ROX

ASX ANNOUNCEMENT

26 October 2021

ROX RESOURCES LIMITED

ASX: RXL

Rox Resources Limited (ASX: RXL) is an Australian listed company with advanced gold in Western Australia: the Youanmi Gold Project and the Mt Fisher Gold project.

DIRECTORS

Mr Stephen Dennis Chairman

Mr Alex Passmore Managing Director

Dr John Mair Non-Executive Director

Shares on Issue	157.6m
Share Price	\$0.38
Market Cap.	\$60.0m
Cash	\$10.7m
(as at 30 Sept 21)	

Level 2, 87 Colin Street, West Perth WA 6005

+61 8 9226 0044

admin@roxresources.com.au

www.roxresources.com.au

Mt Fisher - Mt Eureka Project Update

Highlights:

- Renewed focus on project targeting orogenic gold
 mineralisation and strata-bound VMS style mineralisation
- VMS prospectivity identified through extensive project review
- 160 holes, 7,000 metre Aircore Drilling program commenced at Mt Fisher Gold Project (Rox 100%)
- RC program circa 4,000m to commence mid November 2021
- High resolution airborne magnetic survey to commence late
 November 2021
- The Mt Fisher Project includes Gold Mineral Resource of 1.0 Mt @ 2.7 g/t Au for 89,000 ounces contained gold
- Past production of 30Koz of gold at 4.3 g/t Au from the Mt Fisher gold mine
- Strong potential to add gold resources

West Australian focused gold exploration and development company, Rox Resources Limited ("Rox" or "the Company") (ASX: RXL) is pleased to provide an update on the Mt Fisher-Mt Eureka.

The Mt Fisher-Mt Eureka Project is located in the Northern Goldfields, about 500km northeast of Kalgoorlie (about 120km east of Wiluna) within the underexplored Mt Eureka greenstone belt. This belt is located 40km east of the prolific Yandal greenstone belt, host of significant gold deposits including Jundee, Bronzewing and Mt McClure.

Rox holds 850km² of the Mt Eureka greenstone belt and surrounding prospective zones (Rox 100% 500km²) and via the Cullen Resources JV, 350km² (Rox currently earning up to 75%, Cullen Resources Limited 25%).

Following the demerger of the Fisher East Nickel Project Rox has renewed its focus on gold exploration in the belt.

Rox has undertaken an extensive project scale review and has planned immediate work to advance the project.

A 7,000m aircore drilling program is currently underway targeting orogenic gold mineralisation and VMS style mineralisation over recently defined key target areas on Rox 100% own tenements.

RRL1787D

The highly prospective Mt Eureka greenstone terrane hosts extensive orogenic gold mineralisation. Several areas have been identified as drill ready targets. More recently the belt has been recognised as showing potential for VMS Cu-Zn style deposits.

Target areas were identified from existing historic geochemical and geophysical datasets. Furthermore, the review recognised the potential for VMS mineralisation Mt Eureka greenstone belt including Cu, Zn & Au anomalous VMS style exhalative sulphide mineralisation in historical drilling. Additionally, zones of strong multielement geochemical anomalism in regolith (including Au, Cu, Pb and Zn) were identified in several areas throughout the project.

The direct evidence for VMS style mineralisation highlights the belt's prospectivity for this style of mineralisation. Due to minimal previous VMS exploration across the belt, the entire Mt Eureka greenstone belt is considered prospective for VMS mineralisation. VMS targets are analogous to Teutonic Bore, Jaguar and Bentley, which lie within the same geological terrane.

Outlook and planned work programs

Rox believes that the Mt Fisher – Mt Eureka Project has the potential to host significant sized gold deposits and economic VMS mineralisation.

Immediate exploration work to be undertaken includes:

- Project wide high resolution aeromagnetic surveying;
- Reconnaissance aircore drilling over recently defined key target areas; and
- 4,000m RC program to follow up high-grade intersections.

Reconnaissance aircore drilling (160 aircore holes for 7,000 metres) is currently underway to test the intersection of a regional scale NE trending growth fault with favourable NNW trending stratigraphy. The fault is believed to be a possible feeder conduit, syngenetic with Au and VMS style mineralisation at the Mt Fisher Mine and Dam/Damsel/Dirks gold trend.

Regional Geological Setting

The project area is located within the Eastern Goldfields Superterrane of the Yilgam Craton. The Yilgarn Craton consists of a series of accretionary terranes, where continental collision has added to or thickened the continental crust. Most of the Archean gold deposits in the Yilgarn Craton belong to a group structurally controlled orogenic gold deposits. At the regional scale, most of the Yilgarn's orogenic gold deposits are spatially associated with crustal scale faults in settings where there has been favourable mineralising fluid migration and a gold deposition mechanism. Within greenstone belts of the Eastern Goldfields Superterrane, significant gold deposits are typically distributed along specific regional structures formed under compressional regimes. Due to their association with regional structures, such gold prospects are typically located at the boundaries of contrasting lithologies or age domains within the greenstone belts.

Within greenstone belts, the gold deposits commonly cluster along structures where they are localised at bends/kinks or at the intersection of two or more faults.

The Mt Fisher-Mt Eureka project area straddles the Kurnalpi – Burtville Terrane boundary, with the boundary transecting the greenstone belt. This major NNW trending structure (Hootanui Shear) is potentially a deep-seated gold plumbing conduit. Such features are linked to the occurrence of nickel-sulphide and gold deposits. This type of geological setting has the potential to host major gold deposits.

ASX CODE: RXL

VMS potential in the Mt Eureka greenstone belt

Rox has established evidence to suggest VMS style mineralisation is responsible for the gold endowment at the Mt Fisher gold prospects (Dam, Damsel, Mt Fisher Mine).

The main favourable criteria are:

- Extensive strata-bound zone of multi-element anomalism;
- Strong multi-element VMS pathfinder anomalism; Cu, As, Au + Zn in regolith;
- Anomalism is consistent throughout thickness of regolith i.e. consistent supergene;
- Favourable host lithology underlying lithology is predominantly basalt + volcanic sediments; and
- Stringer style sulphides known to host mineralisation in some locations.

Previous exploration concentrated on Au and multi-element geochemistry is largely limited to As, Au, Cu, Zn.

The presence of Cu-Zn associated with high-grade Au mineralisation at the Mt Fisher gold prospects (Dam/Damsel/Dirks Gold Trend and Mt Fisher Mine) suggests a possible VMS origin or a VMS system overprinted by an epigenetic (late orogenic) hydrothermal gold.

Additionally, in the northern section of the Mt Eureka area previous air core drilling by Rox identified strong VMS pathfinder multi-elements at Red Bluff (Cu, Zn, Sn and Tl). Two main target horizons have been identified where significant strata-bound anomalism occurs within the sedimentary lithologies.

Gold Mineralisation within the Mt Fisher - Mt Eureka greenstone terrane

Located within the northeastern Yilgarn Craton in Western Australia, the greenstone terrane is a sequence of folded tholeiitic to high magnesium basalts with numerous dolerite to gabbroic intrusive rocks and lesser felsic volcaniclastic, intrusive, interflow sedimentary and talc-chlorite ultramafic rocks. The regolith profile is well developed throughout the project area, with between 10m to 80m of overburden evident in drilling. Mineralisation is found to be hosted in various rock types including nonmagnetic Archean sediments, sulphide facies chert/BIF and mafic/ultramafic volcanics. The greenstone belt is host to multiple high-grade gold occurrences that warrant immediate follow up drilling including: The Mt Fisher Mine, Dam/Damsel/Dirks Gold Trend, Wagtail, Southern-Galway, Grafs Find, Taipan and Eureka North-West (Figure 1).

The historic drilling database covers much of the greenstone belt within the licence area. However, most of the drilling comprises shallow RAB drill holes that failed to test the in-suite regolith profile. Minimal bedrock testing has been carried out and large areas of prospective sequence have not been geochemically drilled. Rox considers that significant potential remains to discover further gold mineralisation.

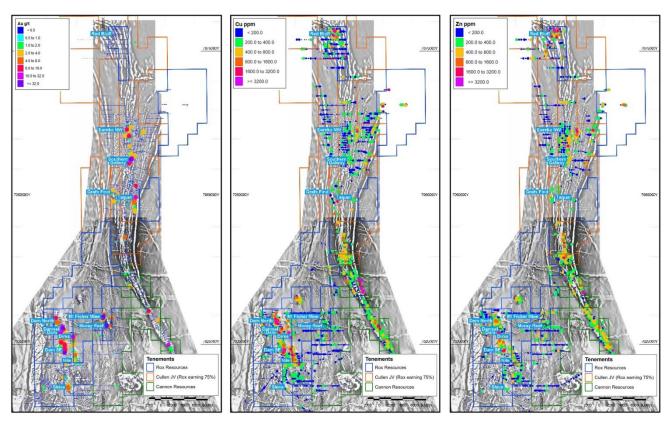


Figure 1. Downhole Au, Cu, Zn at Mt Fisher – Eureka Project over 1VDTMI

Key Target Areas

Mt Fisher Mine

Gold mineralisation at the Mt Fisher Mine is strata bound, being contained within the sulphide facies chert horizon. The Mount Fisher deposit is considered to be originally of syngenetic exhalative origin. A well-defined, NE trending fault cross cuts the project area which may represent a major crustal structure that facilitated the placement of mineralised fluids during the region's major gold event. Total production from the Mt Fisher open pit was reportedly 218,000 tonnes at 4.3 g/t Au for 30koz.

Mineralisation plunges moderately southwards beneath the southern end of the existing open pit mine and is open at depth. Ground EM by Rox in 2012 defined several conductive anomalies that are related to high-grade gold mineralisation. The conductors appear to represent an along strike, down plunge extension of mineralisation from the Mt Fisher mine. The size of the EM anomaly to the south of the Mt Fisher mine indicates potential for a larger body of mineralisation than defined by previous mining. The conductors remain untested at depth.

The current gold resource at the Mt Fisher mine is 230kt @ 3.6g/t Au for 26,000oz (RXL ASX Release 11 July 2018). Planned drilling will test the conductive anomalies and down plunge extension of mineralisation (Figure 2). There is strong potential to add significantly to the gold resource.

The following Figures 2 to 7 include images related to exploration modelling of the Mt Fisher gold prospects. Indicative grade shell models (>1g/t Au, >2g/t Au, >5g/t Au and >10g/t Au) have been generated in Micromine software and are provided for reference only. The images of grade shell models are not an Exploration Target and do not contain nor indicate any estimate of potential size and grade ranges.

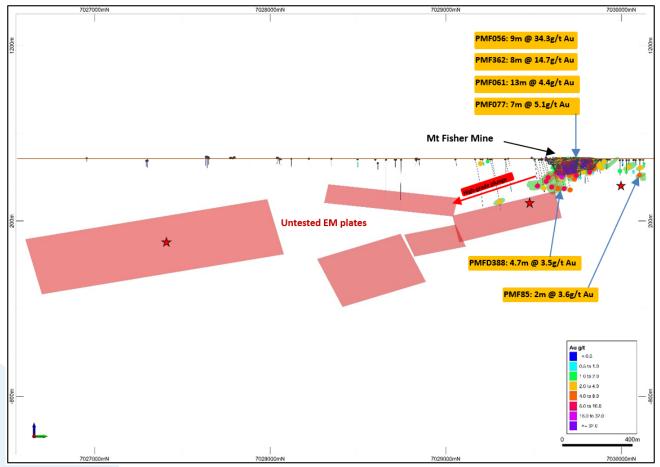


Figure 2. Long-section of the Mt Fisher Mine displaying downhole gold grades and modelled EM conductor plates.

Best results from the Mt Fisher Gold mine are summarised below:

- PMF056: 9m @ 34.34g/t Au from 67m including 4m @ 74.25g/t Au from 70m;
- PMF362: 8m @ 14.72g/t Au from 13m including 4m @ 27.4g/t Au from 16m; and
- PMF061: 13m @ 4.41g/t Au from 80m including 3m @ 11.13g/t Au from 83m.

Dam/Damsel/Dirks Trend

The Dam, Damsel and Dirks Prospects are located approximately 7km SW of the Mt Fisher mine on the western limb of the Wonganoo Anticline. The Dam/Damsel/Dirks corridor is defined a >10km stratabound zone of multielement anomalism (Cu, As, Au and Zn). A NE trending growth fault crosscuts the NW trending stratigraphy is believed to be the likely source of gold mineralisation in the area.

ROX RESOURCES LIMITED Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 5

ASX CODE: RXL

Historical drilling is mostly limited to shallow RAB with minimal bedrock testing carried out along the Dam-Damsel-Dirk corridor.

There is current gold resource at Damsel of 770kt @ 2.2g/t Au for 55,400oz. Primary gold mineralisation strikes north-northwest, dips west and plunges moderately north. The northern plunge was not previously recognised with historical drilling intersecting above the plunging shoot. Planned RC drilling will test the down plunge extension and infill wider spacing drill sections with the aim of adding to the resource at Damsel (Figure 3). At Dam South primary gold mineralisation strikes north-northeast, dips west and plunges moderately south. Planned RC drilling will test the southerly down plunge extension (Figure 4).

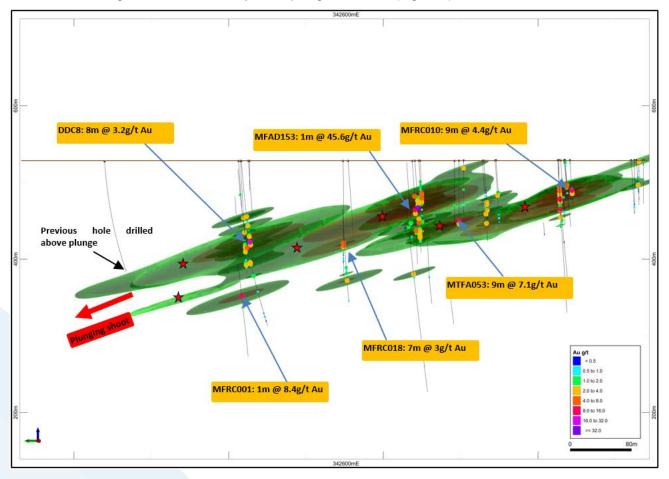


Figure 3. Long-section the Damsel Prospect looking northeast.

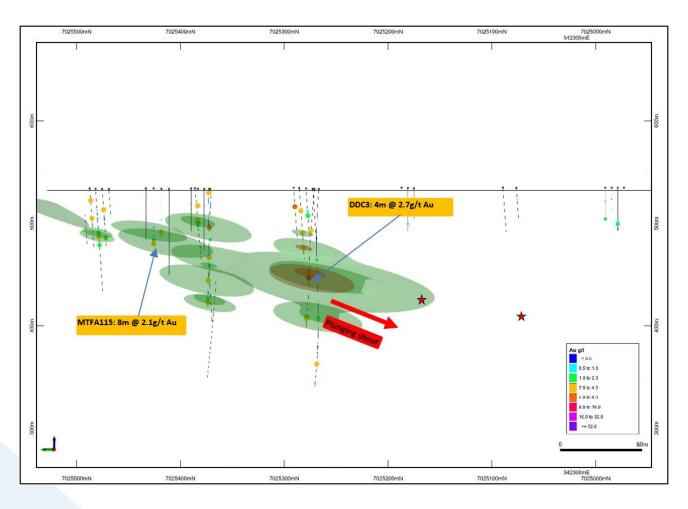
Best results from the Damsel Prospect are summarised below:

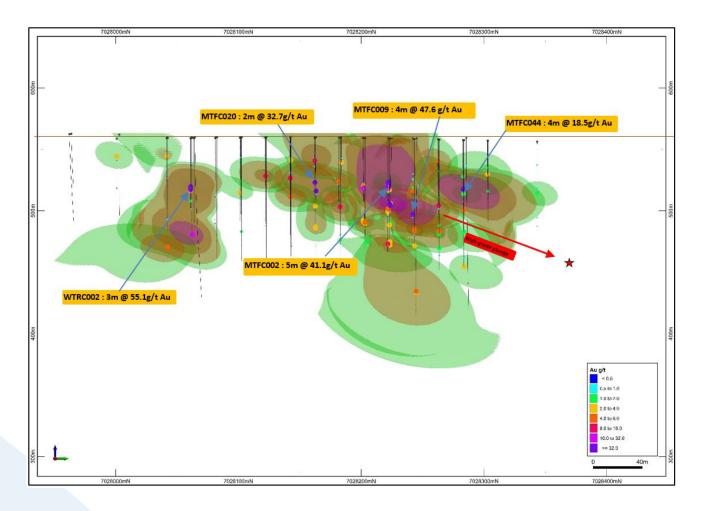
- MTFA053: 9m @ 7.12g/t Au from 76m, including 4m @ 12.44g/t Au from 76m;
- MFAD153: 1m @ 45.63g/t Au from 70m; and
- MFRC010: 9m @ 4.43g/t Au from 54m, including 2m @ 10.24g/t Au from 57m.

ROX RESOURCES LIMITED Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 ASX CODE: RXL

E: admin@roxresources.com.au www.roxresources.com.au

6




Figure 4. Long-section of the Dam South Prospect looking west.

Wagtail

The Wagtail prospect (also known as Moray Reef) is a typical Archaean narrow vein quartz hosted gold reef system. Historic production from the deposit between 1949 and 1952 produced a reported 2,384 ounces at an average grade of 66 g/t Au. The current gold resource at Wagtail is 30kt @ 7.5g/t Au for 7,700oz. The reef strikes north-south, with an sub-vertical to steep easterly dip. High-grade mineralisation plunges moderately north. Planned RC drilling will test the down plunge extension of high-grade mineralisation (Figure 5).

ASX CODE: RXL

Figure 5. Long-section of the Wagtail Prospect looking west.

Best results from the Wagtail prospect are summarised below:

- MTFC002: 5m @ 41.13g/t Au from 44m, including 3m @ 67.94g/t Au from 45m
- WTRC002: 3m @ 55.14g/t Au from 47m, including 2m @ 81.6g/t Au from 47m; and
- MTFC020: 2m @ 32.69g/t Au from 42m.

Shiva

The Shiva Prospect is located to the south and generally along strike of 8km south the Dam-Damsel-Dirk prospects. The gold in regolith anomaly has a broad strike length of over 1 km and overlies a complex zone of mafic extrusive and mafic intrusive lithologies. Primary gold mineralisation strikes north-northwest, dips west and plunges moderately south. Planned RC drilling will test the down plunge extension (Figure 6).

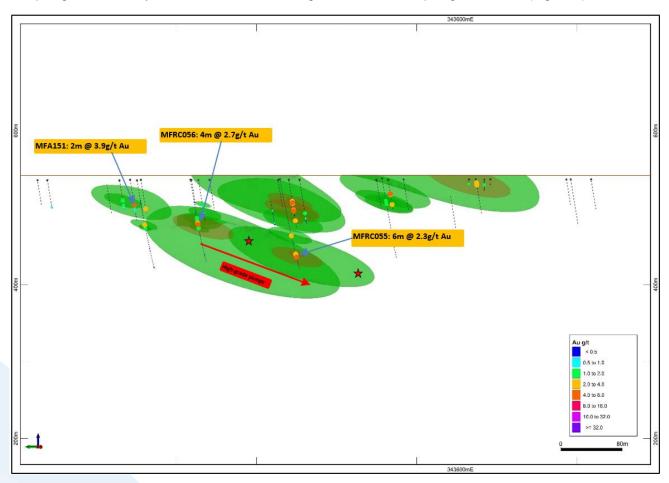


Figure 6. Long-section of the Shiva Prospect looking east.

Best results from the Shiva prospect are summarised below:

- MFRC055: 6m @ 2.3 from 114m, including 1m @ 6.01g/t Au from 119m;
- MFRC056: 4m @ 2.74g/t Au from 66m, including 1m @ 7.09g/t Au from 68m; and
- MFA151: 2m @ 3.88g/t Au from 37m, including 1m @ 7.26g/t Au from 37m.

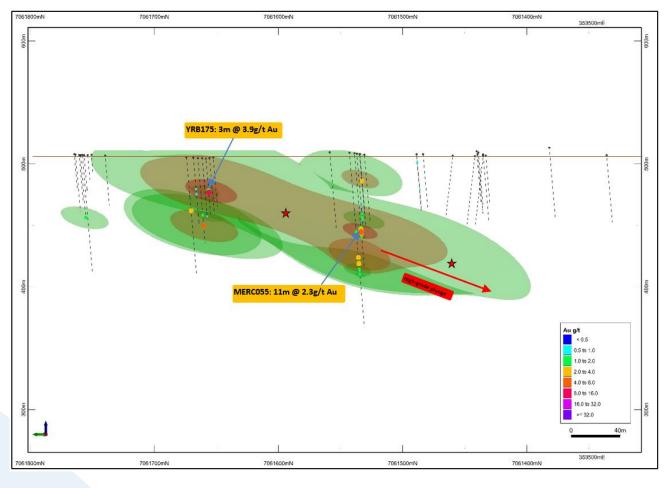
Mt Eureka

The Mt Eureka gold prospects are characterised by an anomalous gold zone of 15km of strike extent. The project area is host to multiple high-grade gold occurrences including; Southern-Galway, Grafs Find, Taipan and Eureka North-West for further exploration.

Drilling has been insufficient to date to understand the primary geological controls on mineralisation. Further work is planned to fully evaluate the potential of these areas.

Southern-Galway

Mineralisation is possibly localised by an interpreted felsic intrusive and its bounding faults/shears. Best intersections include; 9m @ 7.08g/t Au from 116m, including 2m @ 28.32g/t Au from 120m, and 11m @ 3.3g/t Au from 83m including 2m @ 11.74g/t Au from 89m.


Taipan

Hosted by the Taipan shear zone - the Taipan target area has a best drill intercept of 20m @ 2.28g/t Au from 100m, including 2m @ 9.85g/t Au from 102m. The mineralised system of quartz veining, pyrite and carbonate alteration is hosted by sheared mafic schists over a strike length of 700m

Mt Eureka Northwest

Gold mineralisation is related to quartz veining and shearing in mafics associated with the granite-greenstone contact. Primary gold mineralisation strikes north-northeast, dips east and plunges moderately south

RC drilling is planned to testing along the granite-greenstone contact. Planned RC drilling will test the down plunge extension of high-grade mineralisation (Figure 7).

Figure 7. Long-section of the Mt Eureka Northwest Prospect looking east.

Best results from the Mt Eureka prospect are summarised below:

- YRB175: 3m @ 3.86g/t Au from 29m, including 1m @ 9.87g/t Au from 31m; and
- MERC055: 11m @ 2.34g/t Au from 68m, including 1m @ 6.41g/t Au from 73m.

Mt Fisher AC drilling

Reconnaissance aircore drilling of 160 holes for 7,000m has commenced to test the intersection of a regional scale NE trending growth fault with favourable NNW trending stratigraphy.

The fault is interpreted as a possible feeder conduit, syngenetic with Au and VMS style mineralisation at the Mt Fisher Mine and Dam-Damsel-Dirk Au trend (Figure 8).

ASX CODE: RXL

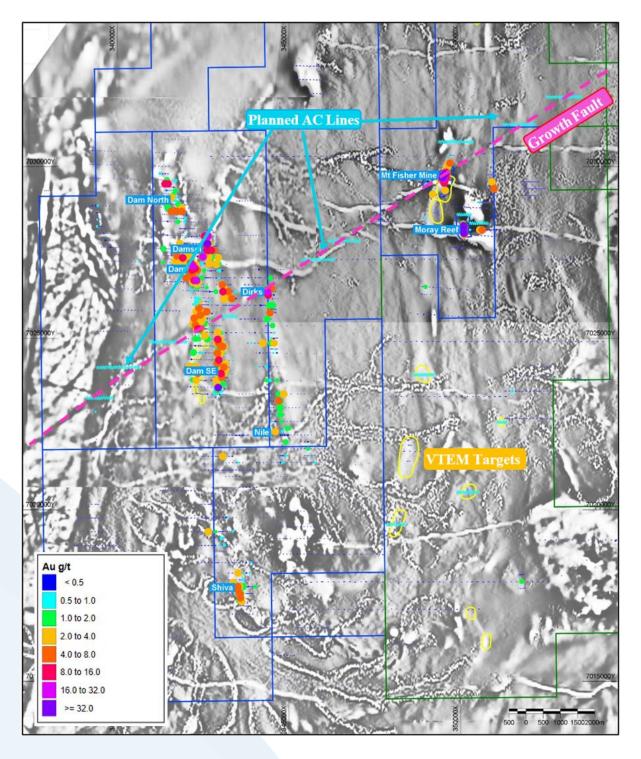


Figure 8. Mt Fisher gold prospects over AMAG – Growth fault (magenta line), planned AC lines (blue circles), VTEM targets (yellow ellipse).

12

ASX CODE: RXL

Red Bluff VMS

The northern section of the Mt Eureka area is characterised by a repetitive sequence of ultramafic hanging wall and sedimentary footwall lithologies. AC drilling by Rox identified strong VMS pathfinder multi-elements at Red Bluff (Cu, Zn, Sn and Tl) (Figures 9, 10, 11 and 12). Two main target horizons where significant anomalism occurs are strata-bound within the sediment footwall lithologies. Four RC holes are planned to test for VMS mineralisation at depth.

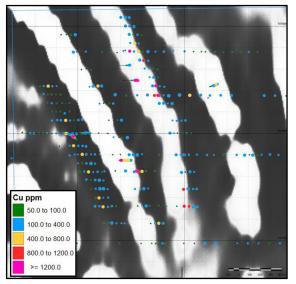


Figure 9. Downhole Copper (ppm)

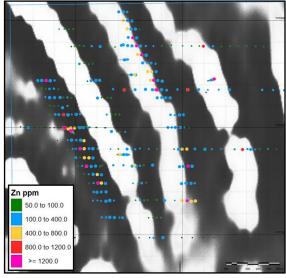


Figure 10. Downhole Zinc (ppm)

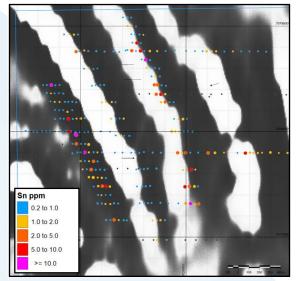


Figure 11. Downhole Tin (ppm)

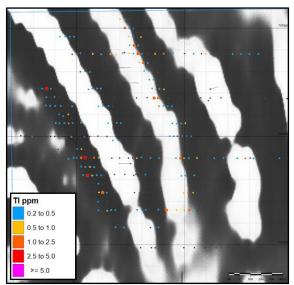


Figure 12. Downhole Thallium (ppm)

ROX RESOURCES LIMITED Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 ASX CODE: RXL

VMS potential in the Yilgarn

World-wide and within Australia, VMS orebodies tend to cluster as groups of several individual deposits, usually located on or adjacent to a preferential ore horizon. The location controls are a function of the mechanisms of emplacement by hydrothermal convection cells at or near the sea floor, which are driven by magma heat sources (i.e. volcanism).

At these sites, the hydrothermal fluids tend to exploit common fracture networks and favourable host lithologies. Deposits may occur at, either/or both, the seafloor or subseafloor and in multiple horizons within the lithology sequence. The geodynamics of the hydrothermal convection cells also has a bearing on spacing between deposits within clusters. At a camp scale, individual deposits separated by a few kilometres (2-10km) are common.

Mineralisation is predominantly a pyrite rich massive and semi-massive sulphide with accessory sphalerite, chalcopyrite, galena, pyrrhotite ± various Au/Ag minerals.

Host lithologies are submarine volcanic and sedimentary rocks. This can range from mudstone, shales and sandstones, volcaniclastics, mass flow deposits and breccias, conglomerates through to coherent lavas such as basalt, andesite and rhyolite.

In the Yilgarn there are 3 known economic VMS camps exploited to date:

- 1. Golden Grove (40.2Mt @ 1.8% Cu, 0.9% Pb, 7.6% Zn, 103 g/t Ag & 0.8 g/t Au);
- 2. Teutonic Bore/Jaguar/Bentley (1.68Mt @ 3.5% Cu, 10.7% Zn, 140g/t Ag; 1.6Mt @ 3.1% Cu, 11.3% Zn, 115g/t Ag; 3.05Mt @ 2.0% Cu, 9.8% Zn, 139g/t Ag); and
- 3. Mt Gibson (25.9Mt @ 1.94g/t Au).

Golden Grove and Mt Gibson are in the Youanmi Terrane, while Teutonic Bore is in the Kurnalpi Terrane.

The Mt Fisher-Mt Eureka project area straddles the Kurnalpi – Burtville Terrane boundary, with the boundary transecting the greenstone belt.

The Kurnalpi and Burtville Terranes are both are known to host VMS mineralisation. Additionally, the Burtville Terrane appears to be contemporaneous with the VMS prolific Youanmi Terrane (which hosts Mt Gibson and Golden Grove).

Rox believes the Mt Fisher-Mt Eureka greenstone belt is highly prospective for VMS mineralisation due to favourable geology, geochemical anomalism, and tectonic setting. Moreover, due to internal folding and fault displacement apparent in aeromagnetics and ground mapping, as well as the Mt Fisher belt straddling the Terrane boundary, there is potential for multiple lithological horizons within the belt to host economic VMS style mineralisation.

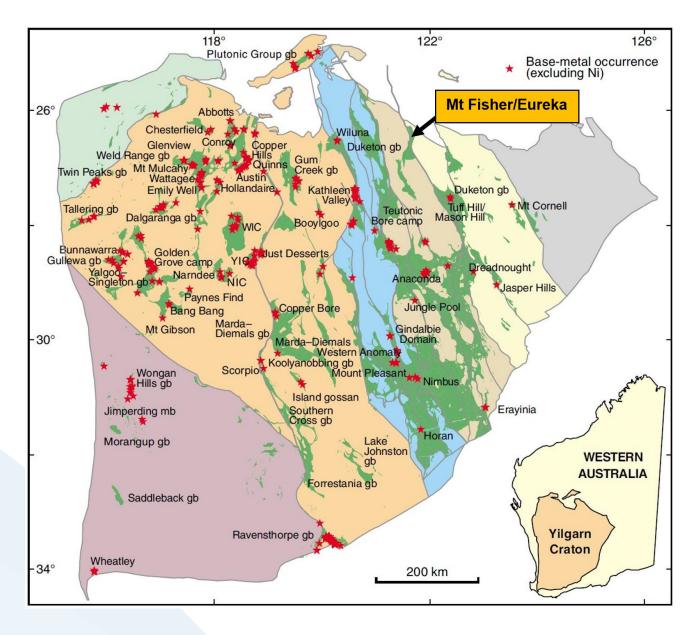


Figure 13. Base-metal occurrences (excluding nickel) within the Yilgarn Craton.

Figure 14. Aircore drilling at Mt Fisher.

Authorised for release to the ASX by the Board of Rox Resources Limited.

*** ENDS ***

For more information:

Alex Passmore Managing Director Rox Resources Limited Tel: +61 8 9226 0044 E: admin@roxresources.com.au

Competent Person Statements

Exploration Results

The information in this report that relates to Data and Exploration Results is based on information compiled and reviewed by Mr Gregor Bennett a Competent Person who is a Member of the Australian Institute Geoscientists (AIG) and Exploration Manager at Rox Resources. Mr Bennett has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bennett consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where reference is made to previous releases of exploration results in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the exploration results included in those announcements continue to apply and have not materially changed.

The information in this report that relates to previous Exploration Results, was either prepared and first disclosed under the JORC Code 2004 or under the JORC Code 2012 and has been properly and extensively cross-referenced in the text to the date of the original announcement to the ASX. In the case of the 2004 JORC Code Exploration Results and Mineral Resources, they have not been updated to comply with the JORC Code 2012.

Resource Statements

The information in this report that relates to gold Mineral Resources for the Youanmi Project was reported to the ASX on 23 June 2021 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 23 June 2021, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 23 June 2021 continue to apply and have not materially changed.

The information in this report that relates to gold Mineral Resources for the Mt Fisher project was reported to the ASX on 11 July 2018 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 11 July 2018, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 11 July 2018 continue to apply and have not materially changed.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Rox Resources Limited planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

About Rox Resources

Rox Resources (ASX:RXL) is a West Australian focused gold exploration and development company. It is 70 per cent owner and operator of the historic Youanmi Gold Project near Mt Magnet, approximately 480 kilometres northeast of Perth, and wholly-owns the Mt Fisher Gold project approximately 140 kilometres southeast of Wiluna. Youanmi has a Total Mineral Resource of 1,656 koz of contained gold, with potential for further expansion with the integration of existing prospects into the Resource and further drilling. Youanmi was a high-grade gold mine and produced 667,000oz of gold (at 5.47 g/t Au) before it closed in 1997. Youanmi is classified as a disturbed site and is on existing mining leases which has significant existing infrastructure to support a return to mining operations.

ASX CODE: RXL

Hole ID	Prospect	Hole Type	Depth From	Depth To	Interval	Au g/t	Au g*m	Col East	Col North	Col RL	Dip	Azimuth	Hole Depth
92FIR183	Dam South	RAB	24	28	4	2.97	11.88	342488	7025577	534	-90	0	45
93FID002	Dam South	DD	50	52	2	4.01	8.02	342640	7025776	534	-46.5	284	326
93FID003	Dam	DD	156	160	4	2.52	10.06	342319	7026980	529	-55	272	231
93FIR208	Fisher East	RAB	26	29	3	1.78	5.34	360946	7024390	562	-90	0	30
93FIR409	Fisher East	RAB	36	45	9	1.82	16.39	358710	7029098	554	-90	0	45
93FIR467	Dam	RAB	24	28	4	4.43	17.72	342221	7026785	529	-90	0	42
93FIR475	Dam	RAB	32	35	3	1.84	5.52	342032	7027190	527	-90	0	36
93FIR543	Dam South East	RAB	30	34	4	13.2	52.81	342934	7023563	536	-90	0	48
Incl			30	31	1	47.15	47.15						
93FIR543	Dam South East	RAB	38	43	5	1.46	7.3	342934	7023563	536	-90	0	48
93FIR583	Dam	RAB	36	39	3	2.43	7.28	342182	7027186	528	-90	0	48
93FIR585	Dam	RAB	40	44	4	3.8	15.2	342071	7026789	528	-90	0	46
93FIR599	Dam	RAB	2	6	4	1.49	5.96	342087	7027389	527	-90	0	42
93FIR606	Dam	RAB	26	34	8	5.09	40.75	342176	7026986	528	-90	0	39
Incl			26	30	4	8.99	35.95						
93FIR608	Dam	RAB	37	40	3	4.39	13.18	342276	7026984	528	-90	0	63
Incl			38	39	1	7.79	7.79						
93FIR609	Dam	RAB	32	36	4	4.66	18.64	342326	7026982	529	-90	0	69
93FIR614	Dam	RAB	20	24	4	1.9	7.6	342215	7026585	529	-90	0	42
93FIR617	Dam	RAB	32	36	4	1.59	6.36	342365	7026581	530	-90	0	45
93FIR626	Dam South	RAB	40	48	8	1.33	10.16	342303	7020381	533	-90	0	51
93FIR627	Dam South	RAB	40	48	4	2.36	9.44	342394	7025778	533	-90	0	48
93FIR633	Dam South	RAB	30	35	5	1.52	7.59	342383	7025379	534	-90	0	63
93FIR683	Dam	RAB	27	30	3	1.95	5.86	341737	7023373	527	-90	0	48
93FIR683	Dam	RAB	34	30	3	2.6	7.81	341737	7027398	527	-90	0	48
	-		40	44	4		7.81				-90	0	48 66
93FIR738	Dam South	RAB			4	1.95		342344 342345	7025781 7023979	533		0	45
93FIR742	Dam South	RAB	27	31		1.46	5.83			534	-90		
94FID004	Dam	DD	26	30	4	1.42	5.68	342219	7026986	529	-58	258	209
94FID005	Dam	DD	212	216	4	3.48	13.9	342133	7027187	528	-87	100	303
94FID005	Dam	DD	226	230	4	4.74	18.96	342133	7027187	528	-87	100	303
Incl			228	230	2	8.07	16.14						
94FID009	Dam South	DD	84	96	12	0.81	9.76	342345	7025786	533	-73.5	103.5	285
94FID009	Dam South	DD	178	186	8	0.78	6.26	342345	7025786	533	-73.5	103.5	285
94FID012	Dam	DD	64	66	2	3.11	6.22	342031	7027186	527	-50.1	244	202
94FID015	Dam South East	DD	40	42	2	8.85	17.7	343039	7023972	536	-63.5	267	202
94FID015	Dam South East	DD	68	72	4	2.78	11.1	343039	7023972	536	-63.5	267	202
94FID018	Dam South	DD	30	34	4	1.52	6.06	342312	7023779	534	-65.9	265.5	202
94FIR1108	Dam South	RAB	26	29	3	1.79	5.36	342300	7024181	535	-90	0	61
94FIR1150	Dam South	RAB	28	32	4	2.32	9.27	342238	7025584	533	-90	0	53
Incl			28	29	1	7.49	7.49						
94FIR784	Dam North	RAB	33	39	6	2.6	15.59	341430	7029008	524	-90	0	60
Incl			33	34	1	6.59	6.59						
94FIR809	Dam South East	RAB	28	31	3	5.55	16.66	342956	7024363	536	-90	0	51
Incl			28	29	1	15.9	15.9						
94FIR909	Dam South East	RAB	38	45	7	1.13	7.9	342890	7023765	536	-90	0	45
94FIR915	Dam South East	RAB	46	48	2	4.15	8.3	343100	7024159	537	-90	0	72
Incl			47	48	1	7.43	7.43						
94FIR928	Dam South East	RAB	51	53	2	3.52	7.04	342911	7024565	536	-90	0	87
94FIR928	Dam South East	RAB	60	63	3	2.06	6.17	342911	7024565	536	-90	0	87
94FIR938	Dam South East	RAB	26	28	2	5.45	10.9	343017	7024762	536	-90	0	73
94FIR939	Dam South East	RAB	25	26	1	6.5	6.5	343067	7024761	536	-90	0	69
94FIR940	Dam South East	RAB	52	56	4	1.34	5.36	343022	7024962	537	-90	0	75
94FIR942	Dam South East	RAB	25	28	3	2.15	6.44	342922	7024965	536	-90	0	87
94FIR942	Dam South East	RAB	86	87	1	8.28	8.28	342922	7024965	536	-90	0	87
95FIR1191	Fisher East	RAB	19	29	10	5	49.98	360614	7024893	568	-60	241	72
Incl			20	23	10	7.95	7.95			500			
Incl	1		23	25	2	13.11	26.22		1				
	Dam South East	RAB	66	69	3	2.73	8.19	342948	7024063	536	-90	0	85
95FIR122/	Dani Jouth Last							342948	7024003	536	-90	0	76
95FIR1224	Dam South Fast	RAR	/12	//	//								
95FIR1225	Dam South East	RAB	43	47	4	1.37	5.48						
	Dam South East Dam South East Dam North	RAB RAB RAB	43 37 30	47 40 36	4 3 6	2.27 1.84	6.8 11.06	342903 341572	7024002 7024265 7028704	536 525	-90 -90 -90	0	88 63

Table 1. Significant historical results (>5 gram metre Au) - Intercepts - 0.5g/t Au lower cut, 1m maximum internal dilution. Higher grade intervals are reported at lower cut-off of 5g/t Au with 1m of internal dilution.

ROX RESOURCES LIMITED

Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 ASX CODE: RXL

Incl	I	I	53	54	1	5.42	5.42					I	
95FIR1251	Dam North	RAB	33	36	3	2.17	6.52	341722	7028700	525	-90	0	103
Incl			35	36	1	5.66	5.66						
95FIR1254	Dam North	RAB	36	48	12	0.8	9.56	341872	7028696	526	-90	0	99
95FIR1254	Dam North	RAB	64	72	8	2.91	23.24	341872	7028696	526	-90	0	99
95FIR1295	Dirks	RAB	20	24	4	1.69	6.76	344750	7022776	540	-90	0	72
95FIR1301	Dirks	RAB	4	8	4	1.37	5.48	344951	7022377	541	-90	0	75
96FIR1716	Dam	RAB	25	27	2	2.66	5.32	342124	7026888	528	-60	271.6	74
96FIR1739	Dam	RAB	33	40	7	1.25	8.78	342220	7026735	529	-60	271.6	60
96FIR1740	Dam	RAB	25	28	3	2.63	7.9	342270	7026734	529	-60	271.6	75
Incl	-		27	28	1	5.25	5.25						
96FIR1754	Dam	RAB	31	35	4	3.11	12.42	342278	7027034	529	-60	271.6	54
Incl			31	32	1	10	10	2424.00	7007406	520	60	274.6	
96FIR1761	Dam	RAB	16	20	4	1.75	7.01	342180	7027136	528	-60	271.6	55
Incl	Dam	DAD	16 36	17	1	5.36	5.36	242190	7027126	520	60	271.6	
96FIR1761	Dam	RAB	36	39 37	3	2.73	8.18	342180	7027136	528	-60	271.6	55
Incl 96FIR1772	Dam	RAB	60	62	1	5.83 5.91	5.83 11.82	341936	7027343	527	-60	271.6	101
Incl	Daili	NAD	61	62	1	10.4	11.82	341930	7027343	527	-00	271.0	101
96FIR1835	Dam	RAB	24	28	4	10.4	7.09	342217	7026635	529	-60	271.6	62
96FIR1835	Dam	RAB	53	54	4	9.23	9.23	342217	7026684	529	-60	271.6	80
96FIR1840 96FIR1841	Dam	RAB	22	24	2	9.23	33.29	342268	7026684	529	-60	271.6	72
96FIR1841	Dam	RAB	35	40	5	3.39	16.93	342318	7026682	529	-60	271.6	72
Incl	2011		35	36	1	12.3	10.93	372310	,020002	523	50	271.0	12
96FIR1849	Dam	RAB	70	75	5	1.21	6.06	341979	7027092	527	-60	271.6	83
96FIR1856	Dam	RAB	2	7	5	1.56	7.81	342090	7027489	527	-60	271.6	63
96FIR1863	Dam	RAB	41	45	4	1.30	7.1	341904	7027094	527	-60	271.6	80
96FIR1893	Dam South	RAB	65	69	4	1.70	6.88	342380	7025280	534	-60	271.6	80
DDC11	Damsel	RC	102	104	2	3.1	6.19	342749	7027562	529	-47	89	180
Incl	Bamber		102	104	1	5.57	5.57	0.27.10	7027502	525		05	100
DDC12	Damsel	RC	155	164	9	2.31	20.78	342652	7027567	529	-57	94	170
Incl	Bamber		155	156	1	8.12	8.12	0.2002	,02,00,	525	57	5.	1/0
DDC17	Damsel	RC	114	115	1	7.28	7.28	342408	7027381	528	-60	90	198
DDC17	Damsel	RC	167	172	5	2.04	10.19	342408	7027381	528	-60	90	198
Incl		-	170	171	1	5.92	5.92						
DDC2	Dam South East	RC	46	51	5	1.23	6.15	342876	7023653	536	-58	94	150
DDC3	Dam South	RC	95	97	2	2.63	5.25	342289	7025279	534	-50.5	99	203
DDC3	Dam South	RC	102	106	4	2.66	10.63	342289	7025279	534	-50.5	99	203
Incl			102	103	1	9.2	9.2						
DDC3	Dam South	RC	149	155	6	1.08	6.48	342289	7025279	534	-50.5	99	203
DDC4	Dam South	RC	104	106	2	2.51	5.02	342252	7025386	533	-56	96	138
DDC8	Damsel	RC	96	103	7	1.01	7.05	342568	7027982	528	-47	95	186
DDC8	Damsel	RC	114	121	7	1.31	9.15	342568	7027982	528	-47	95	186
DDC8	Damsel	RC	128	136	8	3.2	25.57	342568	7027982	528	-47	95	186
Incl			128	129	1	16.56	16.56						
DDD9	Damsel	DD	156	165	9	1.16	10.4	342508	7027980	528	-50	105	283.7
EER-39	Mt Eureka	RAB	12	14	2	3.43	6.86	356189	7061072	506	-90	0	16
EXAC291	Irwin	AC	16	20	4	2.35	9.39	353155	7043188	536	-60	270.7	20
FERC6	Fish Head	RC	103	110	7	2.54	17.77	357294	7030717	543	-57	240	150
Incl			104	105	1	9.34	9.34						
IBAC030	Mt Eureka	AC	48	51	3	2.02	6.06	354046	7056760	516	-60	207	72
IBAC035	Mt Eureka	AC	51	54	3	1.84	5.52	353955	7056959	517	-60	214	99
IBRC03	Mt Eureka	RC	73	81	8	2.35	18.79	353224	7043239	537	-60	270	120
Incl			73	74	1	6.23	6.23						
Incl			78	79	1	5.03	5.03						
MEAC02	Mt Eureka	AC	22	27	5	1.37	6.83	355027	7049971	532	-90	0	92
MEAC03	Mt Eureka	AC	39	40	1	17.44	17.44	355048	7050131	530	-90	0	90
MEAC03	Mt Eureka	AC	48	52	4	3.41	13.62	355048	7050131	530	-90	0	90
Incl			50	51	1	5.77	5.77						
MEAC122	Mt Eureka	AC	25	26	1	16.99	16.99	354036	7056259	519	-90	0	54
MEAC13	Mt Eureka	AC	32	33	1	7.85	7.85	354136	7056538	518	-90	0	52
MEAC130	Mt Eureka	AC	38	40	2	2.86	5.72	354036	7056059	516	-90	0	63
MEAC130	Mt Eureka	AC	42	48	6	3.64	21.84	354036	7056059	516	-90	0	63
Incl			44	46	2	6.76	13.52						= :
MEAC133	Mt Eureka	AC	35	38	3	3	9	353886	7056059	515	-90	0	54
Incl MEAC14	Mt Eureka	AC	35 56	36 58	1	7.72 40.99	7.72 81.98	354336	7056531	520	-90	0	84

Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 20

ASX CODE: RXL

Incl	1	1 1	56	57	1	80.54	80.54				1		
MEAC147	Mt Eureka	AC	11	15	4	1.88	7.51	353900	7055950	516	-90	0	54
Incl		-	13	14	1	5.48	5.48						-
MEAC147	Mt Eureka	AC	17	22	5	1.8	9.02	353900	7055950	516	-90	0	54
MEAC147	Mt Eureka	AC	44	46	2	7.73	15.47	353900	7055950	516	-90	0	54
Incl			44	45	1	14.29	14.29						
MEAC147	Mt Eureka	AC	49	50	1	9.32	9.32	353900	7055950	516	-90	0	54
MEAC15	Mt Eureka	AC	58	63	5	2.26	11.3	354236	7056531	519	-90	0	63
MEAC156	Mt Eureka	AC	47	55	8	5.96	47.71	353950	7055850	516	-90	0	74
Incl	N415 1	10	47	50	3	10.04	30.11	25 4000	7055050	547			
MEAC157	Mt Eureka	AC	57	60	3	1.72	5.15	354000	7055850	517	-90	0	61
MEAC1807 2	Mt Eureka	AC	15	20	5	1.16	5.8	354094	7056495	518	-60	225	58
MEAC1807													
3	Mt Eureka	AC	60	65	5	1.04	5.2	354112	7056510	518	-60	225	72
MEAC189	Mt Eureka	AC	56	58	2	4.58	9.16	353925	7055945	517	-90	0	86
Incl	Mt Euroko	10	56	57	1	8.48	8.48	25 4000	7056000	F1C	00	0	62
MEAC192 MEAC223	Mt Eureka	AC AC	44 56	48 58	4	1.47 6.26	5.88 12.52	354000 354243	7056000 7056544	516 520	-90 -60	0 290	62 113
Incl	Mt Eureka	AC	57	58	1	7.85	7.85	554245	7050544	520	-00	290	115
MEAC227	Mt Eureka	AC	8	9	1	11.94	11.94	354357	7056542	519	-60	290	64
MEAC229	Mt Eureka	AC	46	51	5	1.23	6.16	354357	7056597	519	-60	290	51
MEAC233	Mt Eureka	AC	35	36	1	6.15	6.15	354135	7056540	518	-60	290	41
MEAC235	Mt Eureka	AC	35	37	2	2.64	5.28	354054	7056502	518	-60	290	50
MEAC237	Mt Eureka	AC	21	26	5	1.1	5.49	354089	7056543	519	-60	290	32
MEAC26	Mt Eureka	AC	73	75	2	6.99	13.97	355092	7052021	524	-60	290	93
Incl			73	74	1	11	11						
MEAC310	Mt Eureka	AC	22	28	6	1.14	6.86	356275	7061106	504	-60	290	104
MEAC314	Mt Eureka	AC	35	37	2	6.34	12.67	355049	7050153	530	-60	290	50
Incl			36	37	1	12.1	12.1						
MEAC318	Mt Eureka	AC	68	72	4	1.63	6.52	355049	7050091	532	-60	290	80
MEAC321	Mt Eureka	AC	35	37	2	5.01	10.01	355029	7050058	533	-60	290	92
Incl			35	36	1	9.1	9.1						
MEAC322	Mt Eureka	AC	58	61	3	1.67	5.02	355048	7050049	534	-60	290	107
MEAC34	Mt Eureka	AC	48	52	4	2.24	8.96	354186	7056534	518	-90	0	87
MEAC34	Mt Eureka	AC	71	77	6	1.2	7.17	354186	7056534	518	-90	0	87
MEAC35	Mt Eureka	AC	28	31	3	3.03	9.09	354086	7056537	518	-90	0	82
Incl			29	30	1	5.18	5.18						
MEAC35	Mt Eureka	AC	73	75	2	6.41	12.83	354086	7056537	518	-90	0	82
MEAC44	Mt Eureka	AC	28	31	3	2.17	6.5	354038	7056137	517	-90	0	63
MEAC63	Mt Eureka	AC	39	42	3	7.3	21.91	354386	7056759	520	-90	0	102
Incl	N415 1	10	39	40	1	18.77	18.77	25 4000	7056450	54.0			75
MEAC71	Mt Eureka	AC AC	60 44	66	6	1.35	8.1	354086	7056459	518	-90	0	75 87
MEAC79 MER105	Mt Eureka	RAB	44 60	48 96	36	1.46 0.89	5.85 31.98	354186 354988	7056359 7049982	520 532	-90 -90	0	98
MERC011	Mt Eureka Mt Eureka	RC	30	32	2	0.89	7.99	354988	7049982	531	-90	290	113
Incl	WIT LUIEKA	NC .	30	31	1	6.91	6.91	334931	7043330	551	-00	230	115
MERC011	Mt Eureka	RC	98	104	6	1.72	10.33	354951	7049996	531	-60	290	113
Incl			103	104	1	7.08	7.08	55 7551		551		230	115
MERC012	Mt Eureka	RC	62	66	4	1.26	5.03	355026	7049968	532	-60	290	125
MERC012	Mt Eureka	RC	98	103	5	2.73	13.65	355026	7049968	532	-60	290	125
Incl			98	99	1	7.4	7.4			-			-
MERC012	Mt Eureka	RC	117	119	2	2.87	5.73	355026	7049968	532	-60	290	125
MERC016	Mt Eureka	RC	36	42	6	1	6.02	355016	7050057	532	-60	200	91
MERC016	Mt Eureka	RC	68	70	2	3.34	6.68	355016	7050057	532	-60	200	91
MERC017	Mt Eureka	RC	36	40	4	1.5	5.98	355019	7050066	532	-60	200	147
MERC017	Mt Eureka	RC	108	112	4	3.21	12.84	355019	7050066	532	-60	200	147
MERC018	Mt Eureka	RC	38	44	6	1.61	9.64	355043	7050132	530	-60	200	119
MERC022	Mt Eureka	RC	100	120	20	2.28	45.58	355118	7050105	532	-60	290	126
Incl			102	104	2	9.85	19.7						
MERC026	Mt Eureka	RC	64	68	4	1.71	6.84	354886	7049849	534	-60	290	100
MERC028	Mt Eureka	RC	34	36	2	2.88	5.76	354670	7048991	535	-60	290	90
MERC051	Mt Eureka	RC	109	114	5	1.38	6.88	353265	7043240	536	-60	270	140
MERC055	Mt Eureka	RC	68	79	11	2.34	25.76	353547	7061536	509	-60	270	107
Incl			73	74	1	6.41	6.41						
MERC059	Mt Eureka	RC	55	61	6	1.89	11.31	354206	7056515	518	-60	315	140
MERC059	Mt Eureka	RC	100	105	5	1.9	9.51	354206	7056515	518	-60	315	140

Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 21

ASX CODE: RXL

MERC060	Mt Eureka	RC	45	49	4	3.75	14.98	354245	7056484	519	-60	315	140
Incl	Wit Eureka	ine -	45	46	1	13.29	13.29	554245	7030404	515	00	515	140
MERC060	Mt Eureka	RC	83	94	11	3.3	36.28	354245	7056484	519	-60	315	140
Incl			89	91	2	11.74	23.48						
MERC061	Mt Eureka	RC	35	40	5	3.5	17.52	354104	7056524	518	-60	315	89
Incl			38	39	1	11.09	11.09						
MERC062	Mt Eureka	RC	46	55	9	1.95	17.57	354134	7056488	518	-60	315	140
Incl			53	54	1	6.69	6.69						
MERC062	Mt Eureka	RC	62	71	9	1.81	16.31	354134	7056488	518	-60	315	140
MERC063	Mt Eureka	RC	90	94	4	1.26	5.02	354173	7056450	519	-60	315	140
MERC065	Mt Eureka	RC	68	71	3	5.32	15.95	354105	7056443	518	-60	315	140
Incl			68	69	1	14.43	14.43						
MERC066	Mt Eureka	RC	113	117	4	1.65	6.6	354139	7056408	519	-60	315	140
MERC068	Mt Eureka	RC	53	59	6	0.95	5.67	354296	7056529	521	-60	270	110
MERC072	Mt Eureka	RC	77	82	5	1.08	5.4	354098	7056063	518	-60	270	100
MERC074	Mt Eureka	RC	50	53	3	6.94	20.81	354298	7056538	521	-60	315	130
Incl			50	52	2	10.01	20.02						
MERC074	Mt Eureka	RC	109	111	2	2.51	5.01	354298	7056538	521	-60	315	130
MERC074	Mt Eureka	RC	116	125	9	7.08	63.75	354298	7056538	521	-60	315	130
Incl	NAN From 1	DC	120	122	2	28.32	56.64	25 4222	7056506	F24	<u></u>	245	4.42
MERC075	Mt Eureka	RC	98	103	5	9.57	47.86	354330	7056506	521	-60	315	142
Incl MERC075	Mt Eureka	RC	98 105	100 107	2	22.08 4.43	44.16 8.86	354330	7056506	521	-60	315	142
	IVIL EUREKA	ĸL	105	107	1	7.34	7.34	354330	7050500	521	-00	312	142
Incl MERC075	Mt Eureka	RC	105	100	6	1.06	6.33	354330	7056506	521	-60	315	142
MERC075	Mt Eureka	RC	69	71	2	4.4	8.8	354330	7056594	518	-60	90	142
Incl	IVIT EUTCRO	ne	69	70	1	7.93	7.93	334137	7030334	510	00	50	150
MERC079	Mt Eureka	RC	97	100	3	1.75	5.25	353568	7061537	509	-60	270	164
MERC081	Mt Eureka	RC	120	100	3	1.67	5.01	354343	7056492	523	-60	315	202
MERC082	Mt Eureka	RC	46	54	8	0.87	6.94	354297	7056488	521	-60	315	148
MERC110	Mt Eureka	RC	183	192	9	1.38	12.42	354348	7056694	519	-90	0	234
MERC110	Mt Eureka	RC	204	206	2	3.17	6.34	354348	7056694	519	-90	0	234
MERC112	Mt Eureka	RC	157	168	11	2.45	26.94	354200	7056647	518	-90	0	222
Incl			162	163	1	5.04	5.04						
MERC115	Mt Eureka	RC	209	214	5	2.4	12	354352	7056736	518	-90	0	258
Incl			211	212	1	7.91	7.91						
MERC134_													
В	Mt Eureka	RC	95	100	5	7.84	39.19	353937	7055945	517	-59.1	267.5	104
MERC135	Mt Eureka	RC	70	75	5	1.37	6.85	353979	7055945	516	-62.5	268	98
MERC141	Mt Eureka	RC	35	40	5	1.58	7.92	353960	7055856	516	-57.8	265	110
MFA107	Shiva	AC	30	37	7	1.78	12.49	343538	7017559	536	-60	90	74
MFA107	Shiva	AC	44	47	3	3.53	10.6	343538	7017559	536	-60	90	74
Incl			46	47	1	6.8	6.8						
MFA107	Shiva	AC	60	63	3	1.75	5.26	343538	7017559	536	-60	90	74
MFA144	Shiva	AC	3	10	7	2.57	17.98	343618	7017329	537	-60	90	52
MFA151	Shiva	AC	37	39	2	3.88	7.76	343488	7017759	536	-60	90	63
Incl MFA152	Damaal	A.C.	37 57	38 64	1	7.26	7.26 8.62	242640	7027758	528	60	90	104
MFA152 MFA165	Damsel Dam	AC AC	49	54	5	1.23	6.25	342640 341688	7027758	528	-60 -60	90	97
MFA165 MFA166	Dirks	AC	49	53	5 4	2.34	9.34	341688	7027293	527	-60	90	97 77
MFA100 MFA214	Damsel	AC	75	78	3	2.34	24.01	342458	7024800	529	-60	90	125
MFA214	Damsel	AC	37	39	2	7.56	15.12	343058	7026360	535	-60	90	81
Incl	Dumser	110	37	38	1	12.4	12.4	545050	7020300	555	00	50	01
MFA236	Dirks	AC	60	65	5	12.4	5.4	344548	7025960	540	-60	90	92
MFA237	Dirks	AC	100	105	5	1.78	8.9	344468	7025960	540	-60	90	114
MFA254	Dirks	AC	54	56	2	13.74	27.47	344348	7026360	541	-60	90	106.5
MFA74	Dam	AC	0	4	4	1.28	5.11	341787	7027282	527	-60	90	87
MFA75	Dam	AC	1	5	4	1.4	5.59	341734	7027285	527	-60	90	99
MFA89	Damsel	AC	42	47	5	3.37	16.84	342616	7027557	529	-60	90	68
Incl			45	46	1	11.5	11.5						
MFA89	Damsel	AC	48	51	3	1.7	5.09	342616	7027557	529	-60	90	68
MFAC055	Dirks	AC	33	35	2	4.8	9.6	344479	7026448	540	-60	90	125
			33	34	1	7.05	7.05						
Incl			35	0.									
Incl MFAC062	Dirks	AC	88	92	4	2.38	9.52	344401	7025745	540	-60	90	93
	Dirks	AC	88 91	92 92	1	2.38 5.39	5.39	344401	7025745		-60		
MFAC062	Dirks Dam North	AC AC	88	92				344401 341445	7025745	540 523	-60 -60	90 90	93 92

Level 2, 87 Colin Street,

West Perth WA 6005 +61 8 9226 0044 ASX CODE: RXL

MFAC146 MFAC151 Incl MFAC158 Incl MFAC158 MFAC192	Damsel Damsel	AC AC	30 109	33	3	2.51	7.54	343041	7026557	534	-60	90	63
Incl MFAC158 Incl MFAC158 MFAC192		AC	109								00	50	03
MFAC158 Incl MFAC158 MFAC192				111	2	2.8	5.6	343281	7026155	537	-60	90	117
Incl MFAC158 MFAC192			109	110	1	5.1	5.1						
MFAC158 MFAC192	Dirks	AC	62	64	2	7.36	14.71	344362	7026260	541	-60	90	111
MFAC192			63	64	1	9.73	9.73						
	Dirks	AC	72	74	2	4.02	8.04	344362	7026260	541	-60	90	111
	Shiva	AC	21	23	2	3.4	6.79	343572	7017435	536	-60	90	44
MFAD153	Damsel	DD	59	66	7	1.36	9.5	342587	7027756	528	-60	90	138
MFAD153	Damsel	DD	70	71	1	45.63	45.63	342587	7027756	528	-60	90	138
MFAD153	Damsel	DD	93	95	2	3.3	6.59	342587	7027756	528	-60	90	138
Incl			93	94	1	5.37	5.37						
MFAD153	Damsel	DD	103	122	19	1.47	27.86	342587	7027756	528	-60	90	138
MFB080	Wagtail	RAB	25	28	3	2.98	8.95	350988	7029360	556	-60	270	51
Incl			25	26	1	5.74	5.74						
MFDD001	Dam	DD	120.8	126.6	5.8	1.92	11.11	342250	7027000	542	-59.2	339.5	413.3
MFDD001	Dam	DD	155	159.4	4.4	2.34	10.28	342250	7027000	542	-59.2	339.5	413.3
MFDD001	Dam	DD	163.5	166.9	3.4	1.64	5.58	342250	7027000	542	-59.2	339.5	413.3
MFDD001	Dam	DD	319	322	3	2.31	6.92	342250	7027000	542	-59.2	339.5	413.3
MFRC001	Damsel	RC	205	206	1	8.4	8.4	342434	7027981	527	-55.9	92.2	300
MFRC004	Dam	RC	105	113	8	3.22	25.73	342120	7027036	528	-61.9	96	259
Incl			106	110	4	5.57	22.26						
MFRC004	Dam	RC	142	144	2	3.22	6.43	342120	7027036	528	-61.9	96	259
Incl			142	143	1	5.79	5.79						
MFRC004	Dam	RC	149	151	2	4.83	9.65	342120	7027036	528	-61.9	96	259
Incl			149	150	1	8.34	8.34						
MFRC005	Dam	RC	128	134	6	1.64	9.83	342126	7027136	528	-49.9	87	314
Incl			129	130	1	5.91	5.91						
MFRC010	Damsel	RC	40	41	1	5.51	5.51	342594	7027570	529	-63.2	90	264
MFRC010	Damsel	RC	43	51	8	1.96	15.7	342594	7027570	529	-63.2	90	264
Incl			45	46	1	5.96	5.96						
MFRC010	Damsel	RC	54	63	9	4.43	39.87	342594	7027570	529	-63.2	90	264
Incl			57	59	2	10.24	20.47						
MFRC011	Damsel	RC	176	180	4	1.61	6.43	342496	7027845	528	-54.2	90	213
MFRC012	Mt Fisher	RC	147	150	3	3.87	11.6	349584	7029542	550	-55.6	289	164
Incl			148	149	1	8.51	8.51						
MFRC016	Damsel	RC	135	139	4	1.4	5.6	342530	7027978	528	-55.6	88	178
MFRC016	Damsel	RC	141	144	3	1.84	5.51	342530	7027978	528	-55.6	88	178
MFRC016	Damsel	RC	159	169	10	1.03	10.32	342530	7027978	528	-55.6	88	178
MFRC018	Damsel	RC	119	127	8	2.71	21.67	342539	7027845	528	-64.4	87.4	170
Incl			120	121	1	6.7	6.7						
Incl			123	124	1	5.96	5.96						
MFRC019	Damsel	RC	46	58	12	2.28	27.38	342612	7027752	528	-62.2	85.3	110
Incl	Dumber	inc.	48	49	1	5.12	5.12	542012	7027752	520	02.2	05.5	110
Incl			55	56	1	7.67	7.67						
MFRC020	Damsel	RC	52	53	1	7.83	7.83	342558	7027756	528	-64.6	88	152
MFRC020	Damsel	RC	72	74	2	7.86	15.72	342558	7027756	528	-64.6	88	152
Incl	Junioci	ne	72	74	1	15.09	15.09	542550	,02,7,50	520	04.0	00	1.52
MFRC020	Damsel	RC	103	105	2	2.88	5.75	342558	7027756	528	-64.6	88	152
Incl	Damoer	ne	103	103	1	5.14	5.14	3-72330	, 52, 750	520	00	00	1.72
MFRC021	Damsel	RC	61	66	5	5.14 1.9	9.51	342594	7027667	528	-61.1	90	100
MFRC021 MFRC023	Damsel	RC	39	42	3	2.22	6.67	342594	7027667	528	-61.1	90	70
MFRC023	Damsel	RC	39 71	42 74	3	4.9	14.7	342622	7027565	529	-60.8	92.7 86.6	100
	Dallisei	ΝC	71	74	3	4.9		342372	/02/50/	329	-01.0	80.0	100
Incl MFRC027	Mt Fisher Mine	RC	126	132	6		10.43 22.49	349569	7029550	550	-54.6	291	145
	IVIT FISHER IVIINE	ΝC				3.75		343203	1029550	350	-34.0	291	145
	Mt Ficher Mine	PC.	129	130	1	14.69	14.69	2405.00	7020507	664	60.1	202.7	177
MFRC029	Mt Fisher Mine	RC	158	160	2	4.78	9.56	349568	7029507	551	-69.1	283.7	177
Incl	Degional	DC.	159	160	1	8.35	8.35	240054	7020252	550	60.4	202.0	240
MFRC033	Regional	RC	263	268	5	1.58	7.92	349651	7029253	552	-60.4	282.6	318
MFRC055	Shiva	RC	84	89	5	1.03	5.17	343505	7017562	537	50.95	92.91	140
IVIFICU33	JIIIVa	ΝC	ō4	69	э	1.05	5.17	343303	101/202	337	50.95	92.91	140
MFRC055	Shiva	RC	117	120	8	1.91	15.25	343505	7017562	537	- 50.95	92.91	140
Incl	Shiva	nc.	112 119	120	8	6.01	6.01	545505	1011202	357	20.32	92.91	140
IIICI	+		119	120	1	0.01	0.01						
	1										-		

											-		
MFRC056 Incl	Shiva	RC	66 68	70 69	4	2.74 7.09	10.97 7.09	343467	7017672	536	47.92	91.53	130
inci			08	03	1	7.05	7.09				-		
MFRC058	Shiva	RC	33	40	7	1.09	7.66	343547	7017436	538	54.74	91.56	124
MRRC002	Wagtail	RC	141	143	2	4.36	8.71	350174	7028245	559	-63.6	269.7	163
Incl			141	142	1	5.92	5.92						
MRRC003	Wagtail	RC	61	64	3	15.88	47.65	350126	7028225	559	-59.6	268.1	73
Incl			62	64	2	22.72	45.43						
MRRC005	Wagtail	RC	49	53	4	8.74	34.96	350118	7028162	559	-59.3	270	58
Incl			49	50	1	32.67	32.67						
MTE19	Mt Eureka	RAB	72	80	8	1.99	15.92	354849	7049596	537	-60	290	88
MTE33	Mt Eureka	RAB	4	8	4	2	8	354788	7050117	532	-60	290	58
MTE72	Mt Eureka	RAB	0	4	4	2.3	9.2	355147	7050243	531	-60	290	50
MTEC2 MTEC3	Mt Eureka Mt Eureka	RC RC	80 61	93 63	13 2	1.53 3.13	19.83 6.26	354789 354799	7049618 7049501	537 539	-90 -60	0 285	120 90
MTEC4	Mt Eureka	RC	70	80	10	0.61	6.1	354840	7049501	539	-00	285	120
MTEC4	Mt Eureka	RC	100	110	10	1.07	10.7	354840	7049599	537	-90	0	120
MTEC4	Mt Eureka	AC	60	65	5	5.82	29.1	354857	70495333	538	-60	290	95
MTFA039	Dirks	AC	48	52	4	1.38	5.52	344460	7026750	541	-90	0	77
MTFA053	Damsel	AC	76	85	9	7.12	64.08	342600	7027700	528	-90	0	85
Incl		-	76	80	4	12.44	49.76					-	
MTFA054	Damsel	AC	8	12	4	2.2	8.8	342650	7027700	529	-90	0	71
MTFA058	Damsel	AC	0	4	4	2.2	8.8	342650	7027470	529	-90	0	59
MTFA058	Damsel	AC	16	24	8	0.65	5.2	342650	7027470	529	-90	0	59
MTFA065	Dam	AC	36	40	4	2.3	9.2	341850	7027500	527	-90	0	75
MTFA071	Dam	AC	36	40	4	2.1	8.4	341700	7027240	527	-90	0	60
MTFA076	Dam	AC	72	75	3	1.77	5.31	342250	7027020	529	-90	0	75
MTFA083	Dam	AC	32	36	4	1.41	5.64	342450	7026750	530	-90	0	65
MTFA091	Dam	AC	40	48	8	3.95	31.6	342000	7026750	528	-90	0	53
MTFA112	Dam South	AC	40	44	4	1.44	5.76	342550	7025420	535	-90	0	45
MTFA115	Dam South	AC	48	56	8	2.15	17.2	342400	7025420	534	-90	0	66
MTFA116	Dam South	AC	40	48	8	1.72	13.76	342350	7025420	534	-90	0	63
MTFA119	Dam South	AC	12	16	4	2	8	342200	7025420	533	-90	0	47
MTFA124	Dam South East	AC	36	44	8	4.14	33.08	342950	7024860	536	-90	0	54
Incl	Dave Cauth Fast	10	40	44	4	6.8	27.2	242000	7024000	526	00	0	70
MTFA125 MTFA130	Dam South East	AC AC	32 40	40 48	8	1.61 1.33	12.84 10.6	342900 342950	7024860 7024460	536 536	-90 -90	0	72 51
MTFC002	Dam South East Wagtail	RC	40	48	5	41.13	205.65	350070	7024460	559	-90	90	60
Incl	wagtan	ne	45	48	3	67.94	203.82	330070	7020222	555	00	50	00
MTFC003	Wagtail	RC	41	44	3	2.64	7.92	350071	7028182	560	-60	90	60
Incl	Wagtan	ne	41	42	1	6.98	6.98	330071	7020102	500	00	50	00
MTFC006	Wagtail	RC	45	48	3	20.57	61.71	350074	7028061	559	-60	90	66
Incl	0		45	46	1	59.99	59.99						
MTFC007	Wagtail	RC	20	23	3	2.29	6.86	350077	7028262	558	-60	90	36
Incl			20	21	1	6.26	6.26						
MTFC008	Wagtail	RC	46	50	4	2.26	9.05	350067	7028242	559	-60	90	60
Incl			49	50	1	6.95	6.95						
MTFC009	Wagtail	RC	71	75	4	47.59	190.36	350057	7028242	559	-60	90	84
Incl			71	72	1	188.9	188.9						
MTFC010	Wagtail	RC	43	50	7	4.03	28.21	350070	7028202	559	-60	90	60
Incl	14/+ -1	DC.	47	48	1	17.5	17.5	250650	7000000				~~
MTFC011	Wagtail	RC	77	79	2	3.29	6.58	350059	7028202	559	-60	90	88
MTFC012	Wagtail	RC	20 21	23 23	3	7.59	22.77	350103	7028162	560	-60	270	36
Incl MTFC020	Wagtail	RC	42	23 44	2	10.86 32.69	21.72 65.38	350114	7028162	560	-60	270	60
Incl	vvagtall	ΝL	42	44	1	64.88	64.88	550114	/028102	006	-00	270	00
MTFC022	Wagtail	RC	85	88	3	6.89	20.66	350137	7028243	558	-58	270	101
MTFC022	Wagtail	RC	61	63	2	25.16	50.32	350137	7028223	559	-59	270	71
Incl			61	62	1	49.82	49.82			555		2.0	/-
MTFC024	Wagtail	RC	78	82	4	1.26	5.03	350137	7028223	559	-59	270	95
MTFC025	Wagtail	RC	97	101	4	2.43	9.7	350149	7028223	559	-58.5	270	109
MTFC026	Wagtail	RC	79	81	2	4.33	8.66	350137	7028203	559	-59	270	91
Incl			79	80	1	5.1	5.1						
	1	DC.	65	66	1	9.71	9.71	350127	7028183	560	-59	270	77
MTFC027	Wagtail	RC	05	00	1	5.71	5.7 1				55	270	
MTFC027 MTFC031	Wagtail Wagtail	RC	84	86	2	3.04	6.07	350137	7028163	560	-60	270	100

24

ASX CODE: RXL

Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044

MTFC036	Wagtail	RC	61	63	2	6.47	12.94	350122	7028263	558	-58	270	76
Incl			62	63	1	11.55	11.55						
MTFC037	Wagtail	RC	86	92	6	2.05	12.27	350135	7028263	558	-58	270	100
Incl	Ŭ		86	87	1	7.56	7.56						
MTFC044	Wagtail	RC	46	49	3	18.54	55.63	350109	7028283	557	-57.5	270	59
Incl			46	47	1	54.36	54.36						
MTFC049	Wagtail	RC	36	39	3	3.39	10.17	350114	7028122	560	-60	270	52
Incl	Trugtum		36	37	1	8.69	8.69	000111	7020122	500	00	270	52
MTFC062	Wagtail	RC	92	94	2	10.19	20.38	350153	7028063	560	-58	270	106
Incl	Wagtan	ne	92	93	1	19.79	19.79	330133	7020005	500	50	270	100
NEWDUGA			52	55	T	19.79	19.79						
0013	Mt Eureka	AC	60	63	3	3.01	9.03	354830	7047860	541	-60	269	63
NEWDUGA	IVIT LUIEKa	AC	00	03	5	3.01	9.03	334830	7047800	J41	-00	209	05
0096	Mt Eureka	AC	124	128	4	1.58	6.32	354870	7048160	541	-60	269	128
NEWEURA	IVIT LUTERA	AC	124	120	4	1.58	0.32	334870	7048100	J41	-00	205	120
0024	Mt Eureka	AC	72	76	4	2.14	8.56	356460	7061240	505	-60	269	90
NEWGUN	IVIL EULEKA	AC	12	70	4	2.14	6.50	550400	7001240	505	-00	209	90
A0070	Mt Eureka	AC	20	22	4	2.09	11.02	254220	7057570	F10	-60	274	60
NEWGUN	IVIL EUREKA	AC	28	32	4	2.98	11.92	354329	7057578	518	-00	274	69
	Mt Euroka	10	22	26	4	2.4	0.0	254226	7057262	F17	60	270	04
A0089	Mt Eureka	AC	32	36	4	2.4	9.6	354326	7057262	517	-60	270	94
NEWGUN	Mt Euroka	10	10	20	0	2.60	21.40	254062	7057142	F10	60	266	F 2
A0104	Mt Eureka	AC	12	20	8	2.69	21.48	354962	7057142	519	-60	266	53
NEWGUN	MA Front		100	100	~	4.00	6 53	25 4 4 22	705 6206	F 2 4	50	245	400.0
D0002	Mt Eureka	DD	193	199	6	1.09	6.53	354400	7056390	521	-50	315	480.3
NRC003	Nile	RC	0	6	6	1.09	6.53	344758	7023175	541	-59.7	271.7	148
NRC003	Nile	RC	25	29	4	1.28	5.1	344758	7023175	541	-59.7	271.7	148
NRC003	Nile	RC	33	39	6	1.23	7.39	344758	7023175	541	-59.7	271.7	148
NRC003	Nile	RC	107	111	4	3.44	13.77	344758	7023175	541	-59.7	271.7	148
Incl			107	109	2	5.23	10.46						
PMF001	Mt Fisher	RC	33	35	2	2.96	5.92	349512	7029748	556	-70	295	43
PMF009	Mt Fisher	RC	65	69	4	4.93	19.7	349518	7029723	553	-70	293	69
Incl			65	67	2	6.9	13.8						
PMF011	Mt Fisher	RC	61	67	6	2.02	12.1	349561	7029747	551	-60	292	75
PMF013	Mt Fisher	RC	46	53	7	3.24	22.7	349599	7029819	549	-60	293	53
Incl			47	48	1	15	15						
PMF023	Mt Fisher	RC	91	98	7	2.86	20	349554	7029707	551	-60	293	100
Incl			93	94	1	7.8	7.8						
PMF025	Mt Fisher East	RC	58	70	12	2.57	30.8	349502	7029687	553	-60	293	70
Incl	interiorier Edoe	ne	62	63	1	6	6	0.0002	/02500/	555	00	200	
Incl			66	67	1	5.2	5.2						
PMF028	Mt Fisher	RC	26	29	3	1.81	5.42	349565	7029876	550	-90	295	46
PMF029	Mt Fisher	RC	40	54	14	1.46	20.45	349573	7029829	551	-90	295	55
PMF030	Mt Fisher	RC	36	51	15	1.40	24.01	349569	7029809	551	-90	295	64
Incl	IVIL FISHEI	NC .	38	39	13	7.45	7.45	549509	7029809	551	-90	295	04
	NAL Fish an	DC.						240504	7020010	550	00	205	00
PMF033	Mt Fisher	RC	64	68	4	5.28	21.11	349594	7029819	550	-90	295	88
Incl			66	67	1	12.15	12.15						
PMF033	Mt Fisher	RC	70	74	4	5.17	20.66	349594	7029819	550	-90	295	88
Incl			70	72	2	8.23	16.46						
PMF035	Mt Fisher	RC	35	44	9	20.18	181.58	349471	7029722	557	-90	295	58
Incl			36	41	5	35.11	175.57						
PMF036	Mt Fisher	RC	47	58	11	14.34	157.74	349489	7029736	558	-90	295	70
Incl			50	54	4	35.77	143.08						
PMF039	Mt Fisher	RC	29	33	4	7.6	30.41	349443	7029669	556	-90	295	50
Incl			31	33	2	13.47	26.93						
PMF041	Mt Fisher	RC	24	32	8	3.15	25.23	349451	7029688	556	-90	295	46
Incl			28	30	2	8.62	17.24						
PMF042	Mt Fisher	RC	43	56	13	12.7	165.08	349468	7029680	555	-90	295	56
Incl			46	53	7	21.01	147.06						
PMF043	Mt Fisher	RC	61	72	11	3.17	34.88	349484	7029673	554	-90	295	78
Incl	-	1	68	70	2	11.4	22.79			-			-
PMF043	Mt Fisher	RC	76	78	2	2.64	5.27	349484	7029673	554	-90	295	78
PMF044	Mt Fisher	RC	26	32	6	5.16	30.94	349459	7029706	556	-90	295	44
	WILLISHEL	ne	20	32	3	9.06	27.17	5-3433	1023100	550	.50	233	44
Incl	Mt Fich	DC						240400	7020602	F F 4	00	205	00
PMF045	Mt Fisher	RC	65	80	15	9.13	136.89	349490	7029692	554	-90	295	90
Incl	N41 51 1		68	76	8	15.59	124.73	246.121	7000746				~~
PMF046	Mt Fisher	RC	70	81	11	6.07	66.8	349494	7029712	554	-90	295	90
Incl			72	75	3	11.78	35.35						

Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 ASX CODE: RXL

Incl	1	1 1	76	78	2	8.12	16.23					1	
PMF047	Mt Fisher	RC	52	70	19	7.64	145.18	349487	7029715	554	-90	295	82
Incl			55	60	5	22.9	114.5						
Incl			63	64	1	7.3	7.3						
PMF048	Mt Fisher	RC	47	58	11	5.92	65.07	349480	7029717	555	-90	295	58
Incl			50	54	4	13.53	54.12						
PMF050	Mt Fisher	RC	16	21	5	5.69	28.46	349540	7029778	552	-60	295	36
Incl			18	19	1	18.55	18.55						
PMF052	Mt Fisher	RC	33	36	3	22.51	67.53	349566	7029784	550	-60	295	50
Incl			33	35	2	32.6	65.2						
PMF056	Mt Fisher	RC	67	76	9	34.34	309.06	349501	7029731	555	-90	293	90
Incl			70	74	4	74.25	297						
PMF058	Mt Fisher	RC	85	97	12	1.95	23.45	349510	7029705	553	-90	293	104
PMF060	Mt Fisher	RC	86	97	11	2.71	29.83	349501	7029665	553	-90	293	105
Incl	Mt Fisher	DC.	87	90	3	5.5	16.51	240407	7020645	552	00	202	104
PMF061	Mt Fisher	RC	80 83	93	13 3	4.41	57.29 33.4	349497	7029645	553	-90	293	104
Incl PMF062	Mt Fisher	RC	83 59	86 69	10	1.13	18.85	349479	7029653	554	-90	293	80
Incl	IVIC I ISHEI	NC	64	65	10	5.3	5.3	343473	7029033	554	-90	293	80
PMF063	Mt Fisher	RC	47	53	6	2.31	13.83	349461	7029661	555	-90	293	64
PMF064	Mt Fisher	RC	77	78	1	8	8	349481	7029631	554	-90	293	85
PMF065	Mt Fisher	RC	58	62	4	1.35	5.4	349465	7029638	554	-90	293	70
PMF066	Mt Fisher	RC	43	52	9	1.28	11.5	349450	7029645	555	-90	293	64
PMF067	Mt Fisher	RC	29	35	6	1.53	9.18	349432	7029653	556	-90	293	50
PMF068	Mt Fisher	RC	14	20	6	1.14	6.81	349416	7029660	557	-90	293	34
PMF074	Mt Fisher	RC	47	53	6	1.09	6.54	349429	7029610	554	-90	293	63
PMF077	Mt Fisher	RC	90	97	7	5.07	35.46	349522	7029743	553	-90	293	106
Incl			92	94	2	11.6	23.2						
PMF085	Mt Fisher	RC	85	88	3	2.59	7.77	349688	7030104	548	-90	293	100
PMF121	Mt Fisher	RC	42	47	5	1.68	8.41	349679	7030108	548	-90	293	58
PMF122	Mt Fisher	RC	44	49	5	1.8	9.02	349588	7029887	549	-90	293	56
PMF124	Mt Fisher	RC	32	39	7	1.16	8.15	349574	7029872	550	-90	293	49
PMF127	Mt Fisher	RC	54	58	4	1.93	7.7	349588	7029844	550	-90	293	65
PMF128	Mt Fisher	RC	41	52	11	1.92	21.12	349578	7029848	550	-90	293	59
Incl			46	47	1	5.2	5.2						
PMF130	Mt Fisher	RC	6	16	10	5.61	56.12	349540	7029822	550	-90	293	25
Incl			7	12	5	7.12	35.6						
Incl			14	15	1	10.2	10.2						
PMF253	Mt Fisher	RC	22	28	6	4.71	28.25	349460	7029727	559	-90	295	34
Incl	A 41 51 1	50	25	27	2	9.47	18.94	240462	7020726	550		205	26
PMF254	Mt Fisher	RC	26	32	6	5.65	33.88	349463	7029726	559	-90	295	36
Incl	Mt Fisher	DC.	29 16	30 20	1 4	22 1.8	22 7.21	349441	7029692	667	00	205	27
PMF271 PMF272	Mt Fisher Mt Fisher	RC RC	22	20	2	2.6	5.19	349441	7029692	557 557	-90 -90	295 295	30
PMF272	Mt Fisher	RC	34	37	3	2.06	6.19	349456	7029685	556	-90	295	43
PMF296	Mt Fisher	RC	99	105	6	9.39	56.36	349511	7029661	553	-90	295	110
Incl	With Isrici	ne	99	103	3	16.07	48.2	545511	7025001	555	50	200	110
PMF305	Mt Fisher	RC	33	38	5	1.49	7.43	349440	7029649	556	-90	295	45
PMF314	Mt Fisher	RC	32	34	2	2.56	5.12	349513	7029747	555	-60	295	36
PMF332	Mt Fisher	RC	111	115	4	2.74	10.96	349521	7029656	553	-90	295	122
PMF351	Mt Fisher	RC	51	56	5	1.52	7.6	349519	7029744	521	-90	295	63
PMF354	Mt Fisher	RC	10	16	6	4.98	29.9	349453	7029643	521	-90	295	19
Incl			14	15	1	14.4	14.4						
PMF360	Mt Fisher	RC	3	6	3	3.63	10.88	349461	7029683	520	-90	295	18
Incl			4	5	1	6.9	6.9						
PMF361	Mt Fisher	RC	5	12	7	4.46	31.2	349465	7029682	520	-90	295	18
Incl			5	6	1	5.66	5.66						
Incl			8	9	1	13.6	13.6						
PMF362	Mt Fisher	RC	13	21	8	14.72	117.72	349471	7029679	520	-90	295	24
Incl			16	20	4	27.4	109.61						
PMF363	Mt Fisher	RC	20	23	3	5.01	15.03	349474	7029677	520	-90	295	32
Incl			21	23	2	6.12	12.23						
PMF370	Mt Fisher	RC	0	7	7	6.45	45.12	349475	7029720	520	-90	295	12
Incl	NA+ 5:		1	6	5	8.54	42.71	240470	7020710	520		205	40
PMF371	Mt Fisher	RC	5	11	6	12.73	76.39	349478	7029719	520	-90	295	18
Incl DME272	Mt Eichor	PC	7 17	9 24	2	34.6 5.01	69.2	240405	7020716	520	.00	205	24
PMF372	Mt Fisher	RC	1/	24	/	5.91	41.35	349485	7029716	520	-90	295	24

Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 26

ASX CODE: RXL

Incl	1		19	21	2	14.95	29.9				1	1	
PMF382	Mt Fisher	RC	17	22	5	2.13	10.67	349461	7029640	520	-90	295	26
PMF383	Mt Fisher	RC	24	29	5	1.27	6.33	349469	7029636	520	-90	295	34
PMF385	Mt Fisher	RC	32	35	3	1.87	5.62	349476	7029633	520	-90	295	40
PMF392	Mt Fisher	RC	35	39	4	2.3	9.19	349488	7029671	520	-90	295	39
PMF393	Mt Fisher	RC	42	47	5	3.58	17.88	349492	7029669	520	-90	295	47
Incl			45	46	1	7.4	7.4						
PMF394	Mt Fisher	RC	46	60	14	4.66	65.18	349495	7029668	520	-90	295	63
Incl			48	51	3	9.79	29.37						
Incl			54	57	3	7.58	22.73						
PMF395	Mt Fisher	RC	65	71	6	3.55	21.29	349506	7029663	520	-90	295	75
Incl			66	68	2	5.61	11.22						
PMFD026	Mt Fisher	DD	0	4	4	1.99	7.96	349604	7029792	549	-86	295	136
PMFD093	Mt Fisher	DD	58.26	63.25	4.99	2.6	12.96	349475	7029677	554	-89	293	71
Incl			62	63.25	1.25	7.91	9.89						
PMFD093	Mt Fisher	DD	63.6	68.1	4.5	1.15	5.2	349475	7029677	554	-89	293	71
PMFD094	Mt Fisher	DD	46	55	9	5.96	53.68	349474	7029699	555	-86	293	61.4
Incl	inter ioner		49	53	4	10.47	41.86	0.0171	7023033	555	00	200	0111
PMFD096	Mt Fisher	DD	39.1	40.1	1	146	146	349541	7029778	552	-88	293	50
PMFD097	Mt Fisher	DD	23.3	26	2.7	2.39	6.44	349453	7029709	557	-88	293	31
PMFD101	Mt Fisher	DD	23.5	34.3	11.3	3.01	34.05	349561	7029813	551	-88	293	48.2
Incl			23	26	2	7.5	15	3 73 301	. 023013	551	50	233	40.2
PMFD108	Mt Fisher	DD	9	16	7	9.28	64.94	349540	7029800	555	-90	293	26
Incl	internation	00	11	15	4	14.93	59.7	3-33-0	,025000	555	50	233	20
PMFD110	Mt Fisher	DD	43	46.8	3.8	4.42	16.79	349485	7029738	559	-83	293	50.1
Incl	internation	00	43	46.8	2.8	5.8	16.23	3-3-03	,025750	555	05	233	50.1
PMFD111	Mt Fisher	DD	23.2	26.9	3.7	12.15	44.96	349485	7029738	559	-65	295	31.3
Incl	ivit i isiter	00	23.2	25.45	2.25	18.97	42.67	343403	7025750	555	05	255	51.5
PMFD112	Mt Fisher	DD	26.1	36.65	10.55	2.57	27.13	349466	7029724	559	-90	295	39
Incl	withistici	00	29.75	31.02	10.33	6	7.62	343400	7025724	555	50	255	55
Incl			32.25	33.25	1.27	5.9	5.9						
PMFD113	Mt Fisher	DD	19	20.1	1.1	5.8	6.38	349465	7029725	559	-65	295	23
PMFD113 PMFD114	Mt Fisher	DD	23	20.1	6	9.63	57.76	349403	7029723	560	-89	295	36
Incl	IVICTISTICT	00	23	26.5	2.5	21.47	53.67	343477	7023741	500	-09	295	30
PMFD119	Mt Fisher	DD	7	20.5	2.3	5.08	40.63	349527	7029785	558	-88	295	21
Incl	IVIL FISHEI	00	9	10.4	ہ 1.4	12.89	18.04	349327	7029785	330	-00	295	21
		-		10.4									
Incl	Mt Fisher	DD	11.64		1.36	8.7 3.57	11.83	349624	7029568	549	50	202	104
PMFD387	IVIT FISHER	DD	178.8	181.78	2.98		10.64	349024	7029508	549	-59	293	184
Incl	Mt Fisher	DD	178.8	180.68	1.88	5.32 3.5	10.01	349639	7020604	549	-61	202	196
PMFD388	IVIT FISHER	DD	185.08	189.75	4.67		16.35	349039	7029604	549	-01	293	190
Incl			186	187.23	1.23	5.24	6.45						
Incl	MAt Fish an	DD	188.07	189.21	1.14	5.95	6.78	240674	7020670	540	66	202	105
PMFD401	Mt Fisher	DD	187.58	188.82	1.24	4.35	5.39	349671	7029678	548	-66	293	195
ROIB0091	Mt Eureka	RAB	30	38	8	1.03	8.26	351187	7049339	523	-90	0	45
ROIB0356	Mt Eureka	RAB	56	60	4	2.15	8.6	351165	7051292	517	-60	269.7	60
ROIB0408	Mt Eureka	RAB	56	60	4	1.26	5.04	350971	7050496	522	-90	0	65
ROIB0428	Mt Eureka	RAB	48	60	12	0.7	8.36	351198	7049372	525	-90	0	81
ROIB0432	Mt Eureka	RAB	24	28	4	3.13	12.52	351396	7049368	524	-90	0	57
SMER-4	Mt Eureka	RC	12	14	2	11	22	353964	7060524	515	-60	290	52
SMER-54	Mt Eureka	RAB	18	22	4	1.67	6.66	353873	7060532	520	-90	0	22
WTRC002	Wagtail	RC	47	50	3	55.14	165.42	350073	7028061	559	-60	90	59
Incl			47	49	2	81.6	163.2						
WTRC005	Wagtail	RC	38	39	1	12.7	12.7	350112	7028142	560	-60	270	50
WTRC006	Wagtail	RC	56	59	3	2.47	7.41	350122	7028142	560	-60	270	65
Incl			56	57	1	6.63	6.63						
WTRC009	Wagtail	RC	41	48	7	23.93	167.52	350071	7028222	559	-60	90	51
Incl			41	44	3	53.13	159.4						
WTRC010	Wagtail	RC	66	70	4	3.39	13.56	350061	7028222	559	-60	90	75
Incl			66	67	1	6.73	6.73						
WTRC011	Wagtail	RC	99	102	3	3.59	10.77	350051	7028222	559	-60	90	107
Incl			99	100	1	8.71	8.71						
YP80	Mt Eureka	RC	63	64	1	12	12	353921	7060499	518	-60	270	67
YRB175	Mt Eureka	RAB	29	32	3	3.86	11.57	353541	7061659	504	-60	270	54
Incl			31	32	1	9.87	9.87						
YRC07	Mt Eureka	RC	12	20	8	1.27	10.16	353296	7060595	511	-60	270	100
Theo,								353335					

ROX RESOURCES LIMITED Level 2, 87 Colin Street, West Perth WA 6005 +61 8 9226 0044 27

ASX CODE: RXL

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Historic sampling methods conducted at Mt Fisher—Mt Eureka have included Auger (AUG), aircore (AC), rotary air blast (RAB), reverse circulation (RC) and diamond drillholes. RC hole diameter was typically 5.5" (140 mm) reverse circulation percussion (RC). Diamond drill hole core was typically NQ2 size diameter. See Table for drillhole dips and azimuths.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	RC chips and diamond core provide high quality representative samples for analysis. RC, RAB, AC and DD core drilling was completed by previous holders to industry standard at that time.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Rox RC drillholes were sampled on 1m intervals using riffle or cone splitter units. Samples were sent to Intertek Genalysis in Kalgoorlie, crushed to 10mm, dried and pulverised (total prep) in LM5 units (Some samples > 3kg were split) to produce a sub-sample. The pulps were then sent to Perth for analysis by 25g Fire Assay with ICP-OES (Intertek code FA25/OE). Historic RC samples were collected every metre via a cyclone into a plastic bag prior to splitting with a Jones riffle splitter. A 1.5-3kg sample split was collected into a calico bag for laboratory submission. Diamond drillcore was cut using a diamond saw into half- core and sampled on either a 1m basis or over geological intervals to a maximum of 2m.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling have included Auger (AUG), aircore (AC), rotary air blast (RAB), reverse circulation (RC) and diamond drillholes. Hole depths reported range from 12m to 480m.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	Limited records relating to historical RC or diamond core sample recoveries have been identified, however, where described, sampling and recovery procedures are consistent with standard Australian industry standards. Rox RC drill recoveries were high (>90%).
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Historical AC, RAB, RC and diamond sampling was carried out to industry standard at that time. Rox RC samples were visually checked for recovery, moisture and contamination and notes made in the logs.

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of	Samples used in the Mineral Resource estimate come from both RC and historical diamond core drilling. Good sample recovery should have been obtained based on the recorded information and the drilling equipment used.
	fine/coarse material.	There is no observable relationship between recovery and grade, and therefore no sample bias.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining	All RC and diamond core samples were geologically logged RC drilling returns were logged in sufficient detail, recording all significant properties, to allow geological maps and sections to be constructed.
	studies and metallurgical studies.	The geological data would be suitable for inclusion in a Mineral Resource estimate.
		Qualitative and quantitative logging of historic data varies in its completeness
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of Rox RC chips and diamond core recorded lithology, mineralogy, mineralisation, weathering, colour and other sample features. RC chips are stored in plastic RC chip trays.
	The total length and percentage of the relevant	All holes were logged in full.
	intersections logged	Logging of historic data varies in its completeness
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Most of the historical diamond core was sampled using a diamond saw to provide half core with a maximum sample length of 2m.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Rox RC samples were collected on the drill rig using a consplitter. If any mineralised samples were collected wet these were noted in the drill logs and database. Most of the historical RC intervals were sampled on a 1n basis via a cyclone into a plastic bag prior to splitting with a Jones riffle splitter.
		Various sample preparation methods have been used by the historical holders. Best practice is assumed at the time of historic sampling.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Rox sample preparation followed industry best practice This involved oven drying, coarse crushing to ~10mm followed by pulverisation of the entire sample in an LM5 o equivalent pulverising mill to a grind size of 85% passing 75 micron.
		Sampling by previous holders assumed to be industry standard at the time.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Field QC procedures involve the use of Certified Reference Materials (CRM's) as assay standards, along with duplicates and barren waste samples. The insertion rate of these was approximately 1:20.

ASX CODE: RXL

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling.	Regular duplicates were reported from some historical programs. For Rox RC drilling field duplicates were taken on a routine basis at an approximate 1:20 ratio using the same sampling
	Whether sample sizes are appropriate to the grain size	techniques (i.e. cone splitter) and inserted into the sample run. The sample sizes are considered more than adequate to ensure that there are no particle size effects relating to the
	of the material being sampled.	grain size of the mineralisation which lies in the percentage range.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The majority of the historical assays used are reportedly by Fire Assay, with a minority by Aqua Regia and Four Acid digest. For Rox samples the analytical technique involved Fire Assay 25g /ICP-OES for all samples.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical or portable analysis tools were used to determine assay values stored in the database.
		Historical assay quality control measures are largely unknown. Regular duplicates with satisfactory results were reported from some programmes.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	For Rox samples internal laboratory control procedures involve duplicate assaying of randomly selected assay pulps as well as internal laboratory standards. All of these data are reported to the Company and analysed fo consistency and any discrepancies.
		Check assays were undertaken at an independent third party assay laboratory and correlated extremely well.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Senior technical personnel from the Company have visually inspected and verified the significant drill intersections.
	The use of twinned holes.	No holes have been twinned by Rox at this stage.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data from previous owners was taken from a Microsof Access database compilation and validated before entry into the Rox Micromine database. Primary data was collected using a standard set of Exce templates on Toughbook laptop computers in the field These data are transferred to Geobase Pty Ltd for data verification and loading into the database.
	Discuss any adjustment to assay data.	No adjustments or calibrations have been made to any assay data.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Historical drill hole positions were surveyed by licenced surveyors. A hand held GPS has been used to determine Rox collar locations at this stage, however DGPS collar surveys will be undertaken by a licensed surveyor shortly.
	Specification of the grid system used.	The grid system is MGA_GDA94, zone 51 for easting, northing and RL.
	Quality and adequacy of topographic control.	The topographic surface was generated from digital terrain models generated from low level airborne geophysical surveys. The topography of the mined open pit is well defined by historic survey pickups.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Average drill hole density is highly variable, ranging from 10m to 800m.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing is regarded as sufficient to determine the extent and degree of geological and grade continuity for the Mineral Resource estimation. The nominal drill hole spacing is; For the (Wagtail) Moray Reef 20 x 20m. For the Mt Fisher Mine 80 x 80m, with some areas in-filled to 40 x 40m spacing. For Damsel 40 x 40m and 40 x 20m.
	Whether sample compositing has been applied.	For AC, RAB and RC samples, sample compositing occurred over 4 metre intervals. Anomalous samples usually re-assayed at 1m intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	RC and diamond drilling is believed to be generally perpendicular to strike.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	The chain of custody for historical samples is not well documented. Sample security is managed by the Company. After preparation in the field samples are packed into polyweave bags and despatched to the laboratory. For a large number of samples these bags were transported by the Company directly to the assay laboratory. In some cases the sample were delivered to a transport contractor who then delivered the samples to the assay laboratory. The assay laboratory audits the samples on arrival and reports any discrepancies back to the Company. No such discrepancies occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have yet been completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Rox owns 100% of the Mt Fisher gold project tenements: M53/127, M53/9, E53/1061, E53/1106, E53/1218, E53/1788, E53/1836, E53/1106, E53/1788 and E53/2102. Rox and Cannon Resources entered into a split commodity agreement in respect of E53/1218 where Rox retains gold rights and Cannon retains rights to all other minerals. Rox Resources in a Joint Venture Agreement with Cullen Resources. Rox may earn a 51% interest by spending \$1m on exploration expenditure within a three-year period from satisfaction of certain Conditions Precedent (Stage 1 Earn In). If Rox earns the 51% interest, it can elect to earn a further 24% interest by expending a further \$1m on exploration expenditure over a three-year period, commencing at the end of the Stage 1 Earn In. The tenements in the Cullen JV consist of the following leases: E53/1209, E53/1299, E53/1637, E53/1893, E53/1957, E53/1958, E53/1959, E53/1961, E53/2052, E53/2101 (Pending), E53/2002, E53/2062 and E53/2075.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.

Exploration done by other parties

metals and gold within the regional Mt Fisher area. These companies include Minops Pty Ltd (1968 to 1971), Tenneco Australia (1971 to 1973), Sundowner (1985 to 1989), ACM Gold Ltd (1988 to 1992), Aztec Mining Company Ltd (1993 to 1994) and Pegasus Gold Australia Pty Ltd (1994 to 1996). Work conducted included aeromagnetic surveys, ground magnetic surveys, regional mapping, rock chip sampling, soil geochemistry (including BLEG and stream sediment sampling) and rotary air blast (RAB) drilling.

A number of companies have completed exploration for base

The Mt Fisher deposit was first discovered in 1936 and mining between 1937 and 1949 produced approximately 4,500 tonnes of ore at 28 g/t gold (Powell, 1990). In 1980, a small deposit was defined by percussion drilling around the historical workings. Further drilling from 1984 to 1986 defined a larger deposit to the south of the old workings with Sundowner acquiring a 100% interest in the project in January 1986.

Sundowner completed a historic estimate of 252,000 tonnes at 5.4 g/t gold to a pit depth of 100 m. Following a period of study, a 250,000 tpa carbon-in-pulp treatment plant was built with completion in September 1987. Open pit mining commenced in April 1987 and continued through to September 1988, and processing finished in late November 1988. Total production from the Mt Fisher open pit was reportedly 218,000 tonnes at 4.3 g/t gold.

Following completion of treatment, the plant was dismantled and moved to Sundowner's Darlot mine 140 km to the south (Leandri P.S., 1989. Mt Fisher Mt Fisher Mine Eod of Operations Report. March 1989. Sundowner Minerals NL).

(Bright, D.V., 1990. Mt Fisher ML53/127. Annual Technical Report. July 1989 – June 1990. Sundowner Minerals NL).

Norgold Ltd and BHP Ltd (BHP) conducted gold exploration in the same area in the 1980s and exploration including rock chip sampling and mapping. BHP followed up with RAB and RC drilling reporting a number of gold anomalies in what was later named the Dam prospect.

From 1993 to 1997, CRAE completed extensive exploration with work largely focussing on the Dam prospect where gold anomalism was identified over a 7 km by 1 km area. Work completed included RAB and aircore (AC) drilling with a small amount of RC and diamond drilling follow-up. Delta acquired the Project in 1998 and explored until 2001. They completed additional RAB, AC, RC and diamond drilling. CRAE and Delta defined extensive regolith gold anomalies but were unable to identify any substantial bedrock sources to gold mineralisation.

From 1996, Cullen Resources NL (Cullen) in joint venture with Newmont Mining Corporation (Newmont) conducted exploration in the Mt Eureka area for gold and were also involved in a nickel joint venture with BHP.

Avoca Resources Ltd (Avoca) acquired the Mt Fisher Gold Project in 2004 and completed geological mapping and soil and rock chip sampling over much of the tenement area. Drilling was focussed on defining further mineralisation along the Dam-Damsel-Dirk gold corridor and extending known mineralisation at Moray Reef, with the internal reporting of

Acknowledgment and appraisal of exploration by other

parties.

Criteria	JORC Code explanation	Commentary
		Mineral Resources for the both the Dam and Moray Reef prospects. From 2004 to 2011, Avoca completed a total of 158 RAB/AC drill holes for 9,111 m and 64 shallow RC drill holes for 5,188 m.
Geology	Deposit type, geological setting and style of mineralisation.	The geological setting is of Archean aged with common host rocks and structures related to mesothermal orogenic gold mineralisation as found throughout the Yilgarn Craton of Western Australia.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Refer to drill results Table/s and the Notes attached thereto.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay intervals have been length weighted. No top cuts have been applied. A lower cut-off of 0.5g/t Au was applied with 1m of interval dilution allowed. See Table/s.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	A lower cut-off of 0.5g/t Au was applied with 1m of interval dilution allowed. Higher grade intervals are reported at lower cut-off of 5g/t Au with 1m of interval dilution allowed.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been used or reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	No definite relationships between mineralisation widths ar intercept lengths are known from this drilling due to the high weathered nature of the material sampled. However reporte intercepts will usually be more than true width.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams		Refer to figures in the announcement.
	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Indicative grade shell models (>1g/t Au, >2g/t Au, >5g/t Au and >10g/t Au) are included in figures within this announcement. These grade shell models have been generated in Micromine software. These grade shells are provided for reference only. The images of grade shell models are not an Exploration Target and do not contain nor indicate any estimate of potential size and grade ranges.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	At this stage only likely mineralised intervals have been analysed.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material information has been included in the body of the announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Follow up AC drilling will be undertaken to test for new zones of mineralisation. Project wide high resolution aeromagnetic surveying will be undertaken. Further work (RC and diamond drilling) is justified to locate extensions to mineralisation both at depth and along strike.