

ASX / TSX ANNOUNCEMENT

21 September 2017

Advantage Lithium drill results from Cauchari and new Appointments

- Initial pump tests from AAL Cauchari drilling average 678mg/litre
- Three drill rigs now testing for extensions to existing NI43-101 resource (December 2016)¹
- Senior technical appointments enhance capability

Orocobre Limited (ORE:ASX, ORL:TSX) (Orocobre) today received notice from 35% owned joint venture partner Advantage Lithium (TSXV:AAL, Advantage) of initial test results from its flagship lithium property, located in the Cauchari Salar of Jujuy province in NW Argentina.

Initial results from the first set of composite brine samples from hole CAU10 in the SE sector of Cauchari (see hole location in Figure 1 below) have returned an average lithium grade of 678 milligrams per liter (mg/l) with sample results ranging from 585 to 724 mg/l lithium² and excellent Mg/Li ratios averaging 2.1:1. Further results from this hole will be available in coming weeks.

Hole CAU10 is part of a two phase program totaling 17 holes which will lead to a scoping study. Three drill rigs are now engaged on this program with work currently progressing on CAU07 and CAU09.

Orocobre Managing Director and CEO, Richard Seville said: "The execution of this program over winter is a testament to the dedication and competence of the Advantage team. Pleasingly, these initial results demonstrate good brine concentrations and chemistry similar to that at Olaroz."

Advantage Lithium is increasing its interest in the project from the current 50% to 75% through the expenditure of US\$5m or by completing a Feasibility Study. Orocobre holds the remaining interest.

The Cauchari project lies approximately 20 kilometres south of Orocobre's producing Olaroz Lithium facility.

Senior Technical Appointments

Advantage Lithium also strengthened its' technical capability with the addition of Andy Robbs as Technical Advisor and Frits Reidel as a consulting Independent Qualified Person. Andy has held significant technical and management roles with companies such as BHP Billiton and AMC Consulting. Andy was VP South America and Project Director for Enirgi Group Corporation where he had responsibility for over 200 Operational and Project staff and was instrumental in the completion of the NI43-101 compliant Definitive Feasibility Study for the Rincon lithium brine project located in Salta.

Fritz and his team at FloSolutions have vast experience in brine resource evaluation, salt-lake exploration, hydrogeology, drilling methods, well construction, and testing gained from working on numerous projects such as Olaroz, Cauchari (Lithium Americas) and Maricunga.

Please see the attached release from Advantage Lithium for further details.

¹ Inferred resource estimated at 230 million cubic metres of brine at 380 mg/l Li and 3,700 mg/l K representing in situ contained content of 470,000 tonnes of lithium carbonate equivalent (LCE) and 1.62 million tonnes of potash (KCL). Source: Independent Technical Report, Murray Brooker et. al, December 2016.

² Assaying completed at Alex Stewart Laboratories in Jujuy city, Argentina under strict QA/QC protocols.

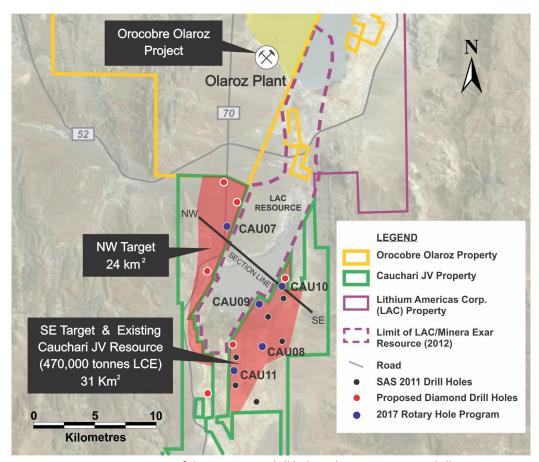


Figure 1: Location of the CAU7,9,10 drill holes relative to previous drilling

Drill Hole Location and Details

Exploration Hole Number	Total Depth (m)	Installed Depth (m)	Assay Interval (m)	(mg/l	Potassium (mg/l avg)	_	Coordinate Kruger Arger Posgar I	ntine Zone3 Datum	Elevation mean sea level (m)	Azimut h	Dip
	(m)		(m)	avg)			Easting	Northing	ievei (m)		
CAU10	429	340	50-340	678	6,516	Rotary	3,425,530	7,379,295	3,900	0	-90
CAU09	400	400	Pump bein	g installed	N/A	Rotary	3,423,775	7,377,806	3,900	0	-90
CAU07	198	In progress	In pro	gress	N/A	Diamond	3,421,626	7,385,385	3,930	0	-90

^{*} Planned coordinates - not confirmed by surveying at date of release

Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria **JORC Code explanation** Commentary Sampling Nature and quality of sampling (eg Drill cuttings were taken during rotary techniques cut channels, random chips, or drilling. These are low quality drill specific specialised industry samples, but provide sufficient standard measurement tools information for lithological logging and appropriate to the minerals under for geological interpretation. investigation, such as down hole Drill core (CAU07) was recovered in gamma sondes, or handheld XRF triple tubes with a 1.5 m length core run instruments, etc). These examples should not be taken as limiting the and stored in core boxes after being broad meaning of sampling. wrapped in cling-film and duct tape to Include reference to measures taken

Criteria JORC Code explanation

- to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where 'industry standard'
 work has been done this would be
 relatively simple (eg 'reverse
 circulation drilling was used to
 obtain 1 m samples from which 3 kg
 was pulverised to produce a 30 g
 charge for fire assay'). In other cases
 more explanation may be required,
 such as where there is coarse gold
 that has inherent sampling
 problems. Unusual commodities or
 mineralisation types (eg submarine
 nodules) may warrant disclosure of
 detailed information.

Commentary

- prevent moisture loss from the core.
- Brine samples were collected during the preliminary pumping test, initially at 1 minute intervals, and then 5 minutes, 10 minutes, half hour and 1 hour during the first 6 hours of the pumping test reported in this release. Additional assays over the remaining period to 48 hours are awaited. Samples were taken from the end of the discharge hose connected to the submersible pump installed in the hole.
- The holes are geophysically logged with resistivity and SP logs, to provide information on the lithology, in particular identifying units of halite (salt).
- The brine samples were collected in clean plastic bottles and filled to the top to minimize air space within the bottle.
 Each bottle was marked with the time and relabeled with a sample number before sending the sample to the laboratory.

Drilling techniques

 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).

- Rotary drilling was the method used for the installation of CAU10 and CAU09. Natural formation brine was used for lubrication during drilling, together with the use of biodegradable additives to minimize the development of thick wall cake in the holes that could reduce the inflow of brine to the hole and affect brine quality. Bentonite was used in the upper part of CAU09 to seal off part of the hole where collapse issues were encountered. This sandy section has been excluded from providing inflows to the well.
- During the rotary drilling the time to drill each metre is recorded, as well as any observations from the driller regarding hardness of the lithology being drilled.
- Rotary drilling allowed for recovery of drill cuttings and basic geological description. During rotary drilling, cuttings were collected directly from the outflow from well head to the fluid

Criteria	JORC Code explanation	Commentary
		recirculation pits. Drill cuttings were collected every metre in plastic bags, that were marked with the drill hole number and depth interval. Sub-samples were collected from the bags by the site geologist to fill chip trays. • Diamond drilling (CAU07)) produced cores with variable core recovery (to be reported in future releases, as the hole is currently underway). Recovery of more friable sediments such as sands is more difficult with diamond drilling, as this material can be washed from the core barrel.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Rotary drill cuttings were recovered from the hole from the recirculating drilling fluid, taking in account the return time for the samples, depending on the depth of the drill bit. Appropriate additives and drilling fluid viscosity were used to facilitate recovery of drill cuttings from the holes. Diamond drill core was recovered in 1.5m length intervals in the drilling triple split tubes. Appropriate additives were used for hole stability to attempt to maximize core recovery. The core recoveries were measured from the cores and compared to the length of each run to calculate the recovery. As the lithium brine (mineralisation) samples are taken in the hole from inflows of the brine to the hole they are largely independent of the quality (recovery) of the core samples. However, the permeability of the lithologies where samples are taken is related to the rate and potentially lithium grade of brine inflows.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Rotary drilling was carried out for the collection of drill cuttings for geologic logging and for brine sampling. Drill cuttings were logged by a geologist. Diamond holes are logged by a geologist who supervised taking of samples for laboratory porosity analysis.

Criteria	JORC Code explanation	Commentary
	 The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core samples will be systematically subsampled for laboratory analysis, cutting the lower 15 cm of core from the core sample and preserving the sample in cling wrap, tape and plastic tubing. This sub-sample will be sent to the porosity laboratory for testing. Sampling is to be systematic, to minimize any sampling bias. Brine samples collected from the preliminary pumping test on CUA10 are homogenized as brine is extracted from the hole by pumping. No sub-sampling is undertaken in the field. Fluorescein tracer dye was used to distinguish drilling fluid from natural formation brine used in the case of the diamond drilling (but not in the rotary drilling). The brine samples were collected in new unused one-litre sample bottles which were filled with brine from the pump discharge hose. Each bottle was marked with the drill hole number and details of the sample. Prior to sending samples to the laboratory they were assigned unique sequential numbers.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The Norlab/Alex Stuart laboratory in Jujuy, Argentina is used as the primary laboratory to conduct the assaying of the brine samples collected as part of the drilling program. They also analyzed duplicates and standards, with blind control samples in the analysis chain. The laboratory is a commercial laboratory specialized in the chemical analysis of brines and inorganic salts. QA/QC check samples will be sent to another independent laboratory but these samples have not yet been dispatched to the external laboratory. The quality control and analytical procedures used at the Norlab laboratory are considered to be of high quality and the laboratory is affiliated

Criteria	JORC Code explanation	Commentary
		 with the Alex Stuart international group of laboratories. Duplicate and standard analyses are considered to be of acceptable quality Down hole geophysical tools were provided by the drilling contractor and these are believed to be calibrated periodically to produce consistent results.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Accuracy, the closeness of measurements to the "true" or accepted value, was monitored by the insertion of laboratory certified standards. Duplicate samples in the analysis chain were submitted as part of the laboratory batch and results are considered acceptable.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The holes will located with a hand held GPS in the field and will be subsequently located by a surveyor on completion of the drilling program. Coordinates provided are planned drill hole locations. The location is in zone 3 of the Gauss Kruger coordinate system, with the Argentine POSGAR.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Lithological data was collected throughout the drilling. The brine samples from CAU10 were taken from the pump outlet pipe and represent composite samples from 50 m (base of upper blank pipe section), to the base of the hole at 340 m, with different brine inflow contributions from different lithologies in the hole.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The salar deposits that host lithium- bearing brines consist of sub-horizontal beds and lenses of halite, clay and minor sand and silt. The vertical holes are essentially perpendicular to these units, intersecting their true thickness.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 Samples were transported to the laboratory (primary, duplicate and QA/QC samples) for chemical analysis in sealed 250 ml rigid plastic bottles with sample numbers clearly identified. The samples were moved from the drill site to secure storage at the camp on a daily basis. All brine sample bottles are marked with a unique label.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews have been conducted at this point in time.

Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Cauchari JV properties are located approximately 20 km south of the Olaroz lithium project (operated by Orocobre/Sales de Jujuy) in the province of Jujuy in northern Argentina at an elevation of approximately 3,900 masl. The property comprises 28,000 ha in 22 mineral properties in Jujuy province in Argentina. Exploration activities are currently focused in the northern properties within the larger property package. The properties consist of a combination of exploration properties (Cateos) and exploitation properties (minas). The tenements/properties are believed to be in good standing, with payments made to relevant government departments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration was previously carried out in the northern properties by Orocobre subsidiary SAS in 2011, with the drilling of 6 holes, several of which were abandoned well short of the target depth due to problems with the drilling equipment. An initial resource was defined in accordance with the JORC code at the time of exploration. Immediately to the north of the project Orocobre Limited has developed the Olaroz lithium project, which is the first

Criteria	JORC Code explanation	Commentary
		new lithium brine project to produce lithium in 20 years. • Significant exploration has been conducted immediately to the east and west of the JV properties by the company Lithium Americas Corporation, who has defined a large resource and related reserve and who has completed a DFS on the project. This company is moving forward to project development with Industry major SQM. The tenements/properties are believed to be in good standing, with payments made to relevant government departments.
Geology	Deposit type, geological setting and style of mineralisation.	 The sediments within the salar consist of halite, clay and some sand which have accumulated in the salar from terrestrial sedimentation and evaporation of brines within the salar. These units are interpreted to be essentially flat lying, with unconfined aquifer conditions close to surface and semi-confined to confined conditions at depth Brines within the salar are formed by solar concentration, with brines hosted within the different sedimentary units Geology was recorded during drilling of all the holes.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Lithological data was collected from the holes as they were drilled as drill cuttings. Brine samples were collected from the preliminary pumping test on CAU10 and sent for analysis to the Norlab laboratory, together with quality control/quality assurance samples Drill hole collars, All drill holes are vertical, (dip -90, azimuth 0 degrees). CAU10 is 340 m installed (429 m drilled); CAU09 is 400 m installed and drilled. CAU07 is in progress. Both CAU10 and CAU09 intersected lithium-bearing brine from the water table (approximately 5 m deep) to the base of drilling. Holes are located at approximately 3900 m above sea level.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Brine samples taken from CAU10 at intervals of 1, 5, 10, 30 and 60 m intervals during the preliminary pump test. The result reported is an average of the sample results from the first 6 hours of the 48 hour pump test, with the results from the remaining samples yet to be received. The samples represent the results of pumping CAU10, with contributions of brine flow from throughout the hole below the upper sealed section of the hole (which extends to 50 m deep) to the base of the hole. No sample results (excepting standards, duplicates and blanks) were excluded from the average value provided for the preliminary pumping test.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The lithium-bearing brine deposits extend across the properties and over a thickness of > 400 m (depending on the depth of drilling), limited by the depth of the drilling. Mineralisation in brine is interpreted to continue below the depth of the resource. The drill holes are vertical and essentially perpendicular to the horizontal sediment layers in the salar (providing true thicknesses of mineralisation)
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A diagram is provided in the text of the Advantage Lithium announcement showing the location of the properties and drill holes. A table is provided in this announcement shows the location of the drill holes.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 This announcement presents representative preliminary data from drilling and sampling at the Cauchari JV project, such as lithological descriptions, brine concentrations and information on the thickness of mineralisation. Additional information will be provided as it comes to hand.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited 	Refer to the information provided in Technical report on the Cauchari Lithium

Criteria	JORC Code explanation	Commentary
exploration data	to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Project, Jujuy Province, Argentina, dated effective 5 th December and amended 22 nd December 2016 for previous geophysical and geochemical data from drilling in 2011 by the Orocobre subsidiary SAS.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The company is currently undertaking a drilling program, with CAU10 the first hole completed in this drilling program. Additional results will be provided as they come to hand.

For more information please contact:

Richard Seville

Managing Director T: +61 7 3871 3985 M:+61 419 916 338

E: rseville@orocobre.com

Andrew Barber

Investor Relations Manager

T: +61 7 3871 3985 M: +61 418 783 701 E: abarber@orocobre.com

Competent Persons Statement

The information in this report that relates to exploration reporting at the Cauchari JV project has been prepared by Mr Murray Brooker. Murray Brooker is a geologist and hydrogeologist and is a Member of the Australian Institute of Geoscientists. Murray has sufficient relevant experience to qualify as a competent person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. He is also a "Qualified Person" as defined in NI 43-101. Murray Brooker consents to the inclusion in this announcement of this information in the form and context in which it appears.

About Orocobre Limited

Orocobre Limited (Orocobre) is a dynamic global lithium carbonate supplier and an established producer of boron. Orocobre is dual listed on the Australia and Toronto Stock Exchanges (ASX: ORE), (TSE: ORL). Orocobre's operations include its Olaroz Lithium Facility in Northern Argentina, Borax Argentina, an established Argentine boron minerals and refined chemicals producer and a 35% interest in Advantage Lithium.

For further information, please visit www.orocobre.com

ADVANTAGE LITHIUM CORP.

#1305 - 1090 West Georgia Street Vancouver, BC V6E 3V7 Tel: 604-685-9316 | Fax: 604-683-1585 www.AdvantageLithium.com

TSX Venture Exchange Symbol: AAL

NEWS RELEASE

SEPTEMBER 19th, 2017

Advantage Lithium Reports Initial Pump Test Averaging 678 mg/litre From Cauchari JV Project

Senior Technical Appointments Announced

Vancouver, British Columbia, September 19, 2017 – Advantage Lithium Corp. (the "Company" or "Advantage Lithium") (TSX Venture: AAL) (OTCQX: AVLIF) is pleased to announce further positive progress with its Cauchari JV drilling program where three drill rigs are now expanding the depth and lateral extent of the existing NI43-101 mineral resource dated December 2016³.

Initial results from the first set of composite brine samples from hole CAU10 in the SE sector (see hole location in Figure 2 below) have returned an average lithium grade of 678 milligrams per liter (mg/l) with sample results ranging from 585 to 724 mg/l lithium⁴ and excellent Mg/Li ratios averaging 2.1/1 These initial 17 samples were collected as part of a preliminary pumping test conducted on the hole; a second set of samples from this hole are due later this month. Systematic double-packer sampling of individual filter sections will proceed shortly over the total 340m depth of the developed well.

Meanwhile, the second rotary drill rig has completed hole CAU09 also in the SE sector approximately 2.5km from CAU10. Filter and casing sections along with gravel pack have been installed to the 400m depth limit of the hole. Cleaning and development are underway prior to a preliminary pumping test and sampling scheduled for the next few days.

The third drill rig, a diamond drill machine, is currently set up on hole CAU07 in the NW sector of the property where a rotary pre-collar to 130m was completed as planned in May 2017. CAU07 will be cored at HQ diameter to a planned target depth of 400m, to provide sample for porosity and other aquifer measurements. Brine samples will be collected using a packer or bailer system at intervals down the hole.

Said President & CEO Mr. David Sidoo: "We are pleased to have completed the first holes of the program, working on site during the difficult winter period. The initial assay results from CAU10 are most encouraging and we look forward over the next few weeks to more results from the systematic sampling of CAU10 and the other holes in the program."

³ Inferred resource estimated at 230 million cubic metres of brine at 380 mg/l Li and 3,700 mg/l K representing in situ contained content of 470,000 tonnes of lithium carbonate equivalent (LCE) and 1.62 million tonnes of potash (KCL). Source: Independent Technical Report, Murray Brooker et. al, December 2016.

⁴ Assaying completed at Alex Stewart Laboratories in Jujuy city, Argentina under strict QA/QC protocols.

Drilling Progress:

- Rotary hole CAU10 has been developed and constructed with filter sections to 340m depth. Samples collected during a preliminary pump test returned an average Li grade of 678 mg/l; further results from this pump test will be available later this week. The results from this well are consistent with the lithological sequence intersected in the halite (salt) core of the Cauchari salar. Initial packer test results are expected in October. The rig has now mobilised further south to CAU08.
- Rotary hole CAU09 was completed on September 5th to the 400m target depth at a diameter of 12". The initial pilot hole was subsequently reamed out to accommodate installation of 8" filter/casing sections in the upper section of the hole. Preliminary pump and sampling tests will begin shortly with initial results expected this month. This will be followed by systematic double-packer sampling of individual filter sections. Packer sample results are expected in October.
- A diamond drill (DDH) rig was mobilised to site on August 25th, initially collaring 12m cemented surface casings on exploration holes in the SE sector.
- The DDH rig has now moved on to hole CAU07 in the NW sector of the property where drill core is being collected from sediments below the Archibarca alluvial fan, a key target of the Cauchari JV exploration program. An initial double-packer sample was taken at a depth of ~180m, with additional sampling as the hole advances. Packer sampling results are expected in October.
- All five rotary holes in the work program are expected to be completed and sampled before year-end 2017 along with approximately 5 of the up to 12 diamond drill holes designed as monitoring and/or exploration holes. Drilling of the remaining exploration holes will continue in 2018.

Hole CAU10 - Brine Flow Test

Senior Appointments

The Company is also pleased to welcome senior additions to the **Company's** technical team as follows:

• Mr. Andy Robb joins as Technical Adviser, Projects. Andy brings significant senior

technical and management depth to the Cauchari JV. In addition to senior roles with BHP Billiton and AMC Consulting, during the period 2013-16 Andy was VP South America and Project Director for Enirgi Group Corporation. In this role Andy had responsibility for over 200 Operational and Project staff and was instrumental in the completion of the NI43-101 compliant Definitive Feasibility Study for the Rincon lithium brine project located in Salta. Following his leadership/supervision of successful exploration campaigns (drilling and pump testing) over the study period 2013 to 2015, Measured and Indicated resources increased significantly to 3.5 Mt LCE (plus Inferred resource to 4.8 Mt LCE) for the project with 50,000tpa LCE nameplate capacity. As we move into 2018, Andy will play a key role in advancing our project through the scoping study and future engineering phases of development.

• Mr. Frits Reidel, principal of the consulting firm FloSolutions, has been commissioned to provide on-going assistance to the Company as its Independent QP to ensure industry best practice related to drilling, testing, sampling and related QA/QC procedures on the current AAL exploration program which will lead to an updated mineral resource estimate in early 2018. Based in Santiago, Chile, Frits and his team have vast experience in brine resource evaluation including the practicalities of salt-lake exploration, hydrogeology, drilling methods, well construction, and testing gained from working on numerous projects (for examples, Olaroz, Cauchari [Lithium Americas], and Maricunga) in the Lithium Triangle of Argentina and Chile since 1992. Frits Reidel is a Qualified Person and independent of AAL as defined under NI43-101.

President & CEO Mr. David Sidoo said "With the addition of Andy and Frits to our current team we have added senior expertise with demonstrated success in developing large-scale lithium projects. We welcome Andy and Frits to the Advantage Lithium team, where we look forward to working together to develop the Cauchari lithium project. This project in the heart of the lithium triangle is located between the producing Olaroz lithium plant and the pre-development lithium project of Lithium America and has excellent potential to be developed in association with Orocobre or independently."

The technical information in this news release has been reviewed and approved on behalf of the Company by Murray Brooker, MAIG, RPGEO, a "Qualified Person" as defined in NI 43-101.

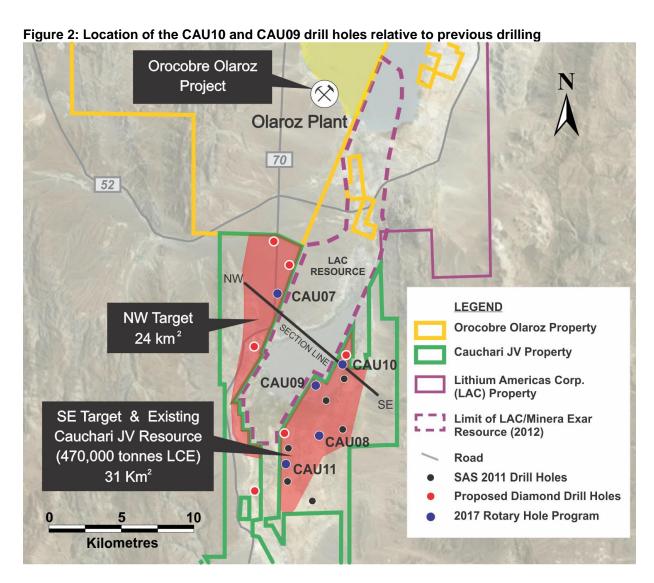
About Advantage Lithium Corp.

Advantage Lithium Corp. is a resource company specializing in the strategic acquisition, exploration and development of lithium properties and is headquartered in Vancouver, British Columbia. The common shares of the Company are listed on the TSX Venture Exchange (TSX-V: AAL), and the Company is also traded on the OTCQX Best Market in the U.S. (OTCQX: AVLIF). The Company has acquired a 100% interest in five projects in Argentina and up to a 75% interest in a sixth, called Cauchari. Cauchari is located just 20 km south of **Orocobre's** flagship Olaroz Lithium Facility.

Further information about the Company can be found at www.advantagelithium.com.

ADVANTAGE LITHIUM CORP.

Per: "David Sidoo"


David Sidoo, President Tel: 604.343.3760 | Fax: 604.683.1585

Email: info@advantagelithium.com

Cautionary Statement:

Certain information contained in this press release constitutes "forward-looking information", within the meaning of Canadian legislation. Generally, these forward-looking statements can be identified by the use of forward-looking terminology such as "is expected", "intends", or "has the potential to". Forward looking statements contained in this press release may include statements regarding the future operating or financial performance of Advantage that involve known and unknown risks and uncertainties which may not prove to be accurate. Actual results and outcomes may differ materially from what is expressed or forecasted in these forward-looking statements. Such statements are qualified in their entirety by the inherent risks and uncertainties surrounding future expectations. The forward-looking statements included in this press release are made as of the date of this press release and the Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as expressly required by applicable securities legislation.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.
