oxidation, grain size, carbonate (CaCO₃) content, sample condition (wet, dry) and total gamma count (by Rad-eye scintillometer). Lithology codes were used to generate wireframes for the paleotography of the palaeochannel. This information was used in planning drill hole locations.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 A portable 2-tier (75%/25%) splitter was used to treat a full 1m sample from the cyclone into an appropriate size assay sample. All sampling was dry. The above sub-sampling techniques are common industry practice and appropriate. Sample sizes are considered appropriate to the grain size of the material being sampled.

Criteria	JORC Code explanation	Commentary
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Duplicates will be inserted into the assay batch at an approximate rate of one for every 10 samples which is compatible with industry norm.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The analytical method employed will be XRF. The technique is industry standard and considered appropriate. The analytical method employed for the 2014 drill program was ICP-MS which is also considered industry standard and appropriate as well. Downhole gamma tools were used as explained under 'Sampling techniques'. This is the principal evaluating technique.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Geology was directly recorded into a tablet in the field and sample tag books filed in at the drill site. The drill data of those logs and tag books (lithology, sample specifications etc.) were transferred by designated personnel into a geological database. Twinning RC holes was not considered due to the high variability in grade distribution. Equivalent eU₃O₈ values have been calculated from raw gamma files by applying calibration factors and casing factors where applicable. The adjustment factors were stored in the database. Equivalent U₃O₈ data were composited to 1m intervals. The ratio of eU₃O₈ vs assayed U₃O₈ for matching composites will be used to

Appendix 2: Table 1 Report (JORC Code 2012 addition)

Criteria	JORC Code explanation	Commentary
		quantify the statistical error.
Location of data points Data spacing and	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. 	 The collars are being surveyed by in-house operators using a differential GPS. All drill holes are vertical and shallow; therefore, no down-hole surveying was required. The grid system is World Geodetic System (WGS) 1984, Zone 33. The data spacing and distribution is optimized along channel direction. The
distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 drill grid is close to 100m by 100m in EW and NS rectangular directions following the main target channel. The drill pattern is considered sufficient to eventually establish an inferred Mineral Resource. The total gamma count data, which is recorded at 5 cm intervals, was used to calculate equivalent uranium values (eU₃O₈) which were composited to 1 m composites down hole.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Uranium mineralisation is strata bound and distributed in fairly continuous horizontal layers. Holes are being drilled vertically and mineralised intercepts represent the true width. All holes were sampled down-hole from surface. Geochemical samples are being collected at 1 m intervals. Total-gamma count data is being collected at 5 cm intervals.
Sample security	• The measures taken to ensure sample security.	 1m RC drill chip samples were prepared at the drill site. The assay samples were stored in plastic bags. Sample tags were placed inside the bags. The samples were placed into plastic crates and transported from the drill site to RUN's site premises in Swakopmund by company personnel, prior to analyses and from there to the external laboratories when used. Upon completion of the assay work the remainder of the drill chip sample bags for each hole will be packed back into crates and then stored in designated containers in chronological order, locked up and kept safe at

Criteria	JORC Code explanation	•	Commentary
			RUN's dedicated sample storage yard at Rocky Point located outside Swakopmund.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	•	D. M. Barrett (PhD MAIG) conducted an audit of gross count gamma logging procedures and log reduction methods used by Deep Yellow Limited.He concludes his audit commenting: "In summary, it is my belief that the equivalent uranium grades reported by Reptile from their gamma logging program are reliable and are probably within a few percent to the true grade".

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The work to which the Exploration Results relate was undertaken on exclusive prospecting grant EPL3496 (Tumas Zone 3). The EPL was originally granted to Reptile Uranium Namibia (Pty) Ltd (RUN) in 2006. The EPLs are in good standing and are valid until 05 June 2017. A renewal application has been submitted to the MME in March 2017 and is in process. The EPL is located within the Namib Naukluft-National Park in Namibia. The EPL is subject to an agreement with a Namibian Black Empowerment partner whereby the partner has the right to acquire 5% of the project for historical costs. There are no known impediments to the project beyond Namibia's standard permitting procedures.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Prior to RUN's ownership of these EPL, extensive work was conducted by Anglo American Prospecting Services (AAPS), General Mining and Falconbridge in the 1970s. Assay results from the historical drilling are available to RUN on paper logs. They were not captured digitally and were not used for resource estimation.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Tumas 3 mineralisation occurs as secondary carnotite enrichment of variably calcretised palaeochannel and sheet wash sediments and adjacent weathered bedrock. Uranium mineralisation at Tumas is surficial, stratabound and hosted by Cenozoic and possibly Tertiary sediments, which include from top to bottom scree sand, gypcrete, calcareous sand and calcrete. The majority of the mineralisation is hosted in calcrete. Locally, the underlying weathered Proterozoic bedrock is occasionally also mineralised.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 400 holes for a total of 10545m have been drilled up to the 1 July 2017 All holes were drilled vertically and intersections measured present true thicknesses. The Table 1 in Appendix 1 lists the holes, their locations and relevant results.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 5 cm intervals of eU₃O₈ were composited into 1m down hole intervals showing greater than 100ppm eU₃O₈ values over 1m. No grade truncations were applied.

Appendix 2: Table 1 Report (JORC Code 2012 addition)

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The mineralisation is sub-horizontal and all drilling vertical, therefore, mineralised intercepts are considered to represent true widths.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appendix 1 (Table 1) shows all drill holes including anomalous intervals Maps and sections are included in the text
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Comprehensive reporting of all Exploration Results was practised throughout the program.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The wider area and Tumas deposit was subject to extensive drilling in the 1970's and 1980's by Anglo American Prospecting Services, Falconbridge and General Mining. An airborne EM survey conducted in 2009 better defined the broad palaeochannel system. Downhole gamma-gamma density logging for bulk density was conducted by Terratec on the Tumas 1 and 2 resources.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling work is planned west and east of the currently defined Tumas 3 Zone. Further extension drilling is expected as mineralisation is open along strike to the east and west.