ACTIVITIES REPORT DECEMBER QUARTER 2020

HIGHLIGHTS

- Development of the Karlawinda Gold Project (KGP) is proceeding as planned and is expected to culminate in first gold production in the June 2021 quarter.
- Considerable progress during the quarter on the development of the KGP including:
 - Concreting and civil earthworks for processing plant substantially completed;
 - Ball mill manufacture completed, shipped to Port Hedland in December 2020 and delivered to KGP in early January 2021;
 - Majority of processing equipment and fabricated steelwork delivered to site;
 - Commencement of equipment installation in the reclaim, CIL and goldroom areas;
 - Continued progress on the construction of the gas lateral pipeline with line pipe delivered, contractors mobilised, and clearing and civils commenced; and
 - Earthmoving contractor mobilised to site and commenced mining in the Bibra open pit and construction of Tailings Storage Facility (TSF).
- During the quarter \$30.2 million was spent on KGP development with total project expenditure to date of \$92.7 million.
- Development cost estimate continues to be in line with budget of \$165-\$170 million with available funding of \$96.4 representing a 29% contingency allowance at the midpoint of the forecast cost to complete.
- Available funding of \$96.4 million made up of cash at bank of \$18.9 million at end of quarter and undrawn bank facility of \$77.5 million.
- All conditions precedent to first drawdown of \$80 million debt facility with Macquarie Bank satisfied during the quarter with \$2.5 million drawn to the end of December 2020.
- Significant workflows planned for the March 2021 quarter include:
 - Continued structural and plate steel work and equipment installation;
 - Commencement of electrical installation; and
 - Completion of start-up ROM pad and TSF embankment earthworks.
- Grade control of 4 million tonnes (+/- 1 year mill feed) of laterite ore in the Bibra open pit complete and confirming the reserve model.
- 6,500 metre near mine infill and extensional drill programme commenced, with significant early (from first 2,500m) results including:
 - 5 metres @ 3.77g/t from 36 to 41m
- 4 metres @ 2.09g/t from 35 to 39m
- 7 metres @ 1.59g/t from 48 to 55m
- 2 metres @ 3.68g/t from 49 to 51m

The results of this programme will be used to update the MRE and allow for studies to assess the economic potential of Easky and Finns deposits

- Commenced a high resolution aeromagnetic survey over the regional tenement package (~36,000 line km) to develop detailed structural interpretation for target generation.
- Stategic investment of \$1.2 million committed to take a 12% interest in Pilbara gold and base metals explorer DiscovEx Resources Ltd (ASX:DCX) which holds a prospective 2,247km2 tenement package proximal to Karlawinda.

DECEMBER 2020 QUARTER ACTIVITIES SUMMARY

Capricorn Metals Ltd (Capricorn) is constructing the wholly owned Karlawinda Gold Project (KGP) located 65 kilometres south-east of Newman in the Pilbara region of Western Australia.

Karlawinda Gold Project Development

The project development is proceeding as planned and is expected to culminate in first gold production in the June 2021 quarter.

The KGP processing plant throughput capacity is anticipated to be:

- \circ Up to 4.5 5.0 mtpa in the oxide/fresh ore blend in the first 3 years; and
- $_{\odot}~$ Up to 4.0 4.5 mtpa in solely fresh rock ore in years four and beyond.

These throughput capacities are expected to produce a long-term production range of 110,000 to 125,000 ounces per annum.

During the quarter, the Company made significant progress on the development of the project as detailed below:

Engineering and Procurement

The steel pipe for the 40km gas lateral pipeline arrived on site in November 2020. Mobilisation of APA subcontractors commenced at the end of the quarter with some preliminary clearing works carried out on the gas lateral pipeline and civil work on the gas delivery station located on site.

During the December 2020 quarter the manufacture of the ball mill by CITIC was completed in Luo Yang, China. Following completion of the required manufacture quality control inspections and tests, the mill components were despatched to Australia. Upon arrival to Port Hedland in late December 2020, the mill components were transported to KGP in early January 2021. Other than the girth gear and feed chute trolley, which are expected on site in February 2021, all mill components are on site ready for installation.

During the quarter major processing equipment including the cone crushers, screens (crushing, gravity, trash, and carbon), vibrating and apron feeders, conveyor components, elution column and boiler were delivered to site. Structural and plate steel packages continued to arrive on site and by the end of December 2020 most of the major processing equipment and fabricated steelwork had been delivered.

Ball mill being offloaded from ship in Port Hedland

Ball mill oversize loads being delivered to site

After completion of a competitive pricing process the contract for the electrical and instrumentation installation contract was awarded to WAY Electrical Pty Ltd. Installation is expected to commence in January 2021.

Site Works

Construction of the processing plant continued with significant progress made in the current quarter including:

- Commenced crusher buildings structural steel erection (secondary crusher, scalping screen and product screen);
- Installed crushed ore reclaim chutes and feeders;
- Commenced mill and cyclone tower building structural steel erection;
- Numerous items of equipment to be installed in the leaching, adsorption and goldroom areas now in place;
- Completed the power station engine hall and crane installation;
- Clearing and topsoiling of the air strip runway was completed;
- Compaction of the subgrade within the decant area, lower TSF internal section and wall areas was completed. The embankment keyway was excavated with compacted clay placement to commence in January 2021; and
- Continued progress on the construction of the gas lateral pipeline with line pipe delivered, contractors mobilised, and clearing and civils commenced.

Primary and secondary crusher area

Mill and CIL tank area

CIL and gold room area with crushed ore stockpile in background

Power station

Mining

The open pit earthmoving contractor, MACA Mining Pty Ltd ("MACA") commenced mobilising mining equipment to site in October 2020. Mining activity started in the Bibra open pit during the quarter with 406,097BCM of waste material mined and utilised for processing plant civil works, flood bunding, road and ROM pad construction. Mining increased to double shift by the end of the quarter utilising a new fleet of mining equipment including a Liebherr R9200 200-tonne excavator and four Hitachi EH3500AC-3 180-tonne capacity haul trucks. A second excavator and truck fleet are due to be mobilised at the end of the June 2021 quarter.

In order to provide certainty to the early stages of mining and production at the KGP, a pre-production grade control drilling programme in the order of 45,000 metres was completed during the quarter. This grade control drilling has delineated over 4 million tonnes of ore and is in-line with the Ore Reserve in the areas drilled. This drilling defines the entire laterite portion of the deposit and provides confidence in the planning of mining activities and management of mill feed for the first year of

operations. This completes the pre-production phase of grade control drilling with further grade control drilling to commence once oxide mineralisation is exposed through mining activities.

Bibra open pit

Development Outlook - March 2021 Quarter

Development activities at KGP in the March 2021 quarter will include various key work streams being progressed including:

- Complete concrete works;
- Continue structural steel and equipment installation;
- Commence electrical installation;
- Install power station generators and electricals;
- Install HV powerline to the accommodation village;
- Complete initial stages of ROM pad and TSF embankment construction; and
- Commence mining of ore.
- Practical completion and commissioning of the gas lateral pipeline and power station ahead of the commencement of commercial operations.

Exploration

Capricorn wholly owns a 2,052 square kilometre tenement package at Karlawinda which includes the greenstone belt hosting the 2.1 million ounce Resource and 1.2 million ounce Reserve Bibra gold deposit and other significant greenstone areas.

Due to the location of the project, in the Pilbara region of Western Australia (a region not historically explored for gold), very little modern and meaningful gold exploration has been completed outside of the immediate Bibra deposit (Figure 1). The Company is restricted to areas of the tenement package that are cleared for aboriginal heritage purposes and a priority over the last 6 months has been to carry out the necessary ethnographical and archaeological surveys required to be able to conduct meaningful scale regional exploration activities on the tenure. This work has progressed significantly and will be ongoing as the Company continues extensive drilling programmes across the KGP ground.

In the September 2020 quarter the Company received consent from the Jigalong Community and the Minister for Mines and Petroleum to conduct exploration activities over tenements E52/3474 and E52/3533 which unlocks the Mundiwindi greenstone. The Mundiwindi greenstone was first identified

through mapping in 2018 and has not been subject to any previous gold exploration. The rock types observed are interpreted to be similar to those seen within the host stratigraphy of Bibra and of similar metamorphic grade. This suggests both areas are similar age and tectonic regime.

Heritage surveys on large areas are planned for the March 2021 quarter in order to facilitate commencement of an initial broad scale reconnaissance aircore drilling programme across this prospective area.

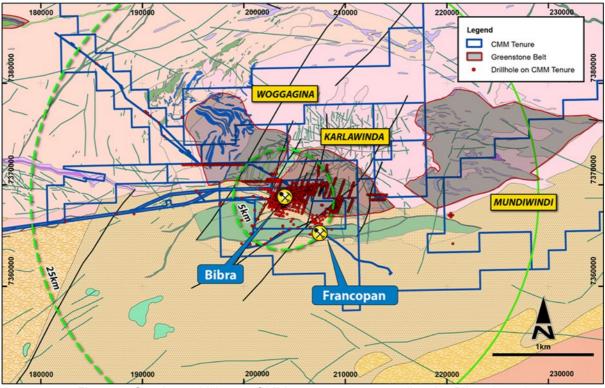


Figure 1: Capricorn drilling on CMM tenements surrounding the Bibra deposit

Near Mine RC Drilling Programme

A reverse circulation (RC) drill rig was mobilised to site late in the December 2020 quarter to infilldrill areas of the Resource where existing drilling consists of mainly shallow aircore (AC) holes. The 6,500 metre programme (as shown in Figure 2) was designed to convert Inferred Resources within the March 2020 Mineral Resource Estimate (MRE) to Indicated, particularly between the current \$1,600 Ore Reserve pit design and higher gold price open-pit optimisations. The programme is also designed to test extensions to the Southern Corridor pit.

Drilling has been completed on approximately 2,500 metres of the programme with a further 4,000 metres to be completed in the March 2021 quarter. The infill results received to date confirm the current MRE and together with the remainder of the programme will be used to update the MRE and allow for studies to assess the economic potential of Easky and Finns deposits.

Significant intercepts from the assays received to date of the RC programme include;

- 5m @ 3.77g/t from 36m in KBRC1470
- 7m @ 1.59g/t from 48m in KBRC1456
- 4m @ 2.09g/t from 35m in KBRC1467
- 2m @ 3.68g/t from 49m in KBRC1467
- 12m @ 0.74g/t from 44m in KBRC1455
- 11m @ 0.75g/t from 67m in KBRC1468

Further details of the completed drilling are provided in Appendix 2.

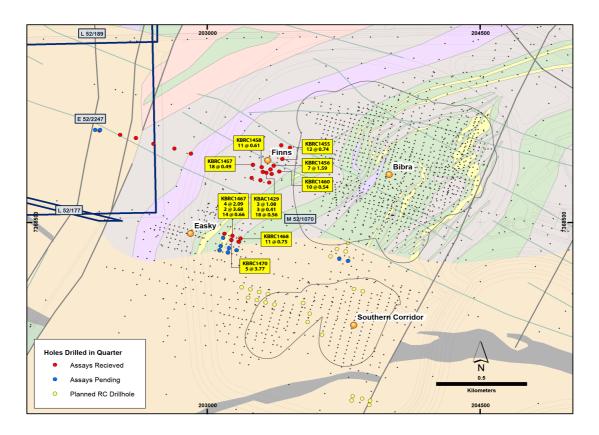


Figure 2: Near mine RC Drill Programme

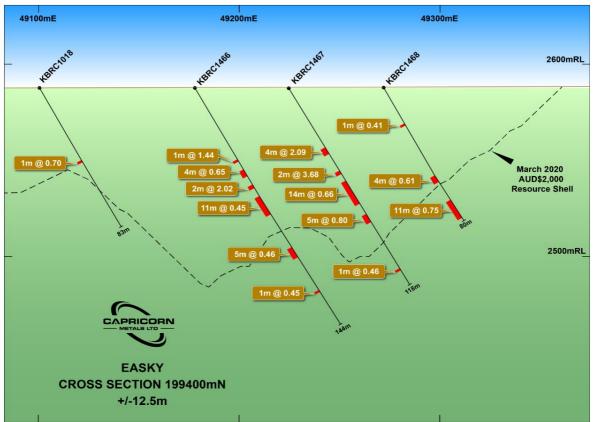


Figure 3: Cross Section of the Easky Drilling

Aircore Drilling Programme

A study of the geological, geophysical and geochemical datasets from Capricorn's exploration activities identified 8 high-quality targets within a 15 kilometre radius of the Karlawinda processing plant location. These 8 targets are located on geochemical anomalies with little to no historic drilling. The anomalies are in several cases coincident with major fault structures and geological contacts that contain gold mineralisation along strike and a 20,000 metre drill programme has been developed to test these targets.

An aircore (AC) drill rig was mobilised to site during the September 2020 quarter to drill an 11,000 metre AC drilling programme, which is a subset of the 20,000 metre total programme planned to test the 8 targets. The 11,000m (Phase 1) programme falls within previously heritage cleared areas whilst heritage surveys over the remaining uncleared areas (Phase 2) was conducted in late 2020. Phase 2 is expected to be drilled in the June 2021 quarter. A significant amount of drilling in Phase 1 related to sterilisation drilling for infrastructure purposes with most results released in the September 2020 quarterly report.

The final assay results from the Phase 1 AC programme were received in the current quarter and included near mine hole KBAC1429 (see fig 2). This hole returned an intercept with promising width:

- 3m @ 1.08g/t from 9m
- 3m @ 0.41g/t from 18m
- 18m @ 0.56g/t from 39m

This intercept has prompted follow up with an RC rig for a 6,500m near mine programme as noted above.

Further details of the completed AC drilling are provided in Appendix 2 of the September quarterly report released to the ASX on 27th October 2020.

Aeromagnetic Survey

Capricorn commenced a high resolution (50m line spaced) aeromagnetic survey over the regional tenement package (~36,000 line kilometres) in September 2020. The survey was expected to be completed in the December 2020 quarter but due to a maintenance issue with the survey aircraft, the programme will now be completed in January 2021.

Currently Capricorn only has high resolution surveys over the project area (Bibra) and Mundiwindi, with the remainder of the tenement package being 200 metre line spaced open file surveys. The new survey will be merged with the existing detailed surveys to create a complete detailed image of the whole tenement package. This will allow detailed structural and lithological interpretation which can then be used as a framework for target generation.

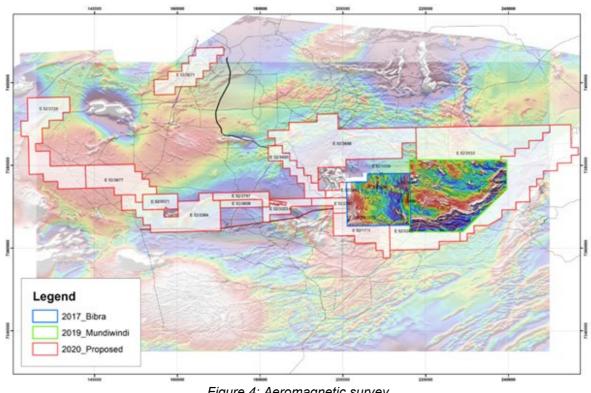


Figure 4: Aeromagnetic survey

Corporate

At the end of the December 2020 quarter, Capricorn had \$18.9 million in cash and had spent \$92.7 million in project development expenditure, leaving a balance of between \$72.3 million and \$77.3 forecast spend to complete the project.

On 20 October 2020 the Company announced it had satisfied all conditions precedent to commence draw down on the \$80 million debt facility with Macquarie Bank. As at the end of December 2020, the Company had drawn down \$2.5 million of the facility. With the current cash position of \$18.9 million and the remaining available debt facility of \$77.5 million, the Company's current total available funding is 96.4 million representing a 29% contingency allowance at the midpoint of the forecast cost to complete.

Subsequent to the end of the quarter, the Company committed \$1.2 million in a strategic investment with DiscovEx Resources Ltd (ASX: DCX) via participation in a proposed share placement as announced by DCX on 18 January 2021. If the transactions, of which the placement is a part, are approved by DCX shareholders, Capricorn will become a substantial shareholder of DCX, holding a 12% (approx.) interest and the Company's CEO Kim Massey will join the DCX board as a non-executive director.

After completion of the proposed transactions DCX will hold controlling interests in the Sylvania Project tenements, an extensive 2,247km², highly prospective package located adjacent to Capricorn's Karlawinda Gold Project.

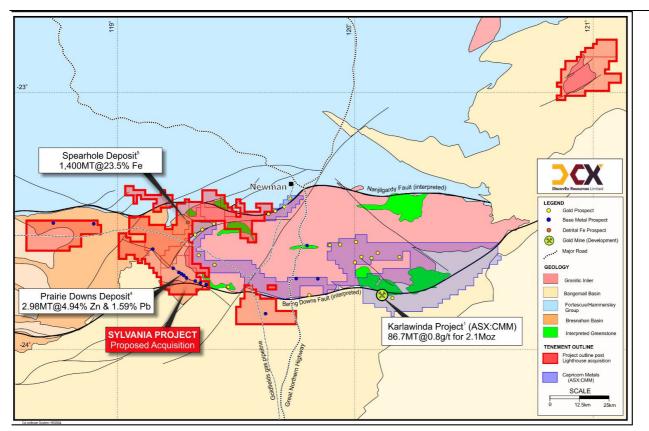


Figure 5: DCX tenure and interpretive geology

During the quarter, payments to related parties of Capricorn and their associates (being the Company's directors) totalled \$155,588. The payments were remuneration for their roles, including superannuation.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr. Jarrad Price who is a full-time employee of the Company. Mr. Price is a current Member of the Australian Institute of Mining and Metallurgy and has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Price consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The information in this report that relates to Mineral Resources is based on information compiled by Mr. Jarrad Price who is Resource Geologist and an employee of the Company. Mr. Jarrad Price is a current Member of the Australian Institute of Geoscientists and has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Price consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The information in this report that relates to Ore Reserves is based on information compiled by Mr Daniel Donald. Mr Donald is an employee of Entech Pty Ltd and is a Member of the Australian Institute of Mining and Metallurgy (MAusIMM, #210032). Mr Donald has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Donald consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation of belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. The detailed reasons for that conclusion are outlined throughout this announcement and all material assumptions are disclosed.

However, forward looking statements are subject to risks, uncertainties, assumptions and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements.

Such risks include, but are not limited to resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as governmental regulation and judicial outcomes.

For a more detailed discussion of such risks and other factors, see the Company's Annual Reports, as well as the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

APPENDIX 1 – TENEMENT SCHEDULE

Australia:

Lease	Project	Company	Blocks ¹	Status	Date of Grant/ Application	Expiry
Tenements	1					
E52/1711	Karlawinda	Greenmount	33	Granted	05/08/2004	04/08/2020
E52/2247	Karlawinda	Greenmount	16	Granted	21/07/2009	20/07/2021
E52/2398	Karlawinda	Greenmount	15	Granted	28/04/2010	27/04/2022
E52/2409	Karlawinda	Greenmount	8	Granted	15/06/2010	14/06/2022
E52/3323	Karlawinda	Greenmount	11	Granted	11/03/2016	10/03/2021
E52/3363	Karlawinda	Greenmount	36	Granted	13/01/2017	12/01/2022
E52/3364	Karlawinda	Greenmount	44	Granted	07/03/2017	06/03/2022
E52/3450	Karlawinda	Greenmount	16	Granted	13/01/2017	12/01/2022
E52/3474	Karlawinda	Greenmount	128	Granted	03/07/2017	02/07/2022
E52/3533	Karlawinda	Greenmount	109	Granted	06/11/2018	05/11/2023
E52/3541	Karlawinda	Greenmount	7	Granted	28/03/2018	27/03/2023
E52/3543	Karlawinda	Greenmount	8	Granted	28/03/2018	27/03/2023
E52/3571	Karlawinda	Greenmount	10	Granted	18/09/2018	17/09/2023
E52/3656	Karlawinda	Greenmount	94	Granted	24/08/2018	17/02/2025
E52/3671	Karlawinda	Greenmount	26	Granted	02/07/2019	01/072024
E52/3677	Karlawinda	Greenmount	31	Granted	16/07/2020	15/07/2025
E52/3729	Karlawinda	Greenmount	51	Granted	17/02/2020	16/02/2025
E52/3797	Karlawinda	Greenmount	9	Granted	06/08/2020	05/08/2025
E52/3808	Karlawinda	Greenmount	6	Application	26/03/2020	-
Total Blocks			658		· · ·	
Miscellaneous Lic	ences					
L52/174	Karlawinda	Greenmount	22.17 ha	Granted	18/04/2018	17/04/2039
L52/177	Karlawinda	Greenmount	12.20 ha	Granted	08/12/2017	07/12/2038
L52/178	Karlawinda	Greenmount	21.41 ha	Granted	08/12/2017	07/12/2038
L52/179	Karlawinda	Greenmount	127.83 ha	Granted	28/05/2018	27/05/2039
L52/181	Karlawinda	Greenmount	1.00 ha	Granted	18/04/2018	17/04/2039
L52/183	Karlawinda	Greenmount	28.46 ha	Granted	03/05/2018	2/05/2039
L52/189	Karlawinda	Greenmount	1258 ha	Granted	10/04/2019	10/04/2040
L52/192	Karlawinda	Greenmount	220 ha	Granted	16/05/2018	28/09/2039
L52/197	Karlawinda	Greenmount	173ha	Granted	10/04/2019	10/04/2040
L52/223	Karlawinda	Greenmount	371.1ha	Application	12/10/2020	-
L52/224	Karlawinda	Greenmount	183.3ha	Application	12/10/2020	-
Mining Lease						
M52/1070	Karlawinda	Greenmount	2975.07 ha	Granted	23/11/2016	22/11/2037

Note:

1. The area measurement for one block can vary between 2.8 – 3.2 km²

Madagascar:

Title Number	Permit Type	Grant Date	Expiry Date	Term (Years)	Project Name	Total Carres (New - 0.391km2)	Interest %	Note
25095	PE	18-Jan-07	17-Jan-47	40	Ampanihy - Maniry	48	100%	1
Total Carr	Total Carres							

Note:

1. Leased to SQNY – Royalty and partial tenement fees payable to subsidiary Mada-Aust SARL.

APPENDIX 2 – SIGINIFICANT RESULTS

203366.8	7368827.2	500.20					
		589.36	-90	103.56	9	12	3@1.08
					18	21	3 @ 0.41
					39	57	18 @ 0.56
203409.1	7368945.3	590.59	-90	103.56	58	59	1@3.97
					71	72	1 @ 0.54
203420.8	7368889.9	589.48	-90	103.56	24	25	1 @ 0.58
					42	45	3 @ 1.29
					55	61	6 @ 0.74
203420.8	7368889.9	589.48	-90	103.56	38	40	2 @ 1.95
					44	56	12 @ 0.74
203366.8	7368827.2	589.36	-90	103.56	9	10	1 @ 0.48
					28	30	2 @ 0.61
					41	44	3 @ 0.73
					48	55	7 @ 1.59
203366.8	7368827.2	589.36	-90	103.56	31	49	18 @ 0.49
					82	86	4 @ 0.49
					99	100	1 @ 0.48
203300.4	7368819.1	589.92	-90	103.56	18	19	1 @ 0.79
					24	29	5 @ 0.36
					65	76	11 @ 0.61
					83	84	1@1.44
203348.7	7368806.2	589.92	-90	103.56	30	31	1 @ 0.56
					46	56	10 @ 0.32
203396.9	7368793.2	589.92	-90	103.56	28	38	10 @ 0.54
					47	48	1 @ 0.40
203306.4	7368791.6	588.67	-90	103.56	39	42	3 @ 0.59
					46	54	8 @ 0.42
					60	65	5 @ 0.48
203354.7	7368778.7	588.67	-90	103.56	10	11	1 @ 0.55
					34	35	1 @ 0.76
					42		8 @ 0.40
203246	7368756	587.4	-90	103.56	21	27	6 @ 0.66
					47		4 @ 1.72
							16 @ 0.48
	1				-		1 @ 0.42
							15 @ 0.54
					-		1 @ 0.59
203095.4	7368434	586.88	-60	103.56			1@1.44
							4 @ 0.65
							2 @ 2.02
							11 @ 0.45
							3 @ 0.33
							6 @ 0.46
202140.0	7260424.0	E06.00	<u> </u>	102.50			1@0.45
203140.0	/308421.9	30.080	-00	103.20	1		4@2.09
							2@3.68
							14 @ 0.66
							5@0.80
202405	7260405 0	E07.00	61	100 0			1@0.46
203185	/ 308405.8	JQ1/9C	-01	108.6			1@0.41
							4 @ 0.61
202125 4	7260200	E07 61	60	102.02	1		11 @ 0.75
203135.4	/308398	201.01	-60	103.83	-		5@3.77
							3@0.75
							5@0.52
202472.2	7260207 4	E07 75	60	102.02			1@0.43
2031/3.3	/30838/.1	587.75	-00	103.83	1		1 @ 0.55 1 @ 1.92
	203366.8 203366.8 203300.4 203348.7 203396.9 203306.4 203354.7	203366.8 7368827.2 203366.8 7368827.2 203300.4 7368819.1 203300.4 7368819.1 203300.4 7368793.2 203396.9 7368793.2 203306.4 7368793.2 203306.4 7368791.6 203354.7 7368778.7 203246 7368756 203294.3 7368743.1 2033095.4 7368730.1 203095.4 7368434 203140.6 7368421.9 203185 7368405.8 203135.4 7368398	203366.8 7368827.2 589.36 203366.8 7368827.2 589.36 203300.4 7368819.1 589.92 203300.4 7368806.2 589.92 203396.9 7368793.2 589.92 203306.4 7368791.6 588.67 203306.4 7368778.7 588.67 2033246 7368756 587.4 203294.3 7368730.1 587.4 203395.4 7368730.1 587.4 203395.4 7368434 586.88 203140.6 7368421.9 586.88 203140.6 7368398 587.61 203135.4 7368398 587.61	203366.8 7368827.2 589.36 -90 203366.8 7368827.2 589.36 -90 203300.4 7368819.1 589.92 -90 203300.4 7368806.2 589.92 -90 203396.9 7368793.2 589.92 -90 203306.4 7368791.6 588.67 -90 203306.4 7368778.7 588.67 -90 2033246 7368778.7 588.67 -90 203246 7368730.1 587.4 -90 2033095.4 7368730.1 587.4 -90 2033095.4 7368730.1 587.4 -90 203140.6 7368434 586.88 -60 203140.6 7368421.9 586.88 -60 203185 7368405.8 587.66 -61 203135.4 7368398 587.61 -60	203366.8 7368827.2 589.36 -90 103.56 203366.8 7368827.2 589.36 -90 103.56 203300.4 7368819.1 589.92 -90 103.56 203300.4 7368806.2 589.92 -90 103.56 203306.4 7368793.2 589.92 -90 103.56 203306.4 7368793.2 589.92 -90 103.56 203306.4 7368793.2 589.92 -90 103.56 203306.4 7368793.2 588.67 -90 103.56 203354.7 7368778.7 588.67 -90 103.56 203246 7368756 587.4 -90 103.56 203342.6 7368743.1 587.4 -90 103.56 203342.6 7368730.1 587.4 -90 103.56 203140.6 7368434 586.88 -60 103.56 203140.6 7368405.8 587.66 -61 108.6 203135.4 7368398 587.61 -60 103.83	55 589.48 -90 103.56 38 203366.8 7368827.2 589.36 -90 103.56 9 203366.8 7368827.2 589.36 -90 103.56 9 203366.8 7368827.2 589.36 -90 103.56 31 203366.8 7368827.2 589.36 -90 103.56 31 203300.4 7368819.1 589.92 -90 103.56 18 203300.4 7368806.2 589.92 -90 103.56 30 203396.9 7368793.2 589.92 -90 103.56 39 203396.9 7368793.2 589.92 -90 103.56 39 203306.4 7368793.2 589.92 -90 103.56 39 203396.9 7368793.2 589.92 -90 103.56 39 203306.4 7368756 587.4 -90 103.56 10 203246 7368756 587.4 -90 103.56 38	203420.87368889.9Ses.48-90103.563840203366.87368827.2589.36-90103.56910203366.87368827.2589.36-90103.563149203366.87368827.2589.36-90103.563149203306.47368819.1589.92-90103.563149203300.47368806.2589.92-90103.563031203306.77368806.2589.92-90103.563031203306.97368793.2589.92-90103.563031203306.47368791.6588.67-90103.563942203306.47368791.6588.67-90103.563942203306.47368791.6588.67-90103.563043203306.47368793.7588.67-90103.563043203306.47368793.7588.67-90103.563853203342.67368730.1587.4-90103.563853203342.67368730.1587.4-90103.563853203342.67368431586.88-60103.563853203342.67368431586.88-60103.563853203342.67368431586.88-60103.563853203342.67368431586.88-60103.563853 </td

Hole ID	NAT East	NAT North	NAT RL	Dip	NAT Azi	From To Intersection
KBAC1331	209812	7368854	590	-60	195	NSA
KBAC1332	209717	7368885	590	-60	195	NSA
KBAC1333	209629	7368898	590	-60	195	NSA
KBAC1334	209504	7368923	590	-60	195	NSA
KBAC1335	209234	7369019	590	-60	195	NSA
KBAC1336	209140	7369025	590	-60	195	NSA
KBAC1337	209040	7369064	590	-60	195	NSA
KBAC1338	208872	7369087	590	-60	195	NSA
KBAC1339	208704	7369127	590	-60	195	NSA
KBAC1340	208681	7369157	590	-60	195	NSA
KBAC1341	208586	7369188	590	-60	195	NSA
KBAC1342	208475	7369206	590	-60	195	NSA
KBAC1343	208387	7369230	590	-60	195	NSA
KBAC1344	208282	7369262	590	-60	195	NSA
KBAC1345	208191	7369283	590	-60	195	NSA
KBAC1346	207996	7369348	590	-60	195	NSA
KBAC1347	207894	7369362	590	-60	195	NSA
KBAC1348	207801	7369380	590	-60	195	NSA
KBAC1349	207703	7369416	590	-60	195	NSA
KBAC1350	208805	7368739	590	-60	195	NSA
KBAC1351	208843	7368827	590	-60	195	NSA
KBAC1352	208883	7368918	590	-60	195	NSA
KBAC1353	208910	7369021	590	-60	195	NSA
KBAC1354	208955	7369115	590	-60	195	NSA
KBAC1355	208995	7369206	590	-60	195	NSA
KBAC1356	209030	7369299	590	-60	195	NSA
KBAC1357	209063	7369393	590	-60	195	NSA
KBAC1358	209102	7369490	590	-60	195	NSA
KBAC1359	209132	7369589	590	-60	195	NSA
KBAC1360	209171	7369671	590	-60	195	NSA
KBAC1361	209207	7369762	590	-60	195	NSA
KBAC1362	209230	7369865	590	-60	195	NSA
KBAC1363	209277	7369957	590	-60	195	NSA
KBAC1364	209298	7370008	590	-60	195	NSA
KBAC1365	209306	7370061	590	-60	195	NSA
KBAC1366	209326	7370091	590	-60	195	NSA
KBAC1367	209341	7370146	590	-60	195	NSA
KBAC1368	209359	7370195	590	-60	195	NSA
KBAC1369	209386	7370241	590	-60	195	NSA
KBAC1370	209396	7370288	590	-60	195	NSA
KBAC1371	209417	7370335	590	-60	195	NSA
KBAC1372	209433	7370380	590	-60	195	NSA
KBAC1373	209452	7370423	590	-60	195	NSA
KBAC1374	209477	7370525	590	-60	195	NSA
KBAC1375	209512	7370619	590	-60	195	NSA
KBAC1376	209560	7370708	590	-60	195	NSA
KBAC1377	209909	7368829	590	-60	195	NSA
KBAC1378	209929	7368941	590	-60	195	NSA
KBAC1379	209997	7369029	590	-60	195	NSA
KBAC1380	210017	7369125	590	-60	195	NSA
KBAC1381	210046	7369219	590	-60	195	NSA
KBAC1382	210076	7369312	590	-60	195	NSA
KBAC1383	210011	7369376	590	-60	195	NSA
KBAC1384	210050	7369481	590	-60	195	NSA
KBAC1385	210078	7369559	590	-60	195	NSA
KBAC1386	210118	7369646	590	-60	195	NSA
KBAC1387	210131	7369704	590	-60	195	NSA
KBAC1388	210155	7369753	590	-60	195	NSA
KBAC1389	210172	7369807	590	-60	195	NSA
KBAC1390	210185	7369847	590	-60	195	NSA
KBAC1391	210204	7369901	590	-60	195	NSA
KBAC1392	210221	7369941	590	-60	195	NSA
KBAC1393	210262	7370033	590	-60	195	NSA
KBAC1394	210303	7370132	590	-60	195	NSA
KBAC1395	210323	7370225	590	-60	195	NSA
KBAC1396	210368	7370314	590	-60	195	NSA
KBAC1397	213505	7369612	590	-60	195	NSA
	213409	7369609	590	-60	195	NSA

KBAC1399	213304	7369599	590	-60	195	NSA
KBAC1400	213206	7369602	590	-60	195	NSA
KBAC1401	213113	7369605	590	-60	195	NSA
KBAC1402	213008	7369602	590	-60	195	NSA
KBAC1403	212911	7369593	590	-60	195	NSA
KBAC1404	212810	7369611	590	-60	195	NSA
KBAC1405	212710	7369585	590	-60	195	NSA
KBAC1406	212609	7369603	590	-60	195	NSA
KBAC1407	212506	7369602	590	-60	195	NSA
KBAC1408	212404	7369614	590	-60	195	NSA
KBAC1409	212307	7369610	590	-60	195	NSA
KBAC1410	212212	7369599	590	-60	195	NSA
KBAC1411	212115	7369594	590	-60	195	NSA
KBAC1412	212012	7369594	590	-60	195	NSA
KBAC1413	211902	7369589	590	-60	195	NSA
KBAC1414	210757	7369680	590	-60	195	NSA
KBAC1415	210580	7369768	590	-60	195	NSA
KBAC1415	210300	7369814	590	-60	195	NSA
KBAC1417	210404	7369842	590	-60	195	NSA
KBAC1417	210404	7369878	590	-60	195	NSA
KBAC1418 KBAC1419	210305	7369966	590	-60	195	NSA
KBAC1419 KBAC1420	210128	7370007	590	-60	195	NSA
KBAC1420 KBAC1421	209943	7370044	590	-60	195	NSA
KBAC1422	209854	7370082	590	-60	195	NSA
KBAC1423	209669	7370164	590	-60	195	NSA
KBAC1424	209584	7370211	590	-60	195	NSA
KBAC1425	209486	7370250	590	-60	195	NSA
KBAC1426	197701	7371454	590	-60	195	NSA
KBAC1427	197401	7371445	590	-60	195	NSA
KBAC1428	196315	7371456	590	-60	195	NSA
KBAC1430	203001	7368864	590	-60	195	NSA
KBAC1431	202912	7368897	590	-60	195	NSA
KBAC1432	202821	7368927	590	-60	195	NSA
KBAC1433	202706	7368953	590	-60	195	NSA
KBAC1434	202609	7368988	590	-60	195	NSA
KBAC1435	202523	7369005	590	-60	195	NSA
KBAC1436	202409	7369030	590	-60	195	NSA
KBRC1453	203457.36	7368932.35	590.59	-60	195	NSA
KBRC1469	203089.23	7368410.45	587.496	-60	195	PENDING
KBRC1472	203076.49	7368363.77	587.443	-60	195	PENDING
KBRC1473	203121.49	7368351.83	587.53	-60	195	PENDING
KBRC1474	203162.79	7368338.44	587.626	-60	195	PENDING
KBRC1475	203068.58	7368339.5	587.374	-60	195	PENDING
KBRC1476	203114.69	7368326.14	587.347	-60	195	PENDING
KBRC1481	203727.78	7368288.76	588.639	-60	195	PENDING
KBRC1482	203774.97	7368276.04	588.818	-60	195	PENDING
KBRC1502	202411.78	7369035.22	589	-60	195	NOT SAMPLED
KBRC1503	202384.93	7369034.9	589.044	-60	195	NOT SAMPLED
KBRC1504	201111.62	7366190.28	585.637	-60	195	NOT SAMPLED
KBRC1505	201150.16	7366188.85	585.759	-60	195	NOT SAMPLED
KBRC1506	201189.29	7366186.81	585.693	-60	195	NOT SAMPLED

APPENDIX 3 – JORC CODE, 2012 EDITION TABLE 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 JORC Code explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Commentary Drilling For Reverse Circulation drilling 2kg - 3kg samples are split from dry 1m bulk samples. The sample was collected through a cyclone and cone splitter. Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney. RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. Samples were sent to the laboratory where they were pulverised to produce a 50 g charge for fire assay.
Drilling techniques Drill	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	Drilling A Strike Drilling drill rig was used to drill the RC drill holes: Hole diameter was 124mm (4.9"). Drilling
sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney. At the end of each metre the bit was lifted off the bottom to separate each metre drilled. The majority of samples were of good quality with ground water having minimal effect on sample quality or recovery. There is no obvious relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	Drilling Reverse circulation chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chip trays were stored on site in a sealed container. Chips were visually inspected and logged by an on-site geologist to record lithology (including rock type, oxidation state, weathering, grain size, colour, mineralogy, and texture), alteration, mineralisation, veining, structure, sample quality (dry/wet, contamination) and approximate water flow down hole. Mineralisation, veining and water flow were quantitative or semi-quantitative in nature; the remainder of logging was qualitative.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of 	 Drilling For RC holes samples were split from dry, 1m bulk samples via a cone splitter directly from the cyclone. RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. The duplicates and CRM's were submitted to the lab using

	the material being sampled.	unique sample ID's.
		2kg – 3kg RC samples are submitted to the laboratory.
		Samples are oven dried at 105°C then jaw crushed to -10mm followed by a Boyd crush to a nominal -2mm. Samples were rotary split to 2.5kg. Samples were then pulverised in LM5 mills to 85% passing 75µm under sample preparation code EX03_05 which consists of a 5-minute extended preparation for RC/Soil/RAB. The extended time for the pulverisation is to improve the pulverisation of samples due to the presence of garnets in the samples.
		All the samples were analysed for Au using the FA50/MS technique which is a 50g lead collection fire assay.
		This sample preparation technique is appropriate for the Karlawinda Project; and is standard industry practice for a gold deposit.
		Quality control for maximising representivity of samples included insertion of field duplicates and laboratory duplicates.
Quality of	• The nature, quality and appropriateness of the assaying	Drilling
assay data and laboratory tests	 and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the 	Drilling samples were submitted to Intertek laboratory in Perth RC samples were assayed by a 50gm fire assay which is a tota assay.
	 Naturents, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the E chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio o 1:40. The grade ranges of the CRM's were selected based or grade populations and economic grade ranges.
Verification	• The verification of significant intersections by either	Drilling
of sampling and assaying	 independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Logging and sampling were recorded directly into a Micromine field marshal template, which utilises lookup tables and in file validation on a Toughbook by the geologist on the rig. Validated data was sent to the database administrator in Perth who ther carried out independent verifications using Maxwell's Datashed.
		Assay results when received were plotted on section and were verified against neighbouring holes.
		QAQC reports were generated on a hole-by-hole basis by the database administrator as results were received.
		Any failure in company QAQC protocols resulted in follow-up with the laboratory and occasional repeat of assays as necessary.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (colles and down hole surveys) transhes mine workings 	Drilling
uala puillis	 (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Drillhole collar positions were surveyed before and after drilling using a Trimble RTK system, comprising an R10-2 Base and Receiver and a Trimble TSC3 Data Collector. The Base was set up on KB01 located on "Laterite Hill", which was adopted as control for the surveys. All surveys were checked against and closed off on KB01DRM to ensure accuracy. Drillhole location data was initially captured in the MGA94 grid system and have been converted to a local grid for resource estimation work.
		Down hole surveys were undertaken on 30m increments from end of hole, using a Reflex down hole gyroscopic tool.
Data spacing	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to 	RC Samples were collected and analysed for each metre down the hole.
and distribution	 establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Hole spacing was 25m N x 25m E, sufficient for resource estimation.

Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Drilling Drill lines are oriented across strike on a local grid. Bibra orebody dips at 20 to 30 degrees to the North West. Holes in the drill programmes have been drilled at inclination of -60 degrees or -90 degrees. The orientation of the drilling is suitable for the mineralisation style and orientation of the Bibra mineralisation.
Sample security	•	The measures taken to ensure sample security.	Drilling Calico sample bags are sealed into green bags/polyweave bags and cable tied. These bags were then sealed in bulka bags by company personnel, dispatched by third party contractor, in-company reconciliation with laboratory assay returns.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	Programme reviewed by company senior personnel.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Karlawinda Project is located in the Pilbara region of Western Australia on tenements M52/1070, E52/1711, E52/2247, E52/2398, E52/2409, E52/3323, E52/3363, E52/3364, E52/3450, E52/3474, E52/3533, E52/3541, E52/3543, E52/3571, E52/3656, E52/3671, E52/3677, E52/3729, E52/3797, E52/3808 held by Greenmount Resources Pty Ltd, a wholly owned subsidiary of Capricorn Metals.
		The near mine exploration drilling was undertaken on M52/1070, which is within the area of granted E52/1711 exploration tenement in the Pilbara region of Western Australia. E52/1711 was acquired from BHPB in 2008. South32 (via the spin-out from BHPB) retain a 2% NSR whilst BHPB a claw-back provision whereby BHPB can elect to acquire a 70% equity in the project only if JORC compliant reported resources of 5,000,000 ounces of gold and/or 120,000 tonnes of contained nickel have been delineated. The Nyiyaparli People hold Native Title over the area including E52/1711 and M52/1070. There is no known heritage or environmental impediments over the area being explored and heritage surveys are undertaken by the Nyiyaparli People prior to exploration work being undertaken. No other known impediments exist in the area.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Prior to Capricorn Metals, the tenement was held by Independence Group NL (IGO) who undertook exploration between 2008 & 2014. Prior to Independence Group, WMC (BHP) explored the area from 2004 to 2008
Geology	• Deposit type, geological setting and style of mineralisation.	Bibra is part of a large-scale Archaean aged gold mineralized system. The resource is hosted within a package of deformed meta-sediments which has developed on at least two parallel, shallow dipping structures; Laterite oxide mineralization has developed over the structures close to surface. The primary mineralization is strata-bound with lineations identified as controlling higher-grade shoots. The deposit is oxidized to average depths of 50-70m.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	Please See Table 1 for Results

	[т
	 dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Drilling Reported intercepts include a minimum of 0.4g/t Au value over a minimum length of 1m with a maximum 3m length of consecutive internal waste. No upper cuts have been applied.
Relationship	 These relationships are particularly important in the 	Drilling
between mineralisation widths and intercept lengths	 reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	At Karlawinda, the geometry of the mineralisation has already been defined from previous drilling programmes. The intersection angle between drill angle and the perpendicular angle to the ore zone is less than 10 degrees.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to the diagrams in the body of this report and within previous ASX announcements.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	The accompanying document is a balanced report with a suitable cautionary note.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other substantive exploration data is available to report.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further near mine RC drilling is to be completed in the January quarter to finalise the programme.

Appendix 5B

Mining exploration entity or oil and gas exploration entity quarterly cash flow report

Name of entity	
Capricorn Metals Ltd	
ABN	Quarter ended ("current quarter")
84 121 700 105	30 December 2020

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (12 months) \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers	-	-
1.2	Payments for		
	(a) exploration & evaluation (if expensed)	-	-
	(b) development	(30,160)	(55,489)
	(c) production	-	-
	(d) staff costs	(729)	(1,423)
	(e) administration and corporate costs	(1,026)	(1,293)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	62	170
1.5	Interest and other costs of finance paid	(255)	(530)
1.6	Income taxes paid	-	-
1.7	Government grants and tax incentives	-	-
1.8	Other (provide details if material)	25	100
1.9	Net cash from / (used in) operating activities	(32,083)	(58,465)

2.	Cash flows from investing activities		
2.1	Payments to acquire:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	(4)	(331)
	(d) exploration & evaluation (if capitalised)	(735)	(1,417)
	(e) investments	-	-
	(f) other non-current assets	-	-

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (12 months) \$A'000
2.2	Proceeds from the disposal of:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	-	-
	(d) investments	-	-
	(e) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	-
2.5	Other (provide details if material)	-	-
2.6	Net cash from / (used in) investing activities	(739)	(1,748)

3.	Cash flows from financing activities		
3.1	Proceeds from issues of equity securities (excluding convertible debt securities)	-	32,300
3.2	Proceeds from issue of convertible debt securities	-	-
3.3	Proceeds from exercise of options	90	130
3.4	Transaction costs related to issues of equity securities or convertible debt securities	(2)	(1,224)
3.5	Proceeds from borrowings	2,500	2,500
3.6	Repayment of borrowings	(152)	(285)
3.7	Transaction costs related to loans and borrowings	-	-
3.8	Dividends paid	-	-
3.9	Other (provide details if material)	-	-
3.10	Net cash from / (used in) financing activities	2,436	33,421

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	49,291	45,697
4.2	Net cash from / (used in) operating activities (item 1.9 above)	(32,083)	(58,465)
4.3	Net cash from / (used in) investing activities (item 2.6 above)	(739)	(1,748)
4.4	Net cash from / (used in) financing activities (item 3.10 above)	2,436	33,421

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (12 months) \$A'000
4.5	Effect of movement in exchange rates on cash held	-	-
4.6	Cash and cash equivalents at end of period	18,905	18,905

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	18,905	49,291
5.2	Call deposits	-	-
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	-	-
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	18,905	49,291

Payments to related parties of the entity and their associates	Current quarter \$A'000
Aggregate amount of payments to related parties and their associates included in item 1	156
Aggregate amount of payments to related parties and their associates included in item 2	-

Note: if any amounts are shown in items 6.1 or 6.2, your quarterly activity report must include a description of, and an explanation for, such payments

6.

6.1

6.2

7. Financing facilities

Note: the term "facility' includes all forms of financing arrangements available to the entity. Add notes as necessary for an understanding of the sources of finance available to the entity.

- 7.1 Loan facilities
- 7.2 Credit standby arrangements
- 7.3 Other (Bank Guarantee)
- 7.4 Total financing facilities

Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
77,500	2,500
-	-
7,500	12,500
85,000	-

7.5 Unused financing facilities available at quarter end 85,000

7.6 Include in the box below a description of each facility above, including the lender, interest rate, maturity date and whether it is secured or unsecured. If any additional financing facilities have been entered into or are proposed to be entered into after quarter end, include a note providing details of those facilities as well.

Project Loan Facility of \$80 million and a Bank Guarantee of \$20 million at an interest rate of 1% with Macquarie Bank Ltd. Macquarie Bank Ltd have first ranking security over the assets of Greenmount Resources Pty Ltd, a wholly owned subsidiary of Capricorn Metals Ltd and corporate guarantee.

8.	Estimated cash available for future operating activities	\$A'000
8.1	Net cash from / (used in) operating activities (Item 1.9)	(32,083)
8.2	Capitalised exploration & evaluation (Item 2.1(d))	(735)
8.3	Total relevant outgoings (Item 8.1 + Item 8.2)	(32,818)
8.4	Cash and cash equivalents at quarter end (Item 4.6)	18,905
8.5	Unused finance facilities available at quarter end (Item 7.5)	85,000
8.6	Total available funding (Item 8.4 + Item 8.5)	103,905
8.7	Estimated quarters of funding available (Item 8.6 divided by Item 8.3)	3

8.8 If Item 8.7 is less than 2 quarters, please provide answers to the following questions:

1. Does the entity expect that it will continue to have the current level of net operating cash flows for the time being and, if not, why not?

Answer:

2. Has the entity taken any steps, or does it propose to take any steps, to raise further cash to fund its operations and, if so, what are those steps and how likely does it believe that they will be successful?

Answer:

3. Does the entity expect to be able to continue its operations and to meet its business objectives and, if so, on what basis?

Answer:

Compliance statement

- 1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Date: 27 January 2021

Authorised by: The Board of Directors

Notes

- 1. This quarterly cash flow report and the accompanying activity report provide a basis for informing the market about the entity's activities for the past quarter, how they have been financed and the effect this has had on its cash position. An entity that wishes to disclose additional information over and above the minimum required under the Listing Rules is encouraged to do so.
- 2. If this quarterly cash flow report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly cash flow report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.
- 4. If this report has been authorised for release to the market by your board of directors, you can insert here: "By the board". If it has been authorised for release to the market by a committee of your board of directors, you can insert here: "By the [name of board committee – eg Audit and Risk Committee]". If it has been authorised for release to the market by a disclosure committee, you can insert here: "By the Disclosure Committee".
- 5. If this report has been authorised for release to the market by your board of directors and you wish to hold yourself out as complying with recommendation 4.2 of the ASX Corporate Governance Council's Corporate Governance Principles and Recommendations, the board should have received a declaration from its CEO and CFO that, in their opinion, the financial records of the entity have been properly maintained, that this report complies with the appropriate accounting standards and gives a true and fair view of the cash flows of the entity, and that their opinion has been formed on the basis of a sound system of risk management and internal control which is operating effectively.