ASX ANNOUNCEMENT 27 August 2020 # **Exceptional high grade gold intercept at Crow** # Additional results extend mineralised footprint ## **Highlights:** - Thick, high grade gold intercept with visible gold at Crow: - 64m @ 13.4g/t Au from 141m in HERC238 (using a 0.3g/t cutoff), including: - 19m @ 42.0g/t Au from 170m (which in turn includes 8m @ 84.7g/t) - Additional significant RC results (>20gm*m) at Crow include: - 12m @ 2.4g/t Au from 109m in HERC175 - 24m @ 1.1g/t Au from 51m in HERC225 - 31m @ 2.2g/t Au from 69m in HERC227 Visible gold noted in HERC238 De Grey Managing Director, Glenn Jardine, commented: "Extensional and definition RC and diamond drilling at Crow on an 80 metre pattern commenced only recently in July. The exceptional result in HERC238 is the best result at the Mallina Project to date and has transformed our perceptions of the large Crow intrusion. It follows recent announcements of the discovery of new sub-vertical lodes in Crow, together with mineralised extensions of Crow to the north-west. The significance of the new RC results at Crow goes beyond the results in HERC238. They demonstrate the potential for Crow to significantly add to the overall gold endowment at Hemi and to meaningfully contribute to a potential large scale, near surface open pit production scenario. The mineralised footprint at Crow is currently approximately 1,000m by 400m and remains open. The Company's drilling program is working successfully toward our strategic goal of making Hemi a Tier 1 scale gold deposit and demonstrating the potential for further upside on a tenement wide scale"." De Grey Mining Limited (ASX: DEG, "De Grey", "Company") is pleased to provide the following drilling update for the Crow Zone at the Hemi Gold Discovery, located approximately 60km south of Port Hedland in Western Australia. Hemi is surrounded by world class infrastructure within a Tier 1 mining jurisdiction. The overall scale of Hemi continues to increase with dimensions growing to approximately 2.5km north to south and 2km west to east with three main zones (Aquila, Brolga and Crow) defined within this large gold system. The Crow zone is located immediately adjacent and north of the Aquila zone. The Company has one aircore rig operating south of Aquila and one operating in the Greater Hemi region looking for mineralised extensions and Hemi look-alikes. Two RC rigs are following up extensions identified in aircore drilling and two diamond rigs are drilling depth extensions. Initial aircore drilling at Crow defined a large system +1km long and +400m wide. A program of RC and diamond drilling has been undertaken to define and extend mineralisation. Results reported in this release provide extensions and infill to the Crow zone and importantly shows an exciting new high grade gold intercept in HERC238. Significant gold results in drilling are provide in Table 1 and Figures 1 and 2. #### **Crow** At Crow, RC and diamond drilling has targeted new mineralisation to the north of Aquila and throughout the large Crow intrusion. The style of mineralisation is similar to the Aquila and Brolga zones with more discrete lodes of sulphide rich altered and brecciated intrusion. Recent drilling shows the lodes can host high grade intervals within broader zones of lower grade mineralisation. HERC238 is an example of very high grade gold mineralisation with visible gold. The high grade intercept of **64m @ 13.4g/t** (using a 0.3g/t lower cut-off) also includes an interval of **19m @ 42g/t**. This interval includes a continuous run of individual 1m assays of **43.4**, **229.0**, **55.2**, **42.0**, **106.0**, **103.0**, **46.3** and **53.1g/t** from an overall interval of **8m @ 84.7g/t**. Additional progressive RC and diamond drilling results have been received from the 80m infill sections (Figure 1). The new results indicate Crow hosts a number of stacked subvertical to moderately south dipping lodes with many remaining open at depth and along strike. Further drilling is continuing to extend and infill mineralisation. Significant results (>10gm*m and using 0.5g/t lower cutoff) include: 37m @ 22.3g/t Au from 155m in HERC238 (incl 19m @ 42g/t Au from 170m) and 8m @ 3.1g/t Au from 197m 12m @ 2.4g/t Au from 109m in HERC175 12m @ 2.2g/t Au from 72m in HERC220 4m @ 2.5g/t Au from 116m in HERC221 10m @ 1.1g/t Au from 149m in HERC221 24m @ 1.1g/t Au from 51m in HERC225 35m @ 0.8g/t Au from 84m in HERC226 7m @ 1.7g/t Au from 42m in HERC227 31m @ 2.2g/t Au from 69m in HERC227 Figure 1: Hemi - drilling location plan showing the new strike extension to the south west of Aquila and significant aircore and RC drilling results. Figure 2: Aquila/Crow - Section 30,400E showing recent drill results. ## This announcement has been authorised for release by the De Grey Board. ### For further information, please contact: Glenn Jardine Managing Director +61 8 6117 9328 admin@degreymining.com.au Andy Beckwith Technical Director and Operations Manager +61 8 6117 9328 admin@degreymining.com.au Michael Vaughan (Media enquiries) Fivemark Partners +61 422 602 720 michael.vaughan@fivemark.com.au ## **Competent Person's Statement** The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr. Phil Tornatora, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr. Tornatora is an employee of De Grey Mining Limited. Mr. Tornatora has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Tornatora consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. ### Previously released ASX Material References that relates to Hemi Prospect includes; #### Resources: • 2020 Mallina Gold Project Resource update, 2 April 2020. #### Exploration: - Hemi confirms potential for major discovery, 6 February 2020; - Further impressive thick and high grade gold at Hemi, 11 February 2020; - Major extension of sulphide mineralisation at Hemi, 26 February 2020; - RC drilling confirms large scale gold system at Hemi, 5 March 2020; - Continuing extensive sulphide mineralisation intersected at Hemi, 10 March 2020; - Hemi continues to grow, 17 March 2020; - Major Gold Extensions defined at BROLGA, 25 March 2020. - Brolga Continues to grow, 9 April 2020 - Aircore Drilling defines third large gold zone at Hemi, 17 April 2020 - Brolga and Aquila drilling update, 22 April 2020 - Large gold system defined at Crow, 1 May 2020 - Exploration update, 20 May 2020 - Significant extension at Hemi- Aquila, 27 May 2020 - HEMI Major extension, 5 June 2020 - HEMI Broad, high grade extensions at Aquila, 9 June 2020 - Further high grade and expanded footprint at Hemi, 22 June 2020 - High gold recoveries achieved at Hemi, 9 July 2020 - Further extensions confirmed at Brolga, 10 July 2020 - Hemi scale grows with Aquila new extensions, 22 July 2020 - Strong results boost Aquila westerly extension, 5 August 2020 - Aquila mineralisation extends to 400 vertical metres, 13 August 2020 - Brolga mineralisation extends north towards Aquila and northeast towards Scooby, 21 August 2020 Table 1: Significant new results (>2 gram x m Au) | HoleID | Zone | Depth | Depth | Down | Au | Collar | Collar | Collar | Dip (°) | Azimuth | Hole | Hole | |----------|--------|-------------|--------|-------------------|-------|-----------------|------------------|---------------|---------|---------|--------------|------| | | | From
(m) | To (m) | hole
Width (m) | (g/t) | East
(GDA94) | North
(GDA94) | RL
(GDA94) | | (GDA94) | Depth
(m) | Туре | | HERC110D | Crow | 399.6 | 403.1 | 3.5 | 1.0 | 648924 | 7692418 | 68 | -56 | 330 | 540 | DD | | HERC110D | Crow | 486.9 | 489.4 | 2.5 | 2.5 | 648924 | 7692418 | 68 | -56 | 330 | 540 | DD | | incl | Crow | 488.0 | 488.6 | 0.6 | 4.8 | 648924 | 7692418 | 68 | -56 | 330 | 540 | DD | | HERC112D | Aquila | 230.6 | 248.8 | 18.2 | 0.7 | 649053 | 7692515 | 68 | -55 | 331 | 498 | DD | | incl | Aquila | 237.6 | 238.5 | 0.9 | 4.7 | 649053 | 7692515 | 68 | -55 | 331 | 498 | DD | | HERC112D | Aquila | 296.0 | 300.1 | 4.1 | 0.6 | 649053 | 7692515 | 68 | -55 | 331 | 498 | DD | | HERC112D | Crow | 325.1 | 327.5 | 2.4 | 1.6 | 649053 | 7692515 | 68 | -55 | 331 | 498 | DD | | incl | Crow | 327.0 | 327.5 | 0.5 | 6.5 | 649053 | 7692515 | 68 | -55 | 331 | 498 | DD | | HERC112D | Crow | 387.5 | 391.5 | 4.0 | 0.9 | 649053 | 7692515 | 68 | -55 | 331 | 498 | DD | | HERC112D | Crow | 472.0 | 473.3 | 1.3 | 2.4 | 649053 | 7692515 | 68 | -55 | 331 | 498 | DD | | HERC175 | Crow | 50.0 | 54.0 | 4.0 | 0.9 | 648844 | 7692874 | 68 | -56 | 331 | 216 | RC | | HERC175 | Crow | 61.0 | 62.0 | 1.0 | 3.5 | 648844 | 7692874 | 68 | -56 | 331 | 216 | RC | | HERC175 | Crow | 109.0 | 121.0 | 12.0 | 2.4 | 648844 | 7692874 | 68 | -56 | 331 | 216 | RC | | incl | Crow | 116.0 | 117.0 | 1.0 | 15.9 | 648844 | 7692874 | 68 | -56 | 331 | 216 | RC | | HERC216 | Crow | 24.0 | 28.0 | 4.0 | 0.9 | 648586 | 7693002 | 67 | -56 | 331 | 204 | RC | | HERC217 | Crow | 24.0 | 28.0 | 4.0 | 0.6 | 648626 | 7692931 | 67 | -56 | 329 | 198 | RC | | HERC217 | Crow | 33.0 | 36.0 | 3.0 | 1.3 | 648626 | 7692931 | 67 | -56 | 329 | 198 | RC | | HERC217 | Crow | 64.0 | 66.0 | 2.0 | 1.1 | 648626 | 7692931 | 67 | -56 | 329 | 198 | RC | | HERC217 | Crow | 71.0 | 76.0 | 5.0 | 1.4 | 648626 | 7692931 | 67 | -56 | 329 | 198 | RC | | HERC218 | Crow | 56.0 | 63.0 | 7.0 | 0.7 | 648667 | 7692863 | 67 | -56 | 330 | 204 | RC | | HERC218 | Crow | 81.0 | 84.0 | 3.0 | 1.0 | 648667 | 7692863 | 67 | -56 | 330 | 204 | RC | | HERC218 | Crow | 90.0 | 91.0 | 1.0 | 3.5 | 648667 | 7692863 | 67 | -56 | 330 | 204 | RC | | HERC218 | Crow | 100.0 | 102.0 | 2.0 | 1.7 | 648667 | 7692863 | 67 | -56 | 330 | 204 | RC | | HERC218 | Crow | 135.0 | 143.0 | 8.0 | 0.6 | 648667 | 7692863 | 67 | -56 | 330 | 204 | RC | | HERC219 | Crow | 48.0 | 49.0 | 1.0 | 6.7 | 648707 | 7692793 | 68 | -56 | 330 | 204 | RC | | HERC219 | Crow | 56.0 | 81.0 | 25.0 | 0.6 | 648707 | 7692793 | 68 | -56 | 330 | 204 | RC | | HERC219 | Crow | 94.0 | 96.0 | 2.0 | 1.4 | 648707 | 7692793 | 68 | -56 | 330 | 204 | RC | | HERC219 | Crow | 120.0 | 122.0 | 2.0 | 2.1 | 648707 | 7692793 | 68 | -56 | 330 | 204 | RC | | HERC219 | Crow | 160.0 | 162.0 | 2.0 | 1.6 | 648707 | 7692793 | 68 | -56 | 330 | 204 | RC | | HERC220 | Crow | 62.0 | 63.0 | 1.0 | 3.6 | 648747 | 7692723 | 68 | -56 | 329 | 252 | RC | | HERC220 | Crow | 72.0 | 84.0 | 12.0 | 2.2 | 648747 | 7692723 | 68 | -56 | 329 | 252 | RC | | incl | Crow | 72.0 | 73.0 | 1.0 | 18.6 | 648747 | 7692723 | 68 | -56 | 329 | 252 | RC | | HERC220 | Crow | 91.0 | 93.0 | 2.0 | 1.2 | 648747 | 7692723 | 68 | -56 | 329 | 252 | RC | | HERC220 | Crow | 100.0 | 103.0 | 3.0 | 1.5 | 648747 | 7692723 | 68 | -56 | 329 | 252 | RC | | HERC220 | Crow | 196.0 | 199.0 | 3.0 | 1.1 | 648747 | 7692723 | 68 | -56 | 329 | 252 | RC | | HERC221 | Crow | 116.0 | 120.0 | 4.0 | 2.5 | 648787 | 7692655 | 68 | -56 | 329 | 240 | RC | | HERC221 | Crow | 131.0 | 133.0 | 2.0 | 3.8 | 648787 | 7692655 | 68 | -56 | 329 | 240 | RC | | HERC221 | Crow | 149.0 | 159.0 | 10.0 | 1.1 | 648787 | 7692655 | 68 | -56 | 329 | 240 | RC | | HERC221 | Crow | 186.0 | 190.0 | 4.0 | 1.8 | 648787 | 7692655 | 68 | -56 | 329 | 240 | RC | | HERC225 | Crow | 51.0 | 75.0 | 24.0 | 1.1 | 648488 | 7692851 | 67 | -56 | 329 | 198 | RC | | incl | Crow | 62.0 | 63.0 | 1.0 | 12.9 | 648488 | 7692851 | 67 | -56 | 329 | 198 | RC | | HoleID | Zone | Depth
From
(m) | Depth
To (m) | Down
hole
Width (m) | Au
(g/t) | Collar
East
(GDA94) | Collar
North
(GDA94) | Collar
RL
(GDA94) | Dip (°) | Azimuth
(GDA94) | Hole
Depth
(m) | Hole
Type | |---------|------|----------------------|-----------------|---------------------------|-------------|---------------------------|----------------------------|-------------------------|---------|--------------------|----------------------|--------------| | HERC226 | Crow | 48.0 | 55.0 | 7.0 | 0.8 | 648527 | 7692782 | 67 | -56 | 332 | 204 | RC | | HERC226 | Crow | 66.0 | 67.0 | 1.0 | 2.1 | 648527 | 7692782 | 67 | -56 | 332 | 204 | RC | | HERC226 | Crow | 76.0 | 78.0 | 2.0 | 1.1 | 648527 | 7692782 | 67 | -56 | 332 | 204 | RC | | HERC226 | Crow | 84.0 | 119.0 | 35.0 | 0.8 | 648527 | 7692782 | 67 | -56 | 332 | 204 | RC | | incl | Crow | 84.0 | 85.0 | 1.0 | 4.4 | 648527 | 7692782 | 67 | -56 | 332 | 204 | RC | | HERC227 | Crow | 42.0 | 49.0 | 7.0 | 1.7 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | incl | Crow | 43.0 | 45.0 | 2.0 | 4.7 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | HERC227 | Crow | 69.0 | 100.0 | 31.0 | 2.2 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | incl | Crow | 77.0 | 79.0 | 2.0 | 5.9 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | incl | Crow | 82.0 | 84.0 | 2.0 | 5.5 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | incl | Crow | 95.0 | 98.0 | 3.0 | 4.6 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | HERC227 | Crow | 112.0 | 114.0 | 2.0 | 3.4 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | HERC227 | Crow | 120.0 | 122.0 | 2.0 | 4.2 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | HERC227 | Crow | 127.0 | 128.0 | 1.0 | 9.9 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | HERC227 | Crow | 134.0 | 137.0 | 3.0 | 0.9 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | HERC227 | Crow | 189.0 | 198.0 | 9.0 | 0.5 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | HERC227 | Crow | 205.0 | 210.0 | 5.0 | 0.7 | 648567 | 7692713 | 68 | -56 | 333 | 246 | RC | | HERC228 | Crow | 116.0 | 118.0 | 2.0 | 2.2 | 648608 | 7692644 | 68 | -55 | 330 | 288 | RC | | HERC228 | Crow | 199.0 | 212.0 | 13.0 | 0.6 | 648608 | 7692644 | 68 | -55 | 330 | 288 | RC | | HERC228 | Crow | 261.0 | 268.0 | 7.0 | 1.1 | 648608 | 7692644 | 68 | -55 | 330 | 288 | RC | | HERC238 | Crow | 59.0 | 60.0 | 1.0 | 4.9 | 648816 | 7692604 | 68 | -55 | 333 | 276 | RC | | HERC238 | Crow | 142.0 | 150.0 | 8.0 | 1.1 | 648816 | 7692604 | 68 | -55 | 333 | 276 | RC | | HERC238 | Crow | 155.0 | 192.0 | 37.0 | 22.3 | 648816 | 7692604 | 68 | -55 | 333 | 276 | RC | | incl | Crow | 170.0 | 189.0 | 19.0 | 42.0 | 648816 | 7692604 | 68 | -55 | 333 | 276 | RC | | HERC238 | Crow | 197.0 | 205.0 | 8.0 | 3.1 | 648816 | 7692604 | 68 | -55 | 333 | 276 | RC | # JORC Code, 2012 Edition – Table 1 ## **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|---|---| | Sampling techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | diamond rig drilling mainly NQ2 diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. Sample weights ranged from 2-4kg RC holes were sampled on a 1m basis with samples collected from a cone splitter mounted on the drill rig cyclone. 1m sample ranges from a typical 2.5-3.5kg | | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole
hammer, rotary air blast, auger, Bangka, sonic, etc.)
and details (e.g. core diameter, triple or standard
tube, depth of diamond tails, face-sampling bit or
other type, whether core is oriented and if so, by
what method, etc.). | core of a diameter of 51mm. | | Criteria | JORC Code explanation | Commentary | |--|--|---| | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Core recovery is measured for each drilling run by the driller and then checked by the Company geological team during the mark up and logging process. RC and aircore samples were visually assessed for recovery. Samples are considered representative with generally good recovery. Deeper RC and aircore holes encountered water, with some intervals having less than optimal recovery and possible contamination. No sample bias is observed. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. | The entire hole has been geologically logged and core was photographed by Company geologists, with systematic sampling undertaken based on rock type and alteration observed | | Sub-sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Core samples were collected with a diamond drill rig drilling HQ or NQ2 diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. RC sampling was carried out by a cone splitter on the rig cyclone and drill cuttings were sampled on a 1m basis in bedrock and 4m composite basis in cover. Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. Samples for selected holes were collected on a 1m basis by spear from 1m sample piles. Industry prepared independent standards are inserted approximately 1 in 20 samples. Each sample was dried, split, crushed and pulverised. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling Core and RC samples are appropriate for use in a resource estimate. Aircore samples are generally of good quality and appropriate for delineation of geochemical trends but are not generally used in resource estimates. | | Criteria | JORC Code explanation | Commentary | |---|---|--| | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | The samples were submitted to a commercial independent laboratory in Perth, Australia. For diamond core and RC samples Au was analysed by a 50g charge Fire assay fusion technique with an AAS finish and multi-elements by ICPAES and ICPMS Aircore samples were analysed for Au using 25g aqua regia extraction with ICPMS finish and multi-elements by ICPAES and ICPMS using aqua regia digestion The techniques are considered quantitative in nature. As discussed previously certified reference standards were inserted by the Company and the laboratory also carries out internal standards in individual batches The standards and duplicates were considered satisfactory | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | j | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Diamond and RC drill hole collar locations are located by DGPS to an accuracy of +/-10cm. Aircore hole collar locations are located by DGPS to an accuracy of +/-10cm., or by handheld GPS to an accuracy of 3m. Locations are given in GDA94 zone 50 projection Diagrams and location table are provided in the report Topographic control is by detailed airphoto and Differential GPS data. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drill spacing varies from 80m x 40m to 320m x 80m. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. Data spacing and distribution of RC drilling is not yet sufficient to provide support for the results to be used in a resource estimate. Sample compositing has not been applied except in reporting of drill intercepts, as described in this Table | | Orientation of
data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation | | | Criteria | JORC Code explanation | Commentary | | | | |--------------------|---|---|--|--|--| | | and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | In some cases, drilling is not at right angles to the dip of mineralised structures and as such true widths are less than downhole widths. This is allowed for when geological interpretations are completed. | | | | | Sample
security | The measures taken to ensure sample security. | Samples were collected by company
personnel and delivered direct to the
laboratory via a transport contractor. | | | | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits have been completed. Review of
QAQC data has been carried out by
database consultants and company
geologists. | | | | Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|---|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. | by De Grey Mining Ltd or its 100% owned subsidiaries. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by
other parties. | The tenements have had various levels
of previous surface geochemical
sampling and wide spaced aircore and
RAB drilling by De Grey Mining. Limited
previous RC drilling was carried out at the
Scooby Prospect. Airborne
aeromagnetics/radiometrics has been
flown previously. | | Geology | Deposit type, geological setting and style of
mineralisation. | The mineralisation style is not well understood to date but is thought to be hydrothermally emplaced gold mineralisation within structures and intrusions. Host rocks comprise igneous rocks intruding Mallina Basin metasediments. Style is similar to some other Western Australian gold deposits. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly | Drill hole location and directional information provide in the report. | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | explain why this is the case. | | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | grade of 0.5g/t gold with an internal dilution of 4m maximum. Higher grade intervals included in the above intercepts are reported at a 3g/t Au lower cut with an internal dilution of 2m maximum. Intercepts are length weighted averaged. No maximum cuts have been made. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | approximately perpendicular to the strike of mineralisation. • Drilling is not always perpendicular to the dip of mineralisation and true widths are less than downhole widths. Estimates of true widths will only be possible when all results are received, and final geological interpretations have been completed. | | Diagrams | Appropriate maps and sections (with scales) and
tabulations of intercepts should be included for any
significant discovery being reported These should
include, but not be limited to a plan view of drill hole
collar locations and appropriate sectional views. | report. | | Balanced
reporting | Where comprehensive reporting of all Exploration
Results is not practicable, representative reporting
of both low and high grades and/or widths should
be practiced to avoid misleading reporting of
Exploration Results. | figures and all significant results are provided in this report. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to). geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious of contaminating substances. | further details will be reported in future releases when data is available. | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | undertaken to test for strike extensions to mineralisation. Programs of follow up RC and diamond drilling aimed at extending resources at |