ASX:IDA



8<sup>th</sup> September 2022

# High-Grade Rare Earth Mineralisation Confirmed Strike Zone Extended to Over 4.5km

# **Highlights**

- Re-assay of 498 aircore samples (558 remain pending) returned significant rare earth element (REE) values
- Latest results confirm thick REE mineralisation over a strike in excess of 4.5km within an overall 10km zone identified along the Lake Labyrinth Shear Zone
- Mineralisation remains open in all directions
- High proportion of high-value Magnet Rare Earth Oxides (MREOs) up to 2,003ppm and 34% MREO of Total REE oxides (TREO)
- Significant REE intersections include:
  - 37m @ 1,687ppm TREO from 32m (LLAC006) including 17m @ 2,640ppm TREO from 52m including 4m @ 7,039ppm TREO and 2,003ppm MREO from 52m
  - 20m @ 2,242ppm TREO from 28m (LLAC010) including 12m @ 3,236ppm TREO from 32m
- Metallurgical testwork planned to determine the optimal extraction options to produce a commercial product

Indiana Resources Limited (**ASX: IDA**) ('**Indiana' or the 'Company'**) is pleased to announce that further assays have confirmed high grade REE mineralisation within Indiana's 100% owned 5,713 km<sup>2</sup> Central Gawler Project in South Australia.

Results have been received from a further 36 aircore (AC) holes (of a total 79 holes) submitted for re-assaying for the full suite of light and heavy rare earth elements (Total REE). These holes were drilled within a 10km strike extent within the Lake Labyrinth Shear Zone (LLSZ) with REE mineralisation remaining open in all directions. Assays also highlight a high proportion of high-value Magnet Rare Earth Oxides (MREOs).

Samples from the remaining 36 drillholes are in the laboratory with results expected imminently.

# Technical Director Felicity Repacholi-Muir said:

"We are truly excited by these latest high grade assay results which confirm extensive, thick zones of REE mineralisation within our Central Gawler Project - encouragingly this includes a significant proportion of high-value magnet REEs.

An exciting opportunity for critical minerals within the Project is clearly emerging and we look forward to confirming the extent of the mineralisation with a targeted REE drilling programme currently being planned.



481.304.819

Share Price

Market Cap

A\$0.069

33M

Shares on Issue

#### CAPITAL STRUCTURE BOARD & MANAGEMENT

Bronwyn Barnes Executive Chair Felicity Repacholi-Muir Technical Director Bob Adam Non-executive Director Mike Rosenstreich Non-executive Director Kate Stoney CFO & Company Secretary

#### CONTACT US

+61 (8) 6241 1870 info@indianaresources.com.au www.indianaresources.com.au Suite 3, 339 Cambridge St, Wembley WA 6014

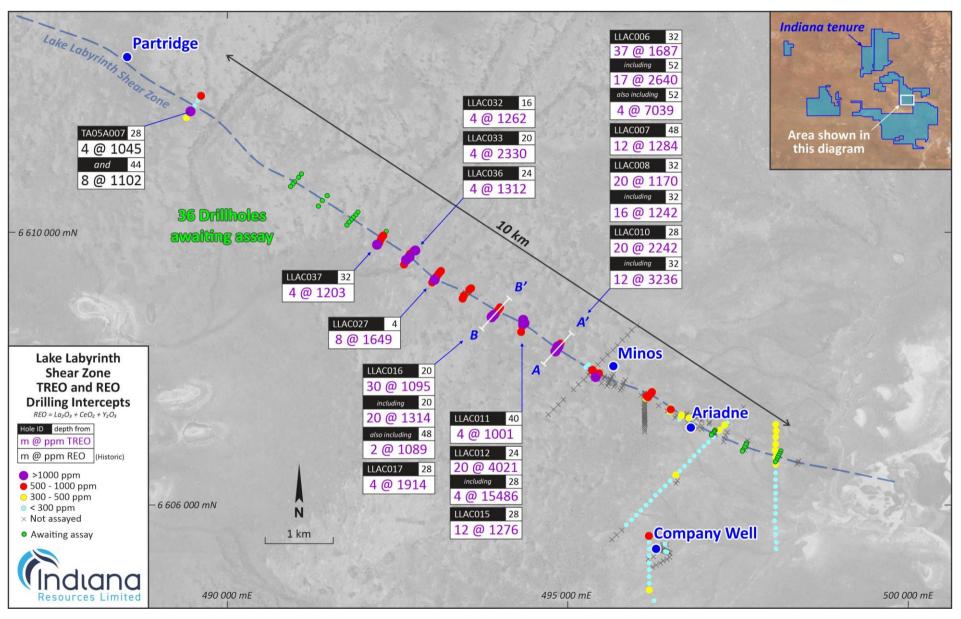


Indiana is moving quickly to capitalise on this opportunity, and we have also started investigations on the most appropriate mineralogical and metallurgical testwork to characterise the style of REE mineralisation and determine the processes available to maximise the recovery of the REEs from the host material."

Preliminary assessment of the historical geological logging indicates that the REE mineralisation generally occurs between 20 and 50 metres vertical depth with the host lithology varying between upper kaolinitic clays to lower zones of weathered granitic bedrock (saprolite). The samples assayed so far have returned highly positive REE results, including a significant percentage of high-value MREOs. The MREOs are predominantly Neodymium (Nd) and Praseodymium (Pr), which are termed 'light REEs' (LREEs) and Terbium (Tb) and Dysprosium (Dy) which are referred to as 'heavy REEs' (HREEs) (refer Table below). Highlights from the drilling are illustrated in Table 1 and Figures 1-3.

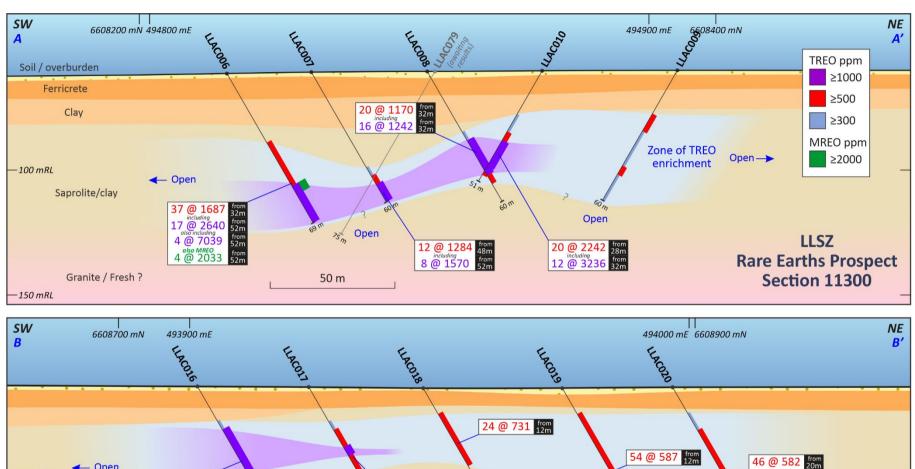
## Next Steps

Indiana is awaiting the assay results from the remaining 36 drillholes. Results are expected imminently and will be reported following compilation and interpretation.


Indiana is continuing to review the data to better characterise the mineralogy of the REE mineralisation and to gain further understanding of the vertical zonation and clay hosts as well as the areal extent of the REE mineralisation discovered to date. A rare earth metallurgical test work program to determine the optimal extraction options to produce a commercial product will be started following receipt of the outstanding assays.

The current re-assaying programme has tested only a small portion of the Project that was indicated to be prospective (refer ASX Release dated 14<sup>th</sup> June 2022), with Indiana looking forward to systematically testing the REE potential of the additional targets.

Indiana also awaits gold assay results from Reverse Circulation drilling completed during August at the Minos Gold Prospect. Results are expected in October.
















Figures 2 & 3: Cross Sections showing TREO mineralisation



### Table 1: New Significant Rare Earth Oxide Composite Results ≥ 500 ppm TREO

|                    | _           |               |             |             | MREO          |              | Hia           | h Value M                | REO                                   |              |
|--------------------|-------------|---------------|-------------|-------------|---------------|--------------|---------------|--------------------------|---------------------------------------|--------------|
| Hole ID            | From<br>(m) | Length<br>(m) | TREO<br>ppm | MREO<br>ppm | % of<br>TREO  | Nd₂O₃<br>ppm | Pr₀O₁1<br>ppm | Tb₄O <sub>7</sub><br>ppm | Dy <sub>2</sub> O <sub>3</sub><br>ppm | % of<br>MREO |
| LLAC003            | 20          | 16            | 538         | 141         | 26%           | 83           | 25            | 1                        | 7                                     | 83%          |
| LLAC004            | 4           | 20            | 630         | 167         | 27%           | 99           | 29            | 2                        | 8                                     | 82%          |
|                    | 44          | 4             | 513         | 138         | 27%           | 82           | 24            | 1                        | 6                                     | 83%          |
|                    | 56          | 4             | 725         | 194         | 27%           | 115          | 33            | 2                        | 10                                    | 82%          |
| LLAC005            | 8           | 8             | 532         | 137         | 26%           | 81           | 24            | 1                        | 7                                     | 82%          |
|                    | 36          | 24            | 609         | 166         | 27%           | 97           | 28            | 2                        | 9                                     | 82%          |
|                    | 72          | 3             | 537         | 131         | 24%           | 81           | 25            | 1                        | 5                                     | 85%          |
| LLAC006            | 32          | 37*           | 1687        | 419         | 25%           | 269          | 88            | 2                        | 8                                     | 88%          |
| inc                | 52          | 17            | 2640        | 696         | 26%           | 448          | 145           | 3                        | 14                                    | 87%          |
| inc                | 52          | 4             | 7039        | 2003        | 28%           | 1110         | 411           | 9                        | 38                                    | 78%          |
| LLAC007            | 48          | 12*           | 1284        | 331         | 26%           | 203          | 60            | 3                        | 13                                    | 84%          |
| inc                | 52          | 8             | 1570        | 408         | 26%           | 248          | 73            | 3                        | 17                                    | 84%          |
| LLAC008            | 32          | 20            | 1170        | 188         | 16%           | 116          | 37            | 1                        | 6                                     | 85%          |
| inc                | 32          | 16            | 1242        | 201         | 16%           | 126          | 41            | 1                        | 5                                     | 86%          |
| LLAC009            | 20          | 8             | 611         | 167         | 27%           | 98           | 28            | 2                        | 9                                     | 82%          |
| 11 1 0 0 0 0 0     | 44          | 4             | 520         | 135         | 26%           | 78           | 23            | 2                        | 8                                     | 82%          |
| LLAC010            | 28          | 20            | 2242        | 330         | 15%           | 204          | 62            | 2                        | 11                                    | 85%          |
| inc                | 32          | 12            | 3236        | 468         | 14%           | 290          | 88            | 3                        | 15                                    | 85%          |
| LLAC016            | 20          | 30*           | 1095        | 356         | 33%           | 223          | 67            | 2                        | 10                                    | 85%          |
| inc                | 20          | 20            | 1314        | 451         | 34%           | 282          | 84            | 3                        | 13                                    | 85%          |
| inc                | 48          | <b>2</b> *    | 1089        | 241         | 22%           | 156          | 54            | 1                        | 3                                     | 89%          |
| LLAC017            | 20          | 20            | 927         | 204         | 22%           | 128          | 41            | 1                        | 6                                     | 86%          |
| inc                | 28          | 4             | <b>1914</b> | 352         | 18%           | 220          | 70            | 2                        | 10                                    | 86%          |
| LLAC018            | 12<br>12    | 24<br>54*     | 731<br>587  | 159<br>156  | 22%           | 101<br>93    | 33<br>27      | 1                        | 4                                     | 87%          |
| LLAC019            |             | 46*           | 582         | 156         | 27%<br>27%    | 93<br>91     | 27            | 2                        | 8<br>8                                | 83%<br>82%   |
| LLAC020<br>LLAC021 | 20<br>12    |               | 539         | 143         | 27%           | 84           | 27            | 1                        | 0<br>7                                | 83%          |
| LLAC021<br>LLAC022 | 8           | 16<br>20      | 681         | 143         | 26%           | 109          | 33            | 1                        | 7                                     | 84%          |
| LLAC022<br>LLAC024 | 8           | 52            | 567         | 178         | 27%           | 88           | 26            | 2                        | 8                                     | 84 <i>%</i>  |
| LLAC024<br>LLAC025 | 8           | 46*           | 591         | 162         | 27%           | 95           | 28            | 2                        | 8                                     | 82%          |
| LLAC025<br>LLAC026 | 12          | 20            | 641         | 183         | 27%           | 108          | 32            | 2                        | 9                                     | 82%          |
| LLAC028<br>LLAC027 | 0           | 54*           | 747         | 204         | 27%           | 121          | 36            | 2                        | 9                                     | 83%          |
| inc                | 4           | 8             | 1649        | 464         | <b>2</b> 7 /8 | 283          | 87            | 3                        | 15                                    | 84%          |
| LLAC028            | 4           | 36            | 617         | 161         | 26%           | 96           | 29            | 2                        | 7                                     | 83%          |
| 22/ (0020          | 48          | 12*           | 659         | 165         | 25%           | 101          | 32            | 1                        | 6                                     | 84%          |
| LLAC029            | 16          | 8             | 507         | 150         | 29%           | 83           | 22            | 2                        | 10                                    | 78%          |
| LL/(C02/           | 32          | 24            | 595         | 162         | 27%           | 96           | 28            | 2                        | 8                                     | 83%          |
| LLAC030            | 12          | 48*           | 596         | 162         | 27%           | 96           | 28            | 2                        | 8                                     | 82%          |
| LLAC031            | 12          | 5*            | 533         | 140         | 26%           | 81           | 24            | 2                        | 7                                     | 82%          |
| LLAC032            | 8           | 52*           | 662         | 176         | 26%           | 103          | 30            | 2                        | 9                                     | 82%          |
| inc                | 16          | 4             | 1262        | 348         | 28%           | 199          | 59            | 4                        | 18                                    | 81%          |
| LLAC033            | 12          | 48*           | 791         | 214         | 27%           | 125          | 37            | 2                        | 11                                    | 82%          |
| inc                | 20          | 4             | 2330        | 669         | 29%           | 394          | 117           | 7                        | 31                                    | 82%          |
| LLAC034            | 24          | 32            | 608         | 168         | 28%           | 98           | 29            | 2                        | 8                                     | 81%          |
| LLAC035            | 16          | 44*           | 574         | 159         | 28%           | 93           | 27            | 2                        | 8                                     | 82%          |
| LLAC036            | 16          | 14*           | 877         | 178         | 20%           | 106          | 31            | 2                        | 8                                     | 82%          |
| inc                | 24          | 4             | 1312        | 314         | 24%           | 183          | 51            | 4                        | 15                                    | 80%          |
| LLAC037            | 24          | 18*           | 861         | 203         | 24%           | 119          | 36            | 2                        | 9                                     | 82%          |
| inc                | 32          | 4             | 1203        | 217         | 18%           | 129          | 39            | 2                        | 9                                     | 83%          |
| LLAC038            | 28          | 16            | 561         | 148         | 26%           | 87           | 26            | 1                        | 7                                     | 82%          |
| LLAC039            | 24          | 33*           | 605         | 159         | 26%           | 94           | 29            | 2                        | 8                                     | 83%          |
|                    | 32          | 4             | 534         | 155         | 29%           | 94           | 27            | 2                        | 6                                     | 83%          |
|                    | 44          | 16*           | 520         | 142         | 27%           | 84           | 25            | 2                        | 7                                     | 83%          |
| LLAC041            | 28          | 32*           | 574         | 158         | 28%           | 94           | 27            | 2                        | 8                                     | 82%          |



Indiana Resources Limited | ABN 67 009 129 560 | Suite 3, 339 Cambridge St, Wembley, WA 6014 ASX code: IDA | +61 (8) 6241 1870 | info@indianaresources.com.au | www.indianaresources.com.au



|         | Previously released, re-reported at ≥500ppm TREO |     |       |      |             |      |      |    |     |     |
|---------|--------------------------------------------------|-----|-------|------|-------------|------|------|----|-----|-----|
| LLAC011 | 24                                               | 36* | 803   | 212  | 26%         | 120  | 35   | 3  | 13  | 81% |
| inc     | 40                                               | 4   | 1001  | 233  | 23%         | 126  | 36   | 4  | 18  | 79% |
| LLAC012 | 24                                               | 20  | 4021  | 1684 | 42%         | 1064 | 307  | 12 | 52  | 85% |
| inc     | 24                                               | 16  | 4830  | 2070 | 43%         | 1310 | 378  | 14 | 63  | 85% |
| inc     | 28                                               | 4   | 15487 | 7403 | <b>48</b> % | 4747 | 1365 | 47 | 210 | 86% |
|         | 52                                               | 4   | 529   | 147  | 28%         | 87   | 24   | 2  | 8   | 82% |
| LLAC013 | 60                                               | 4   | 501   | 156  | 31%         | 96   | 30   | 1  | 5   | 84% |
| LLAC015 | 24                                               | 45* | 751   | 196  | 26%         | 119  | 37   | 2  | 8   | 84% |
| inc     | 28                                               | 12  | 1276  | 332  | <b>26</b> % | 205  | 62   | 3  | 11  | 85% |
| LLAC078 | 28                                               | 14* | 602   | 118  | 20%         | 70   | 26   | 1  | 5   | 86% |

Notes:

Reported intersections are downhole lengths – true widths are unknown at this stage

Coordinates by GPS (positional accuracy approximately ±3m.

\* indicates End of Hole

**TREO** (Total Rare Earth Oxide) =  $CeO_2 + Dy_2O_3 + Er_2O_3 + Eu_2O_3 + Gd_2O_3 + Ho_2O_3 + La_2O_3 + Lu_2O_3 + Nd_2O_3 + Pr_6O_{11} + Sm_2O_3 + Tb_4O_7 + Tm_2O_3 + Y_2O_3 + Yb_2O_3$  **HREO** (Heavy Rare Earth Oxide) =  $Dy_2O_3 + Er_2O_3 + Eu_2O_3 + Gd_2O_3 + Ho_2O_3 + Lu_2O_3 + Sm_2O_3 + Tb_4O_7 + Tm_2O_3 + Y_2O_3 + Yb_2O_3$  **CREO** (Critical Rare Earth Oxide) =  $Dy_2O_3 + Eu_2O_3 + Nd_2O_3 + Tb_4O_7 + Y_2O_3$ **MREO** (Magnet Rare Earth Oxide) =  $Dy_2O_3 + Gd_2O_3 + Ho_2O_3 + Nd_2O_3 + Pr_6O_{11} + Sm_2O_3 + Tb_4O_7$ 

## **Technical Discussion**

Results to date have confirmed the concentration of thick REE accumulations in the northern portion of the project along ~4.5km of strike (refer Figure 1). Indiana carried out gold reconnaissance drilling along the LLSZ during 2021. This program comprised 79 AC holes, the 4m composite pulp samples from the drillholes were submitted to the laboratory for re-assaying for the full suite of REEs using a near complete digestion (Lithium Borate Fusion method).

This release relates to the assay results for 35 drill holes, with a further 37 drillholes pending. Assays continue to confirm the widespread REE mineralisation, returning up to 7,039 ppm TREO and 2,003ppm MREO. Intersections up to 54m thick were recorded with high proportions of the valuable magnet REEs.

Significant intersections (above a 500ppm TREO grade) included:

- 37m @ 1,687ppm TREO from 32m (LLAC006)
  - o including 17m @ 2,640ppm TREO from 52m
  - o including 4m @ 7,039ppm TREO and 2,003ppm MREO from 52m
- 20m @ 2,242ppm TREO from 28m (LLAC010)
   o including 12m @ 3,236ppm TREO from 32m
- 30m @ 1,095ppm TREO from 20m (LLAC016)
- 54m @ 747pm TREO from 0m (LLAC027)
  - o including 8m @ 1,649ppm TREO from 4m

These results follow high-grade REE assays released previously (refer ASX Release dated 2 August 2022) from the initial 6 drillholes submitted to the laboratory.





Significant intersections (re-reported above a 500ppm TREO grade) included:

- 20m @ 4,021ppm TREO from 24m (LLAC012)
  - o including 16m @ 4,830ppm TREO from 24m
  - $_{\odot}$   $\,$  including 4m @ 15,486ppm (1.55%) TREO and 7,403ppm MREO from 28m  $\,$
- 45m @ 751ppm TREO from 24m (LLAC015)
   o including 12m @ 1,276ppm TREO from 28m
- 36m @ 803ppm TREO from 24m (LLAC011)
   o including 4m @ 1,001ppm TREO from 40m

Insufficient work has been undertaken to categorise the Central Gawler REE mineralisation.

Technical information included in this announcement has previously been provided to the market in releases dated:

4th August 2020Indiana to Acquire South Australia Gold Projects28th September 2020IDA Completes Acquisition of South Australian Gold Projects14th June 2022Rare Earth Potential Identified at Central Gawler Project2nd August 2022Assays Confirm High Grade Ionic Clay Rare Earths10th August 202272 Additional Drillholes Submitted for REE Assay

## <u>Ends</u>

This announcement is authorised for release to the market by the Technical Director of Indiana Resources Limited with the authority from the Board of Directors.

For further information, please contact:

Felicity Repacholi-Muir Technical Director T: +61 8 6241 1873 Kate Stoney CFO & Company Secretary T: +61 408 909 588

To find out more, please visit www.indianaresources.com.au





## About Rare Earth Elements

The group of metals referred to as rare earth elements (REE) comprises the 15 elements of the lanthanide series. Metals in the lanthanide series are: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). In addition, yttrium (Y) and scandium (Sc) are often grouped with the lanthanides and referred to as REE.

- REO are Rare Earths Oxides oxides of the rare earth's elements. Grades of rare earths oxides are commonly quoted as parts per million (ppm) or percent (%) of TREO where: -
- TREO is the sum of the oxides of the so-called heavy rare earths elements (HREO) and the so-called light rare earths elements (LREO).
- HREO is the sum of the oxides of the heavy rare earths elements europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), and yttrium (Y).
- LREO is the sum of the oxides of the light rare earths elements lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm). The HREO are less common than the LREO and are generally of higher value.
- CREO is a set of oxides the US Department of Energy, in December 2011 defined as critical due to their importance to clean energy requirements and their supply risk. They are Nd, Dy, Eu, Y and Tb.
- MREO is a set of oxides that are referred to as the Magnetic Rare Earth Oxides. They are Nd, Pr, Dy, Tb, Gd, Ho and Sm.
- Neodymium-Praseodymium (NdPr) oxide is the key input to rare-earth magnets needed in the motors and generators of electric and hybrid vehicles, wind turbines, and a variety of other clean energy applications. These rare-earth magnets are 10 times the strength for the same weight as conventional magnets, and there is currently no known substitute.

lonic adsorption clay-hosted REO mineralisation underpins the majority of Chinese REO production, which accounts for c.85% of global REO supply.

These deposits form when rare earths derived from the weathering of underlying basement rocks are subsequently enriched in the regolith profile, forming a shallow, continuous, sub-horizontal zone. Ionic rare earth deposits offer the potential for large scale and low-cost mining compared to hard rock rare earth deposits (Van Gosen et al, 2018). Until recently, there has been limited exploration for this style of REE mineralisation outside of China, however exploration for this style of rare earth mineralisation is now underway in various parts of Australia, Africa and the United States of America.





#### **Table 2: Collar Details**

| Site ID            | Drill<br>Type | MGA<br>North     | MGA<br>East        | RL         | Dip        | MGA<br>Azimuth | Total Depth | Comments                           |
|--------------------|---------------|------------------|--------------------|------------|------------|----------------|-------------|------------------------------------|
| LLAC001            | RC            | 496086           | 6607509            | 150        | -60        | 030            | 60          | NSA                                |
| LLAC002            | RC            | 496146           | 6607559            | 150        | -60        | 030            | 60          | NSA                                |
| LLAC003            | RC            | 496160           | 6607590            | 150        | -60        | 030            | 60          |                                    |
| LLAC004            | RC            | 496247           | 6607669            | 150        | -60        | 210            | 60          |                                    |
| LLAC005            | RC            | 496204           | 6607619            | 150        | -60        | 210            | 75          |                                    |
| LLAC006            | AC            | 494821           | 6608247            | 140        | -60        | 030            | 69          |                                    |
| LLAC007            | RC            | 494827           | 6608266            | 140        | -60        | 030            | 60          |                                    |
| LLAC008            | RC            | 494845           | 6608306            | 140        | -60        | 030            | 60          |                                    |
| LLAC009            | RC            | 494912           | 6608384            | 140        | -60        | 210            | 60          |                                    |
| LLAC010            | RC            | 494870           | 6608346            | 140        | -60        | 210            | 51          |                                    |
| LLAC011            | RC            | 494359           | 6608732            | 140        | -60        | 210            | 60          | Reported 02/08/2022                |
| LLAC012            | RC            | 494374           | 6608678            | 140        | -60        | 210            | 72          | Reported 02/08/2022                |
| LLAC013            | AC            | 494307           | 6608518            | 140        | -60        | 030            | 66          | Reported 02/08/2022                |
| LLAC014            | AC            | 494312           | 6608568            | 140        | -60        | 030            | 75          | Reported 02/08/2022                |
| LLAC015            | AC            | 494338           | 6608640            | 140        | -60        | 030            | 69          | Reported 02/08/2022                |
| LLAC016            | AC            | 493878           | 6608741            | 140        | -60        | 030            | 50          |                                    |
| LLAC017            | AC            | 493910           | 6608774            | 140        | -60        | 030            | 42          |                                    |
| LLAC018            | AC            | 493948           | 6608805            | 140        | -60        | 030            | 39          |                                    |
| LLAC019            | AC            | 493978           | 6608852            | 140        | -60        | 030            | 66          |                                    |
| LLAC020            | AC            | 494004           | 6608888            | 140        | -60        | 030            | 66          |                                    |
| LLAC021            | AC            | 493460           | 6609028            | 140        | -60        | 030            | 29          |                                    |
| LLAC022            | AC            | 493477           | 6609071            | 140        | -60        | 030            | 31          |                                    |
| LLAC023            | AC            | 493517           | 6609102            | 140        | -60        | 030            | 23          | NSA                                |
| LLAC024            | RC            | 493554           | 6609149            | 140        | -60        | 030            | 63          |                                    |
| LLAC025            | AC            | 493581           | 6609172            | 140        | -60        | 030            | 54<br>35    |                                    |
| LLAC026<br>LLAC027 | AC<br>RC      | 493013<br>493045 | 6609264<br>6609299 | 140<br>140 | -60<br>-60 | 030<br>030     | 54          |                                    |
| LLAC027<br>LLAC028 | RC            | 493071           | 6609339            | 140        | -60        | 030            | 60          |                                    |
| LLAC028            | RC            | 493106           | 6609388            | 140        | -60        | 030            | 60          |                                    |
| LLAC027<br>LLAC030 | RC            | 493131           | 6609416            | 140        | -60        | 030            | 60          |                                    |
| LLAC030            | AC            | 492600           | 6609528            | 140        | -60        | 030            | 17          |                                    |
| LLAC032            | RC            | 492624           | 6609586            | 140        | -60        | 030            | 60          |                                    |
| LLAC033            | RC            | 492673           | 6609627            | 140        | -60        | 030            | 60          |                                    |
| LLAC034            | RC            | 492681           | 6609673            | 140        | -60        | 030            | 63          |                                    |
| LLAC035            | RC            | 492729           | 6609714            | 140        | -60        | 030            | 60          |                                    |
| LLAC036            | AC            | 492757           | 6609720            | 140        | -60        | 030            | 30          |                                    |
| LLAC037            | AC            | 492194           | 6609801            | 140        | -60        | 030            | 42          |                                    |
| LLAC038            | AC            | 492232           | 6609841            | 140        | -60        | 030            | 45          |                                    |
| LLAC039            | RC            | 492255           | 6609891            | 140        | -60        | 030            | 57          |                                    |
| LLAC040            | RC            | 492275           | 6609924            | 140        | -60        | 030            | 60          | NSA                                |
| LLAC041            | RC            | 492311           | 6609979            | 140        | -60        | 210            | 60          |                                    |
| LLAC042            | RC            | 492340           | 6610022            | 140        | -60        | 210            | 60          | Awaiting Assays                    |
| LLAC043            | AC            | 491763           | 6610115            | 140        | -60        | 030            | 55          | Awaiting Assays                    |
| LLAC044            | AC            | 491794           | 6610158            | 140        | -60        | 030            | 71          | Awaiting Assays                    |
| LLAC045            | AC            | 491824           | 6610190            | 140        | -60        | 030            | 81          | Awaiting Assays                    |
| LLAC046            | AC            | 491856           | 6610226            | 140        | -60        | 030            | 75          | Awaiting Assays                    |
| LLAC047            | AC            | 491892           | 6610264            | 140        | -60        | 030            | 77          | Awaiting Assays                    |
| LLAC048            | AC            | 491925           | 6610306            | 140        | -60        | 030            | 75          | Awaiting Assays                    |
| LLAC049            | AC            | 491345           | 6610393            | 140        | -60        | 030            | 60          | Awaiting Assays                    |
| LLAC050            | AC            | 491401           | 6610475            | 140        | -60        | 030            | 90          | Awaiting Assays                    |
| LLAC051            | AC            | 490935           | 6610681            | 140        | -60        | 030            | 114         | Awaiting Assays                    |
| LLAC052            | AC            | 490994           | 6610750            | 140        | -60        | 030            | 91          | Awaiting Assays                    |
| LLAC053            | AC            | 490970           | 6610719            | 140        | -60        | 030            | 96          | Awaiting Assays                    |
| LLAC054<br>LLAC055 | AC<br>AC      | 491055<br>491095 | 6610816            | 140<br>140 | -60        | 210<br>210     | 54<br>64    | Awaiting Assays                    |
| LLAC055<br>LLAC056 | AC            | 491095           | 6610866<br>6610546 | 140        | -60        | 030            | 64<br>69    | Awaiting Assays                    |
| LLAC056<br>LLAC057 | RC            | 491473           | 6610546            | 140        | -60        | 030            | 69<br>60    | Awaiting Assays<br>Awaiting Assays |
| LLAC057<br>LLAC058 | RC            | 497583           | 6606819            | 130        | -60<br>-60 | 030            | 60          | <u> </u>                           |
| LLAC058<br>LLAC059 | RC            | 497583           | 6606864            | 130        | -60        | 210            | 57          | Awaiting Assays<br>Awaiting Assays |
| LLAC059<br>LLAC060 | RC            | 497622           | 6606896            | 130        | -60        | 210            | 60          | Awaiting Assays                    |
| LLAC060<br>LLAC061 |               | 497622           | 6606918            |            | -60        | 210            | 60<br>39    | Awaiting Assays                    |
| LLACUOI            | RC            | 47/004           | 0000710            | 130        | -00        | 210            | J7          | Awalling Assays                    |



| Site ID | Drill<br>Type | MGA<br>North | MGA<br>East | RL  | Dip | MGA<br>Azimuth | Total Depth | Comments            |
|---------|---------------|--------------|-------------|-----|-----|----------------|-------------|---------------------|
| LLAC062 | RC            | 497128       | 6607056     | 140 | -60 | 210            | 37          | Awaiting Assays     |
| LLAC063 | RC            | 497115       | 6607037     | 140 | -60 | 210            | 25          | Awaiting Assays     |
| LLAC064 | RC            | 497145       | 6607076     | 140 | -60 | 210            | 6           | Hole Abandoned      |
| LLAC065 | RC            | 497151       | 6607074     | 140 | -60 | 210            | 60          | Awaiting Assays     |
| LLAC066 | RC            | 497159       | 6607092     | 140 | -60 | 210            | 60          | Awaiting Assays     |
| LLAC067 | RC            | 497170       | 6607107     | 140 | -60 | 210            | 57          | Awaiting Assays     |
| LLAC068 | RC            | 498054       | 6606643     | 136 | -60 | 030            | 57          | Awaiting Assays     |
| LLAC069 | RC            | 498073       | 6606669     | 136 | -60 | 210            | 48          | Awaiting Assays     |
| LLAC070 | RC            | 498089       | 6606708     | 136 | -60 | 210            | 60          | Awaiting Assays     |
| LLAC071 | RC            | 498105       | 6606740     | 136 | -60 | 210            | 60          | Awaiting Assays     |
| LLAC072 | RC            | 498120       | 6606767     | 136 | -60 | 210            | 60          | Awaiting Assays     |
| LLAC073 | RC            | 498136       | 6606802     | 136 | -60 | 210            | 54          | Awaiting Assays     |
| LLAC074 | AC            | 493042       | 6609305     | 140 | -60 | 210            | 33          | Awaiting Assays     |
| LLAC075 | AC            | 493077       | 6609344     | 140 | -60 | 210            | 20          | Awaiting Assays     |
| LLAC076 | AC            | 493513       | 6609101     | 140 | -60 | 210            | 19          | Awaiting Assays     |
| LLAC077 | AC            | 493549       | 6609126     | 140 | -60 | 210            | 24          | Awaiting Assays     |
| LLAC078 | AC            | 494350       | 6608647     | 140 | -60 | 210            | 42          | Reported 02/08/2022 |
| LLAC079 | AC            | 494861       | 6608318     | 140 | -60 | 210            | 75          | Awaiting Assays     |

Notes

Coordinates by GPS (positional accuracy approximately ±3m)

#### **Competent Person Statement**

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Ms Felicity Repacholi-Muir, a Competent Person who is a Director of the Company. Ms Repacholi-Muir is a Member of the Australian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Repacholi-Muir consents to the inclusion of the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the Exploration Results information included in this report from previous Company announcements.

#### **Forward Looking Statements**

Indiana Resources Limited has prepared this announcement based on information available to it. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this announcement. To the maximum extent permitted by law, none of Indiana Resources Limited, its directors, employees or agents, advisers, nor any other person accepts any liability, including, without limitation, any liability arising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this announcement or its contents or otherwise arising in connection with it. This announcement is not an offer, invitation, solicitation or other recommendation with respect to the subscription for, purchase or sale of any security, and neither this announcement nor anything in it shall form the basis of any contract or commitment whatsoever. This announcement may contain forward looking statements that are subject to risk factors associated with exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimate.



## **ANNEXURE 1**:

The following Tables are provided to ensure compliance with JORC Code (2012) edition requirements for the reporting of the Exploration Results at the Central Gawler Project.

## SECTION 1: Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

| Criteria                              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques                   | <ul> <li>Nature and quality of sampling (eg cut channels,<br/>random chips, or specific specialised industry<br/>standard measurement tools appropriate to the<br/>minerals under investigation, such as down hole<br/>gamma sondes, or handheld XRF instruments, etc).<br/>These examples should not be taken as limiting the<br/>broad meaning of sampling.</li> </ul> | All aircore/slimline RC samples were collected every<br>metre from a cyclone directly into a green plastic bag.<br>Samples for laboratory testing comprised mostly 4m<br>samples which were collected using a scoop from each<br>1m sample to produce a 4m composite sample. Non 4m<br>samples usually were collected if the drill hole finished in c<br>number not divisible by 4. |
|                                       | <ul> <li>Include reference to measures taken to ensure<br/>sample representivity and the appropriate<br/>calibration of any measurement tools or systems<br/>used.</li> </ul>                                                                                                                                                                                            | Sample representivity was ensured by a combination of<br>standard company procedures regarding quality control.<br>Standard were used in a ratio of 3 samples per 100.<br>Average sample weight was ~2kg                                                                                                                                                                            |
|                                       | <ul> <li>Aspects of the determination of mineralisation that<br/>are Material to the Public Report. In cases where<br/>'industry standard' work has been done this would<br/>be relatively simple (eg 'reverse circulation drilling<br/>was used to obtain 1 m samples from which 3 kg was</li> </ul>                                                                    | Drill hole sampling technique used is considered as<br>industry standard for this type of drilling. 4m composite<br>samples were collected for the complete drill hole by<br>using a scoop from each 1m bag to produce a ~2kg<br>composite sample.                                                                                                                                  |
|                                       | pulverised to produce a 30 g charge for fire assay').<br>In other cases more explanation may be required,                                                                                                                                                                                                                                                                | Samples analysed for Au by Bureau Veritas in Adelaide using laboratory method FA001, 40g Fire assay AAS.                                                                                                                                                                                                                                                                            |
|                                       | such as where there is coarse gold that has inherent<br>sampling problems. Unusual commodities or<br>mineralisation types (eg submarine nodules) may<br>warrant disclosure of detailed information.                                                                                                                                                                      | Re-assaying of selected holes for RE elements by Bureau<br>Veritas in Adelaide using laboratory methods LB100, LB101<br>& LB102.                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                          | An aliquot of sample is accurately weighed and fused<br>with lithium metaborate at high temperature in a Pt<br>crucible. The fused glass is then digested in nitric acid.                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                          | Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y &Yb<br>have been determined by Inductively Coupled Plasma<br>(ICP) Mass Spectrometry.                                                                                                                                                                                                                                         |
|                                       |                                                                                                                                                                                                                                                                                                                                                                          | Sc has been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.                                                                                                                                                                                                                                                                                           |
| Drilling techniques                   | <ul> <li>Drill type (eg core, reverse circulation, open-hole<br/>hammer, rotary air blast, auger, Bangka, sonic, etc)<br/>and details (eg core diameter, triple or standard<br/>tube, depth of diamond tails, face-sampling bit or<br/>other type, whether core is oriented and if so, by<br/>what method, etc).</li> </ul>                                              | Aircore/slimline RC drilling utilising an AC Drill rig with an 500cfm/250psi on-board compressor for aircore and an auxiliary compressor for slimline RC drilling. A 3.5-inch aircore bit was used for aircore holes and an RC hammer for slimline RC drilling.                                                                                                                     |
| Drill sample recovery                 | <ul> <li>Method of recording and assessing core and chip<br/>sample recoveries and results assessed.</li> </ul>                                                                                                                                                                                                                                                          | Bag weights and sizes observed and assessed as representing suitable recoveries.                                                                                                                                                                                                                                                                                                    |
|                                       | <ul> <li>Measures taken to maximise sample recovery and<br/>ensure representative nature of the samples.</li> </ul>                                                                                                                                                                                                                                                      | Drilling capacity suitable to ensure representivity and maximise recovery.                                                                                                                                                                                                                                                                                                          |
|                                       | <ul> <li>Whether a relationship exists between sample<br/>recovery and grade and whether sample bias may<br/>have occurred due to preferential loss/gain of<br/>fine/coarse material.</li> </ul>                                                                                                                                                                         | There is no known relationship between sample recovery and grade.                                                                                                                                                                                                                                                                                                                   |
| Logging                               | <ul> <li>Whether core and chip samples have been<br/>geologically and geotechnically logged to a level<br/>of detail to support appropriate Mineral Resource<br/>estimation, mining studies and metallurgical<br/>studies.</li> </ul>                                                                                                                                    | All intervals were geologically logged to an appropriate<br>level for exploration purposes.<br>Logging considered qualitative in nature.<br>All drillholes have been logged in full.                                                                                                                                                                                                |
|                                       | <ul> <li>Whether logging is qualitative or quantitative in<br/>nature. Core (or costean, channel, etc)<br/>photography.</li> </ul>                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | <ul> <li>The total length and percentage of the relevant<br/>intersections logged.</li> </ul>                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |
| Sub-sampling<br>techniques and sample | <ul> <li>If core, whether cut or sawn and whether quarter,<br/>half or all core taken.</li> </ul>                                                                                                                                                                                                                                                                        | Drill samples were collected dry with limited wet samples. Drilling was generally terminated in cases of                                                                                                                                                                                                                                                                            |
| preparation                           | <ul> <li>If non-core, whether riffled, tube sampled, rotary<br/>split, etc and whether sampled wet or dry.</li> </ul>                                                                                                                                                                                                                                                    | continual wet samples. Sample wetness recorded at time of logging. Quality control procedures include                                                                                                                                                                                                                                                                               |





| Criteria                                                      | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria<br>Verification of sampling<br>and assaying          | <ul> <li>JORC Code explanation</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> <li>The verification of significant intersections by either independent or alternative Company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | submission of CRMs, and blanks with each batch of<br>samples.<br>Sample preparation techniques, where listed, were<br>considered appropriate for the respective sample types.<br>Sub-sampling stages were considered appropriate for<br>exploration.<br>The sample size is considered industry standard for this<br>type of mineralisation and the grain size of the material<br>being sampled.<br>Significant intersections verified by Company personnel.<br>No twinning of holes has been undertaken.<br>Primary data entered to digital, validated, and verified<br>offsite. Data stored physically and digitally under<br>company protocols.<br>Multielement results (REE) are converted to<br>stoichiometric oxide (REO) using element-to-<br>stoichiometric conversion factors. |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Element         Conversion Factor         Oxide           Ce         1.2284         CeO2           Dy         1.1477         Dy2O3           Er         1.1435         Er2O3           Eu         1.1579         Eu2O3           Gd         1.1526         Gd2O3           Ho         1.1455         Ho2O3           La         1.1728         La2O3           Lu         1.1371         Lu2O3           Nd         1.1664         Nd2O3           Pr         1.2082         Pr6O11           Sc         1.5338         Sc2O3           Sm         1.1596         Sm2O3           Tb         1.1762         Tb407           Tm         1.1421         Tm2O3           Y         1.2699         Y2O3           Yb         1.1387         Yb2O3                                          |
| Location of data points                                       | <ul> <li>Accuracy and quality of surveys used to locate drill<br/>holes (collar and down-hole surveys), trenches, mine<br/>workings and other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collar locations were picked up using handheld GPS<br>with accuracy of ±3m. Holes were routinely down hole<br>surveyed and are being assessed for accuracy.<br>The grid system for the Central Gawler Gold Project is<br>GDA94 /MGA Zone 53.<br>Prospect RL control from DGPS data (estimated<br>accuracy ± 0.2m) and GPS (estimated accuracy +-3m).<br>Regional RL control from either: available DTM from<br>airborne surveys or estimation of local RL from local<br>topographic data.                                                                                                                                                                                                                                                                                              |
| Data spacing and<br>distribution                              | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drill hole spacing is highly variable, ranging from 20m drill<br>hole spacing on 100m spaced drill sections to 400m<br>spaced holes on regional traverses.<br>Data spacing and results are insufficient for resource<br>estimate purposes.<br>No sample compositing has been applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Orientation of data in<br>relation to geological<br>structure | <ul> <li>Whether the orientation of sampling achieves<br/>unbiased sampling of possible structures and the<br/>extent to which this is known, considering the<br/>deposit type.</li> <li>If the relationship between the drilling orientation<br/>and the orientation of key mineralised structures is<br/>considered to have introduced a sampling bias, this<br/>should be assessed and reported if material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exploration drilling is either oriented vertically or angled<br>through mineralisation, with no known bias to the<br>sampling of structures assessed to this point. At this early<br>stage of exploration, the certainty of the mineralisation<br>thickness, orientation and geometry is unknown.<br>No sampling bias is considered to have been introduced<br>by the drilling orientation.                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample<br>security                                            | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Indiana's sample chain of custody is managed by<br>Indiana. Samples for the Central Gawler Project are<br>stored on site and delivered to the Bureau Veritas<br>laboratory in Adelaide by an Indiana contractor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |





# **SECTION 2: Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this as ation)

this section)

| Criteria                                                               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement and<br>land tenure status                             | <ul> <li>Type, reference name/number, location and<br/>ownership including agreements or material issues<br/>with third parties such as joint ventures, partnerships,<br/>overriding royalties, native title interests, historical<br/>sites, wilderness or national park and environmental<br/>settings.</li> <li>The security of the tenure held at the time of<br/>reporting along with any known impediments to</li> </ul>                                                                                                                                                                | The Central Gawler Project is located in the Gawler<br>Craton, South Australia. The Project is approximately 650<br>kilometres north-west of Adelaide. Access to the<br>tenements is via unsealed road near Kingoonya, west of<br>Glendambo, on the Stuart Highway.<br>The tenements are in good standing. No Mining<br>Agreement has been negotiated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Exploration done by other parties                                      | <ul> <li>obtaining a licence to operate in the area.</li> <li>Acknowledgment and appraisal of exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Previous exploration over the area has been carried out<br>by many companies over several decades for a range or<br>commodities. Companies and the work completed<br>includes but is not limited to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Endeavour Resources – gold – RC and DD drilling</li> <li>MIM – gold and base metals - surface<br/>geochemistry, airborne and surface based<br/>geophysical surveys and AC and RC drilling</li> <li>Grenfell Resources – gold – AC, RC and DD drilling</li> <li>Range River Gold – gold – surface geochemistry<br/>and RC drilling</li> <li>Minotaur Exploration – IOCG, gold – gravity, AC<br/>and RC drilling</li> <li>CSR – gold – RAB drilling</li> <li>Kennecott – nickel - auger drilling</li> <li>Mithril – nickel – ground geophysics, AC and RC<br/>drilling</li> <li>PIMA Mining – gold – surface geochemistry, RAB<br/>drilling</li> <li>Santos – gold, tin – RAB and DD drilling</li> <li>Tarcoola Gold – gold – RAB drilling</li> <li>Aberfoyle/Afmeco – uranium, base metals – AC<br/>and rotary mud drilling</li> <li>SADME/PIRSA – regional drill traverses – AC, RC<br/>and DD drilling</li> </ul> |
| Geology                                                                | <ul> <li>Deposit type, geological setting and style of<br/>mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | It is thought that the regolith hosted REE enrichment<br>originates through weathering of underlying rocks<br>(granite, gneiss).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Drill hole<br>Information                                              | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul>                                                                                                                                          | All hole collar locations, depths, azimuths and dips are<br>provided within the body of this report for information<br>material to the understanding of the exploration results.<br>All relevant information has been included.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Data aggregation<br>methods                                            | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | No top-cuts have been applied when reporting results.<br>Multielement results (REE) are converted to<br>stoichiometric oxide (REO) using element-to-<br>stoichiometric conversion factors.<br>Weighted averages for the REO mineralisation were<br>calculated using a cut-off grade of 300 ppm REO.<br>No metal equivalents have been reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Relationship between<br>mineralisation widths and<br>intercept lengths | These relationships are particularly important in the reporting of Exploration Results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reported intersections are downhole lengths – true<br>widths are unknown at this stage.<br>Mineralisation is thoughts to be generally intersected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| interceptiongins                                                       | <ul> <li>If the geometry of the mineralisation with respect to<br/>the drill hole angle is known, its nature should be<br/>reported.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                               | roughly perpendicular to true-width, however try-widths are unknown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |





| Criteria                              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                    |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | <ul> <li>If it is not known and only the down hole lengths are<br/>reported, there should be a clear statement to this<br/>effect (eg 'down hole length, true width not<br/>known').</li> </ul>                                                                                                                                                                                                                                       |                                                                                                                                                                                               |
| Diagrams                              | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for any<br/>significant discovery being reported. These should<br/>include, but not be limited to a plan view of drill<br/>hole collar locations and appropriate sectional<br/>views.</li> </ul>                                                                                                                            | Refer to figures and tables in body of text.                                                                                                                                                  |
| Balanced reporting                    | <ul> <li>Where comprehensive reporting of all Exploration<br/>Results is not practicable, representative reporting<br/>of both low and high grades and/or widths should<br/>be practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                         | All significant and relevant intercepts have been reported.                                                                                                                                   |
| Other substantive<br>exploration data | <ul> <li>Other exploration data, if meaningful and material,<br/>should be reported including (but not limited to):<br/>geological observations; geophysical survey results;<br/>geochemical survey results; bulk samples – size and<br/>method of treatment; metallurgical test results; bulk<br/>density, groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> | All relevant exploration data is shown in figures and in text.                                                                                                                                |
| Further work                          | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                   | A discussion of further exploration work is outlined in the<br>body of the text. Further assays are awaited.<br>All relevant diagrams and inferences have been<br>illustrated in this report. |