

ASX ANNOUNCEMENT 22 July 2021

Diucon – compelling new results

Recent results have clear potential to increase the 6.8Moz Hemi resource

Extensional Results

Section 28720E

- > 173.7m @ 1.5g/t Au from 271.3m in HERC442D 80m below the current resource
- 99.0m @ 1.1g/t Au from 256.0m and 173.0m @ 1.6g/t Au from 366m in HERC851D 160m below the current resource

Section 28880E

> 108.4m @ 0.8g/t Au from 280.72m in HERC460D - 80m below the current resource

Infill Results

Section 28720E

58.7m @ 2.0g/t Au from 224m in HERC441D (partially previously reported)

Section 28800E

88.0m @ 1.9g/t Au from 256m in HERC476D

Section 28880E

- 87.0m @ 1.0g/t Au from 180m and 42m @ 4.2g/t Au from 278m in HERC458D
- The wide zones of mineralised intrusion include higher grade intervals.
- These results continue to demonstrate the potential to rapidly and cost effectively add to the gold endowment at Hemi.
- The results show clear potential to grow and upgrade the current Inferred Mineral Resource Estimate for the Diucon/Eagle deposits of 1.45Mt @ 0.9g/t Au for 1.45Moz.
- Extensional drilling at depth and to the west towards Antwerp continues.

De Grey Managing Director, Glenn Jardine, commented:

"The new drilling results at Diucon provide clear evidence that increases to the current Hemi resource can be expected with further drilling. The higher grades zones within these broad gold zones are also encouraging, as we continue to extend mineralisation to the west and conduct closer spaced drilling within the existing resource footprint.

The mineralised intrusion on Section 28720E widens at depth. Step out drill hole HERC889D is currently in progress, targeting a further 160m beneath HERC851D. This well mineralised section remains entirely open to the west and depth.

The mineralised intrusion at Diucon was intersected in RC and diamond drilling beneath unmineralised sediments previously intersected in shallow aircore drilling. This aspect provides encouragement for discovering additional mineralised intrusions around Hemi in a similar setting."

De Grey Mining Limited (ASX: DEG, "De Grey" or the "Company") is pleased to report these latest exploration results from the Diucon deposit. Diucon is located immediately to the west of Crow and presents a potential geological link between the Crow and Antwerp intrusions. The gold mineralisation at Diucon shows similar alteration and sulphide development as seen at the adjacent deposits of Aquila, Brolga, Crow, Falcon and Eagle.

The potential to increase resources at Diucon is evident in drilling currently in progress and highlighted by significantly wider intrusion beneath unmineralised sediments. Mineralisation at Diucon currently extends for approximately 900m along strike and remains open to the west, down plunge and at depth.

Internal zones of higher grade material have been intersected in extensional and resource infill drilling and are generally associated with increased quartz veining.

New drill intercepts (>2gm*m) are provided in Table 1 and Table 2.

Significant Drill Results

Step out extension drilling at depth is currently being carried out with RC and diamond drilling on 80m sections with a nominal hole spacing of 80m on sections. Infill drilling will be completed as required to elevate the density of drilling to upgrade the category of the resources from Inferred to Indicated as required. Stepout drilling along strike will now focus on extending the mineralisation to the west towards Antwerp where previously reported shallow drilling has intersected encouraging drill results, e.g. 4m @ 21.7g/t Au, 6m @ 10.7g/t Au, 23m @ 0.6g/t Au, 6m @ 1.4g/t Au and 3m @ 1.1g/t Au.

At Diucon, drilling shows the host intrusion is becoming significantly wider at depth (up to 300m wide) and forms broad zones (reported at a 0.3g/t Au cutoff grade) of gold mineralisation across almost all of the intrusion (Figure 1). Within these broad gold zones, significant zones of higher grade mineralisation (reported at a 0.5g/t Au cut-off grade) are increasingly evident.

Section 28720E

> 58.7m @ 2.0g/t Au from 224m in HERC441D (partially previously reported)

including **12.7m @ 3.1g/t Au** from 270m **5.2m @ 7.4g/t Au** from 299.8m

> 173.7m @ 1.5g/t Au from 271.3m in HERC442D

including 59.8m @ 2.2g/t Au from 324.2m

51.5m @ 1.7g/t Au from 393.5m

99m @ 1.1g/t Au from 256m in HERC851D

including 7m @ 3g/t Au from 320m

and 173m @ 1.6g/t Au from 366m in HERC851D

including **22.6m @ 5.5g/t Au** from 375.4m

10.3m @ 5.4g/t Au from 412.6m

8.6m @ 3.2q/t Au from 429m

Section 28800E

88m @ 1.9g/t Au from 256m in HERC476D

including **62m @ 2.5g/t Au** from 282m

Section 28880E

87m @ 1g/t Au from 180m and 42m @ 4.2g/t Au from 278m in HERC458D

including **20m @ 1.4g/t Au** from 247m

16.4m @ 10g/t Au from 298.6m

> 108.4m @ 0.8g/t Au from 280.72m in HERC460D

including **5.9m @ 7.9g/t Au** from 362m

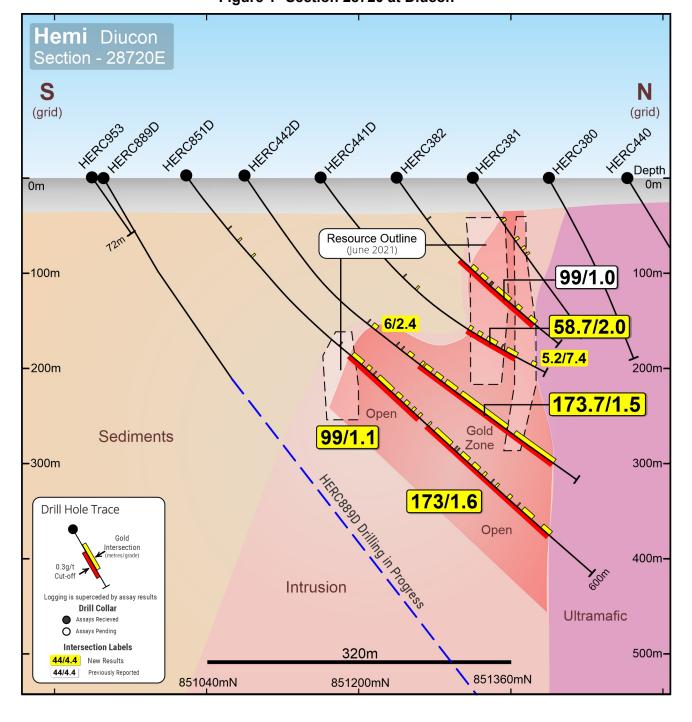
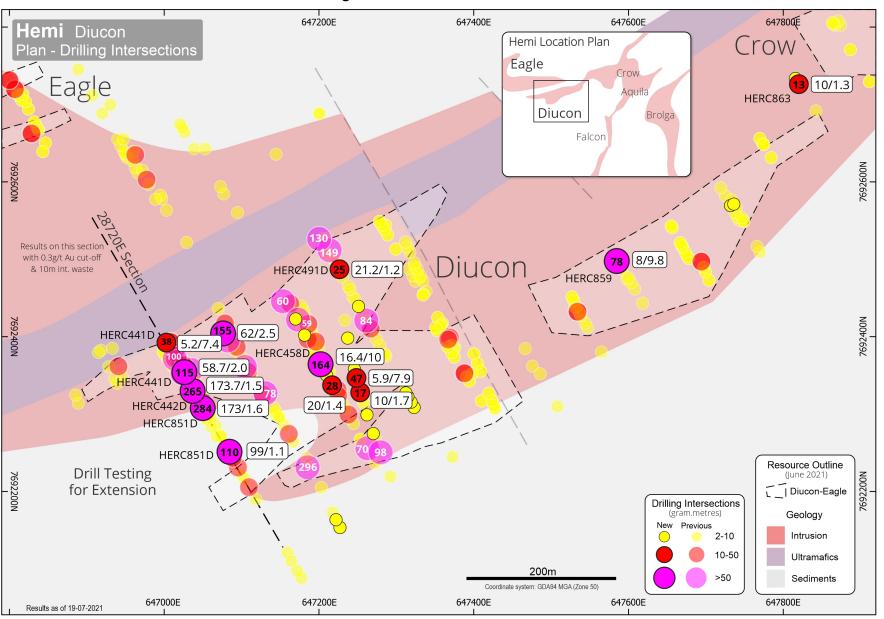


Figure 1 Section 28720 at Diucon


Figure 2 TopDrill diamond rig drilling HERC889D, targeting approximately 160m below HERC851D on Section 28720E.

Second diamond rig (LHS) is drilling on section 28660E aiming to extend the zone 80m to the west

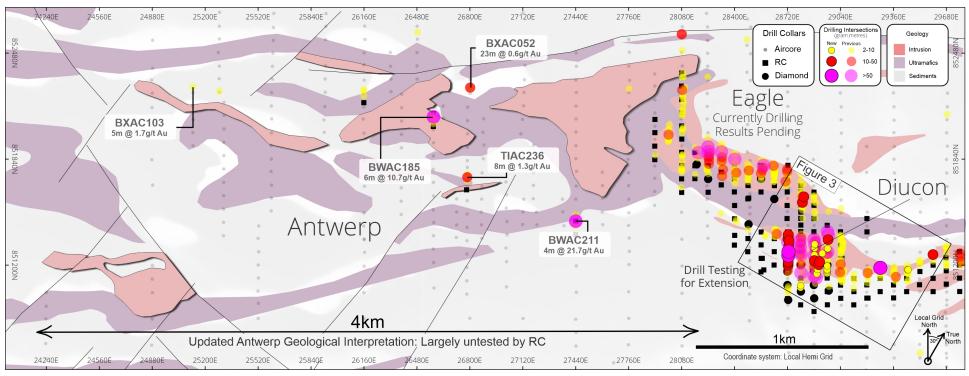


Figure 3 Plan of Diucon

This announcement has been authorised for release by the De Grey Board.

For further information, please contact:

Glenn Jardine
Managing Director
+61 8 6117 9328
admin@degreymining.com.au

Andy Beckwith
Technical Director
+61 8 6117 9328
admin@degreymining.com.au

Michael Vaughan (Media enquiries)
Fivemark Partners
+61 422 602 720
michael.vaughan@fivemark.com.au

Competent Person's Statement

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr. Phil Tornatora, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr. Tornatora is an employee of De Grey Mining Limited. Mr. Tornatora has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Tornatora consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Previously released ASX Material References that relates to Hemi Prospect includes:

Resources:

- 2020 Mallina Gold Project Resource update, 2 April 2020
- 6.8Moz Hemi Maiden Mineral Resource drives Mallina Gold Project, 23 June 2021

Exploration results at Hemi, announced during calendar year 2021:

- Consistent extensive gold endowment at Falcon, 13 January 2021
- Diucon and Eagle: Two new intrusion hosted gold discoveries at Hemi, 29 January 2021
- Further metallurgical testwork confirms high gold recoveries, 16 February 2021
- Major depth extensions and new footwall lodes emerge at Falcon, 23 February 2021
- Crow Aquila gold system continue to expand, 4 March 2021
- Rapid growth at Diucon and Eagle, 9 March 2021
- Extensional results show Brolga plunge potential, 16 March 2021
- Depth and strike extensions at Falcon, 8 April 2021
- Impressive resource definition drilling at Brolga, 13 April 2021
- Strong extension to Diucon and Eagle, 15 April 2021
- Strong mineralisation intersected at Crow and Aquila, 23 April 2021
- Large mineralised system confirmed at Diucon Eagle, 4 May 2021
- High gold recoveries achieved at Aquila, 10 May 2021
- Significant extensional and impressive resource definition results at Falcon, 27 May 2021
- Encouraging results continue at Diucon-Eagle, 1 June 2021

Table 1: Significant new results (>2 gram x m Au) - Intercepts - 0.5g/t Au lower cut, 4m maximum internal waste, >2gm

HoleID	Zone	Depth	Depth	Downhole	Au	Collar	Collar	Collar RL	Dip	Azimuth	Hole	Hole
Holeib	Zone	From (m)	To (m)	Width (m)	(g/t)	East (GDA94)	North (GDA94)	(GDA94)	(degrees)	(GDA94)	Depth (m)	Туре
HERC441D	Diucon	270.0	282.7	12.7	3.1	647110	7692196	68	-52	327	317	DD
incl	Diucon	280.7	282.7	2.0	9.6	647110	7692196	68	-52	327	317	DD
HERC441D	Diucon	299.8	305.0	5.2	7.4	647110	7692196	68	-52	327	317	DD
incl	Diucon	299.8	302.0	2.2	16.4	647110	7692196	68	-52	327	317	DD
HERC442D	Diucon	207.0	213.0	6.0	2.4	647151	7692127	70	-55	328	481	DD
HERC442D	Diucon	254.52	261.0	6.5	0.6	647150.9	7692127	70	-55	328	481	DD
HERC442D	Diucon	279	285.0	6.0	0.6	647150.9	7692127	70	-55	328	481	DD
HERC442D	Diucon	290	299.0	9.0	1.3	647150.9	7692127	70	-55	328	481	DD
HERC442D	Diucon	304	317.0	13.0	1.6	647150.9	7692127	70	-55	328	481	DD
HERC442D	Diucon	324.18	384.0	59.8	2.2	647150.9	7692127	70	-55	328	481	DD
HERC442D	Diucon	393.5	445.0	51.5	1.7	647150.9	7692127	70	-55	328	481	DD
HERC458D	Diucon	247.0	267.0	20.0	1.4	647289	7692207	68	-56	330	504	DD
incl	Diucon	255.6	256.4	0.9	12.7	647289	7692207	68	-56	330	504	DD
HERC458D	Diucon	278.0	284.0	6.0	1.5	647289	7692207	68	-56	330	504	DD
incl	Diucon	283.0	284.0	1.0	7.4	647289	7692207	68	-56	330	504	DD
HERC458D	Diucon	298.6	315.0	16.4	10.0	647289	7692207	68	-56	330	504	DD
incl	Diucon	302.0	303.0	1.0	161.5	647289	7692207	68	-56	330	504	DD
HERC458D	Diucon	373.0	377.0	4.0	1.9	647289	7692207	68	-56	330	504	DD
incl	Diucon	373.0	374.0	1.0	6.9	647289	7692207	68	-56	330	504	DD
HERC458D	Diucon	412.4	413.0	0.7	9.4	647289	7692207	68	-56	330	504	DD
HERC460D	Diucon	251.1	253.0	1.9	4.2	647331	7692138	68	-55	329	647	DD
HERC460D	Diucon	286.6	296.8	10.2	0.6	647331	7692138	68	-55	329	647	DD
HERC460D	Diucon	332.0	342.0	10.0	1.7	647331	7692138	68	-55	329	647	DD
HERC460D	Diucon	362.0	367.9	5.9	7.9	647331	7692138	68	-55	329	647	DD
incl	Diucon	366.0	367.0	1.0	44.0	647331	7692138	68	-55	329	647	DD
HERC460D	Diucon	379.3	384.0	4.7	0.5	647331	7692138	68	-55	329	647	DD
HERC460D	Diucon	436.0	441.0	5.0	0.8	647331	7692138	68	-55	329	647	DD
HERC476D	Diucon	282.0	344.0	62.0	2.5	647160	7692272	68	-58	328	403	DD
incl	Diucon	301.0	302.0	1.0	16.6	647160	7692272	68	-58	328	403	DD
HERC491D	Diucon	184.0	188.0	4.0	1.1	647299	7692352	68	-57	329	360	DD
HERC491D	Diucon	272.3	293.4	21.2	1.2	647299	7692352	68	-57	329	360	DD
HERC492	Diucon	48.0	52.0	4.0	1.6	647338	7692284	68	-55	329	144	RC
HERC492	Diucon	57.0	71.0	14.0	0.7	647338	7692284	68	-55	329	144	RC
HERC492	Diucon	76.0	82.0	6.0	1.2	647338	7692284	68	-55	329	144	RC
HERC492	Diucon	87.0	90.0	3.0	1.2	647338	7692284	68	-55	329	144	RC
HERC492	Diucon	127.0	133.0	6.0	0.9	647338	7692284	68	-55	329	144	RC
HERC851D	Diucon	294.0	314.5	20.5	1.1	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	320.0	327.0	7.0	3.0	647188	7692080	68	-56	327	600	DD
incl	Diucon	324.0	324.8	0.8	15.8	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	332.0	337.0	5.0	2.7	647188	7692080	68	-56	327	600	DD
incl	Diucon	336.0	337.0	1.0	10.9	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	343.0	346.0	3.0	0.7	647188	7692080	68	-56	327	600	DD

HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC851D	Diucon	366.0	368.0	2.0	2.7	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	375.4	398.0	22.6	5.5	647188	7692080	68	-56	327	600	DD
incl	Diucon	377.0	392.6	15.6	7.4	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	412.7	423.0	10.3	5.4	647188	7692080	68	-56	327	600	DD
incl	Diucon	418.0	422.0	4.0	11.1	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	429.0	437.6	8.6	3.2	647188	7692080	68	-56	327	600	DD
incl	Diucon	436.6	437.6	1.0	24.2	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	444.0	447.0	3.0	0.7	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	456.0	457.0	1.0	2.2	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	462.0	464.4	2.4	6.0	647188	7692080	68	-56	327	600	DD
incl	Diucon	464.1	464.4	0.3	38.6	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	479.0	483.0	4.0	0.6	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	500.0	514.0	14.0	1.8	647188	7692080	68	-56	327	600	DD
incl	Diucon	513.0	514.0	1.0	15.0	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	527.0	539.0	12.0	0.7	647188	7692080	68	-56	327	600	DD
HERC859	Diucon	108.0	116.0	8.0	9.8	647616	7692441	68	-56	331	222	RC
incl	Diucon	110.0	112.0	2.0	36.9	647616	7692441	68	-56	331	222	RC
HERC861	Diucon	87.0	88.0	1.0	3.1	647758	7692523	68	-56	332	162	RC
HERC862	Diucon	217.0	221.0	4.0	0.6	647798	7692454	68	-55	331	252	RC
HERC863	Diucon	104.0	114.0	10.0	1.3	647855	7692672	67	-55	327	204	RC
HERC863	Diucon	120.0	126.0	6.0	0.6	647855	7692672	67	-55	327	204	RC
HERC866D	Diucon	175.0	188.0	13.0	0.7	647280	7692063	68	-56	327	575	RC
HERC866D	Diucon	197.0	203.0	6.0	0.7	647280	7692063	68	-56	327	575	RC

Table 2: Selected Intercepts - 0.3g/t Au lower cut, 10m maximum internal waste, >20gm

Selected Intercepts - 0.3g/t Au lower cut, 10m maximum internal waste, >20gm

HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC441D	Diucon	224.0	282.7	58.7	2.0	647110	7692196	68	-52	327	317	DD
HERC442D	Diucon	201	215	14.0	1.2	647151	7692127	69.9	-55	328	480.5	DD
HERC442D	Diucon	271.27	445	173.7	1.5	647151	7692127	69.9	-55	328	480.5	DD
HERC458D	Diucon	180.0	267.0	87.0	1.0	647289	7692207	68	-56	330	504	DD
HERC458D	Diucon	278.0	320.0	42.0	4.2	647289	7692207	68	-56	330	504	DD
HERC460D	Diucon	280.7	389.2	108.4	0.8	647331	7692138	68	-55	329	647	DD
HERC476D	Diucon	256.0	344.0	88.0	1.9	647160	7692272	68	-58	328	403	DD
HERC492	Diucon	48.0	96.0	48.0	0.7	647338	7692284	68	-55	329	144	RC
HERC851D	Diucon	256.0	355.0	99.0	1.1	647188	7692080	68	-56	327	600	DD
HERC851D	Diucon	366.0	539.0	173.0	1.6	647188	7692080	68	-56	327	600	DD

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 an industry standard manner Core samples were collected with a diamond rig drilling mainly NQ2 diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ and PQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. Sample weights ranged from 2-4kg RC holes were sampled on a 1m basis with samples collected from a cone splitter mounted on the drill rig cyclone. 1m sample ranges from a typical 2.5-3.5kg Aircore samples were collected by spear from 1m sample piles and composited over 4m
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	HQ3 (61mm), PQ (85mm).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery is measured for each drilling run by the driller and then checked by the Company geological team during the mark up and logging process. RC and aircore samples were visually assessed for recovery. Samples are considered representative with generally good recovery. Deeper RC and

Criteria	JORC Code explanation	Commentary
		 aircore holes encountered water, with some intervals having less than optimal recovery and possible contamination. No sample bias is observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 The entire hole has been geologically logged and core was photographed by Company geologists, with systematic sampling undertaken based on rock type and alteration observed RC and diamond sample results are appropriate for use in a resource estimation, except where sample recovery is poor. The aircore results provide a good indication of mineralisation but are not used in resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 independent laboratory in Perth, Australia. For diamond core and RC samples Au was analysed by a 50g charge Fire assay fusion technique with an AAS finish and multi-elements by ICPAES and ICPMS
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	•
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Diamond and RC drill hole collar locations are located by DGPS to an accuracy of +/-10cm. Aircore hole collar locations are located by DGPS to an accuracy of +/-10cm., or by handheld GPS to an accuracy of 3m. Locations are given in GDA94 zone 50 projection Diagrams and location table are provided in the report Topographic control is by detailed airphoto and Differential GPS data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing varies from 80m x 40m to 320m x 80m. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. It has not yet been determined if data spacing and distribution of RC and diamond drilling is sufficient to provide support for the results to be used in a resource estimate. Sample compositing has not been applied except in reporting of drill intercepts, as described in this Table
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	perpendicular to the strike of mineralisation where known and therefore the sampling is considered representative of the mineralised zone.

Criteria	JORC Code explanation	Commentary
		This is allowed for when geological interpretations are completed.
Sample security	The measures taken to ensure sample security.	Samples were collected by company personnel and delivered direct to the laboratory via a transport contractor.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits have been completed. Review of QAQC data has been carried out by database consultants and company geologists.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Drilling occurs on various tenements held by De Grey Mining Ltd or its 100% owned subsidiaries. The Hemi Prospect is approximately 60km SSW of Port Hedland.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The tenements have had various levels of previous surface geochemical sampling and wide spaced aircore and RAB drilling by De Grey Mining. Limited previous RC drilling was carried out at the Scooby Prospect Airborne aeromagnetics/radiometrics has been flown previously.
Geology	Deposit type, geological setting and style of mineralisation.	The mineralisation style is not well understood to date but is thought to be hydrothermally emplaced gold mineralisation within structures and intrusions. Host rocks comprise igneous rocks intruding Mallina Basin metasediments. Style is similar to some other Western Australian gold deposits
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drill hole location and directional information provide in the report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of 	 Results are reported to a minimum cutof grade of 0.5g/t gold with an internal dilution o 4m maximum. Higher grade intervals included in the above intercepts are reported at a 3g/t Au lower cutoff.

Criteria	JORC Code explanation	Commentary
	high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 with an internal dilution of 2m maximum. Wider intervals are aggregated using a 0.3g/t Au lower cut with an internal dilution of 10m maximum. Selected results over 20 gram x metres are reported using this method. Intercepts are length weighted averaged. No maximum cuts have been made.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The drill holes are interpreted to be approximately perpendicular to the strike of mineralisation. Drilling is not always perpendicular to the dip of mineralisation and true widths are less than downhole widths. Estimates of true widths will only be possible when all results are received, and final geological interpretations have been completed.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Plans and sections are provided in the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	and all significant results are provided in this report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Drilling is currently widely spaced and further details will be reported in future releases when data is available.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow up aircore drilling will be undertaken to test for strike extensions to mineralisation. Programs of follow up RC and diamond drilling aimed at extending resources at depth and laterally are underway.