

Multiple New REE Exploration Targets Identified – South Australia

Highlights

- Technical Review has highlighted multiple REE target areas across Indiana's 5,713km² Central Gawler Craton Project Area
- Key targets:
 - Lake Labyrinth (~450km²) Multiple prospects identified at Minos, Partridge, Company Well West and Hicks Well
 - > Talia (~290km²) Follow up of historic drilling required
 - > Nelson Bore (~250km²) South of Petratherm's Comet REE project
- Minos data review confirms high grade TREO with significant MREO component
 - \succ 87% of holes contained results ≥ 500 ppm TREO
 - > 49% of holes contained results ≥ 750 ppm TREO
 - > Clay-hosted TREO mineralisation commences 4 metres from surface
 - > Average TREO grade and thickness is 831 ppm and 27.9 metres
 - > High value MREO averages 28% of TREO grade
 - > Average Nd + Pr % of MREO 77.5%
 - > TREO up to 15,486ppm (1.6%) and MREO up to 7,436ppm (48% of TREO)
- High grade MREO (>300ppm) horizontal layer identified in clay zone at Minos
- Phase 1 Minos AC assay results expected end January 2023

Indiana Resources Limited (**ASX: IDA**) ('**Indiana' or the 'Company'**) is pleased to announce that its recent technical review has highlighted multiple REE target areas within Indiana's 100% owned 5,713 km² Central Gawler Craton Exploration Project (**CGCP**) in South Australia (Figure 2).

Air Core drilling is underway at Minos (see ASX release dated 2 December 2022). The program has been designed to test a 5km long zone within the 10 km strike length already identified along the Lake Labyrinth Shear Zone northwest of Minos (Figures 3 & 4). Results are expected late January 2023.

<u>Company Comment - Chief Executive Officer Richard Maish:</u>

"Our recent technical evaluation has highlighted several priority target areas for follow up REE exploration. In addition, identification of a horizontal high grade MREO layer at Minos points to significant remobilisation within the weathering profile. We are confident with further assessment other prospective target areas will be identified within the large 5,713 km² Central Gawler Craton package and are actively progressing our planned exploration activity".

CAPITAL STRUCTURE

488,804,819 Shares on Issue **A\$0.052** Share Price **25.41M** Market Cap

BOARD & MANAGEMENT

Bronwyn Barnes Executive Chair Bob Adam Non-executive Director David Ward Non-executive Director Richard Maish CEO Kate Stoney CFO & Company Secretary

CONTACT US

+61 (8) 6241 1870 info@indianaresources.com.au www.indianaresources.com.au Unit 9, 22 Ware Street, Thebarton SA 5031

Regional REE Target Definition

Multiple REE target areas have been identified within the CGCP (Figure 2) for further evaluation including:

- Lake Labyrinth (~450km2)
- Talia (~290km2) Follow up of historic drilling required
- Nelson Bore (~250km2) south of Petratherm's Comet REE project

Lake Labyrinth is the most advanced and includes the following prospects (Figure 3):

- o Minos
- o Partridge along strike NW of Minos
- Company Well West south of Minos trend
- Hicks Well Prospect south of Minos trend

AC drilling is underway at **Minos** targeting the main corridor and one traverse testing across strike for repetitions of REE mineralisation north and south of the main Minos trend (Figure 3)

Minos REE Distribution

Further review of the Minos REE data (see ASX releases dated 14 June, 2 August, 8 September and 19 September 2022) has confirmed the following significant attributes of the Minos mineralisation in the 78 holes assayed to date:

- 87% of holes contained results ≥ 500 ppm TREO
- 49% of holes contained results ≥ 750 ppm TREO
- Clay-hosted TREO mineralisation occurs, in some cases, from a depth of only 4 metres
- Average TREO grade and thickness is 831 ppm and 27.9 metres in holes >500ppm
- Longest TREO intercept in holes >500ppm is 86 metres
- High value MREO averages 28% of TREO grade
- Average Nd + Pr % of MREO is 77.5%
- TREO up to 15,486ppm (1.6%)
- MREO up to 7,436ppm 48% of TREO

In addition, **a horizontal zone of MREO enrichment defined by a 300ppm contour** has been identified at the north-western end of the existing Minos trend (Figure 1) indicating significant remobilisation in the weathering profile.

The zone of MREO enrichment located within the saprolite/clay zone is up to 10 metres thick, at a depth of approximately 50 metres.

3

Section 14860

100 -

ASX:IDA

Depth below

Composite

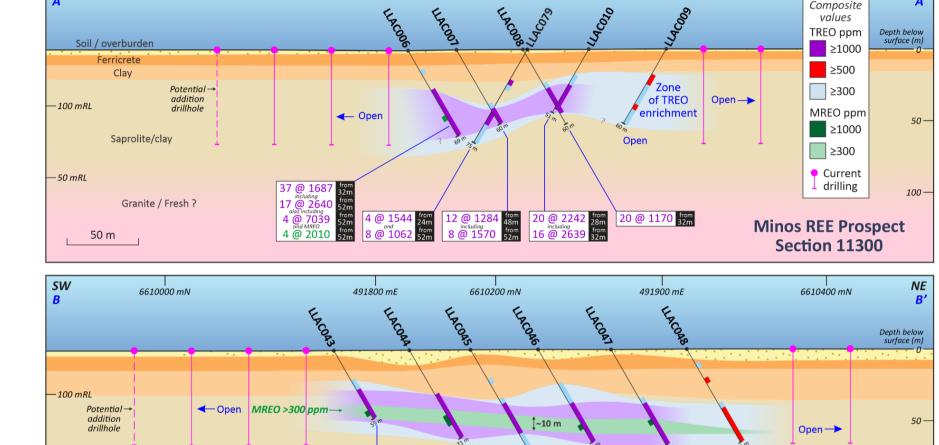
values

494900 mE 6608400 mN

Open

31 @ 1154 from including 4 @ 2928 60m and MRE0 12 @ 687 56m including

and MREO 12 @ 687


4@1282

33 @ 1358 from 4 @ 5749 56m 2 ^{and} MRE0 1176 56m 4 @ 2775 56m

27 @ 644 48m and MREO 4 @ 320 from 64m

NE

A

6608200 mN 494800 mE

from 36m from 52m from 48m from 52m

Open

from 32m from 48m

from 44m

from 48m

35 @ 1483 including 8 @ 2588 and MREO 12 @ 805 including 8 @ 1050

23 @ 1974 including 4 @ 4601 and MREO 11 @ 852 including

including 4 @ 1416

50 m

Indiana Resources Limited | ABN 67 009 129 560 | Unit 9, 22 Ware Street, Thebarton SA 5031 ASX code: IDA | +61 (8) 6241 1870 | info@indianaresources.com.au | www.indianaresources.com.au

24 @ 1002 from including 16 @ 1247 52m and MRE0 12 @ 580 from 52m

SW

-50 mRL

Resources Limited

Α

Background

The Gawler Craton has recently attracted significant interest for its ionic absorption/clay-hosted rare earth element exploration opportunities. IDA completed a review of historic Reverse Circulation (RC) and AC drilling that identified elevated REE in a number of areas including Minos (refer release dated 14 June 2022).

Subsequent analysis of sample pulps, retained from previous gold AC drilling completed in 2021, for the TREO suite identified significant zones of clay hosted TREO mineralisation (refer ASX announcements dated 2nd & 10th August 2022, and 8th & 19th September 2022).

Ionic absorption, clay-hosted REE mineralisation is derived from weathering of underlying basement rocks that are subsequently enriched in the regolith profile, forming a shallow, continuous, sub-horizontal zone.

The source of IDA's REE is not well understood at this stage. IDA however currently holds the view that the REE mineralisation within the Central Gawler Project occurs in the weathered profile (regolith) associated with the alkaline Hiltaba Granite and gneissic basement rocks which are enriched in REE and are prevalent in the extensive northern portion of the Indiana's tenure.

Significant previous results (refer to previous ASX releases detailed above) include:

- 37 metres @ 1,687ppm TREO (24.9% Magnet REO) from 32 metres (LLAC006)
- 12 metres @ 1,284ppm TREO (25.8% Magnet REO) from 48 metres (LLAC007)
- 20 metres @ 1,170ppm TREO (16.1% Magnet REO) from 32 metres (LLAC008)
- 20 metres @ 2,242ppm TREO (14.7% Magnet REO) from 28 metres (LLAC010)
- 20 metres @ 4,021ppm TREO (41.9% Magnet REO) from 24 metres (LLAC012)
- 30 metres @ 1,095ppm TREO (32.5% Magnet REO) from 20 metres (LLAC016)
- 19 metres @ 2,280ppm TREO (27.7% Magnet REO) from 36 metres (LLAC043)
- 31 metres @ 1,607ppm TREO (29.1% Magnet REO) from 40 metres (LLAC044)
- 24 metres @ 1,002ppm TREO (36.5% Magnet REO) from 44 metres (LLAC045)
- 31 metres @ 1,154ppm TREO (31.8% Magnet REO) from 44 metres (LLAC046)
- 33 metres @ 1,358ppm TREO (38.1% Magnet REO) from 44 metres (LLAC047)
- 40 metres @ 1,276ppm TREO (28.1% Magnet REO) from 48 metres (LLAC050)
- 86 metres @ 788ppm TREO (28.5% Magnet REO) from 28 metres (LLAC051)
- 64 metres @ 963ppm TREO (27.5% Magnet REO) from 32 metres (LLAC053)
- 8 metres @ 999ppm TREO (26.5% Magnet REO) from 4 metres (LLAC054)
- 24 metres @ 1086ppm TREO (31.7% Magnet REO) from 40 metres (LLAC056)

Upcoming News Flow

December 2022 – Start of Gold RC Drilling – Minos December 2022 – Drill sample sizing and assay as precursor to metallurgical test work December 2022 – Completion of Phase 1 of the AC program January 2023 – Assay results – Phase 1 REE AC drilling February 2023 – Drill sample sizing assay results February 2023 – Arbitration – United Republic of Tanzania February/March 2023 – REE Phase 2 AC drilling February/March 2023 – Assay results Phase 2 REE AC drilling February/March 2023 – Assay results – Gold RC Drilling February/March 2023 – Results from Heli/TEM Survey – Harris Greenstone Domain March 2023 - Identify zones of REE enrichment for follow up AC programs

Technical information included in this announcement has previously been provided to the market in releases dated:

4 th August 2020	Indiana to Acquire South Australia Gold Projects
28 th September 2020	IDA Completes Acquisition of South Australian Gold Projects
14 th June 2022	Rare Earth Potential Identified at Central Gawler Project
2 nd August 2022	Assays Confirm High Grade Ionic Clay Rare Earths
10th August 2022	72 Additional Drill holes Submitted for REE Assay
8 th September 2022	High-grade Rare Earth Mineralisation Confirmed Strike Zone Extended to Over 4.5km
19 th September 2022	Final Assays confirm Significant REE Discovery – Central Gawler Craton
2 nd December 2022	REE Aircore Drilling Underway - Minos

Ends

This announcement is authorised for release to the market by the Chief Executive Officer of Indiana Resources Limited with the authority from the Board of Directors.

For further information, please contact:

Bronwyn Barnes Executive Chairman T: +61 (0) 417 093 256 Richard Maish Chief Executive Officer T: +61 (0) 412 941 128 Dannika Warburton/Sarah McCloy Investor Relations indianares@investability.com.au

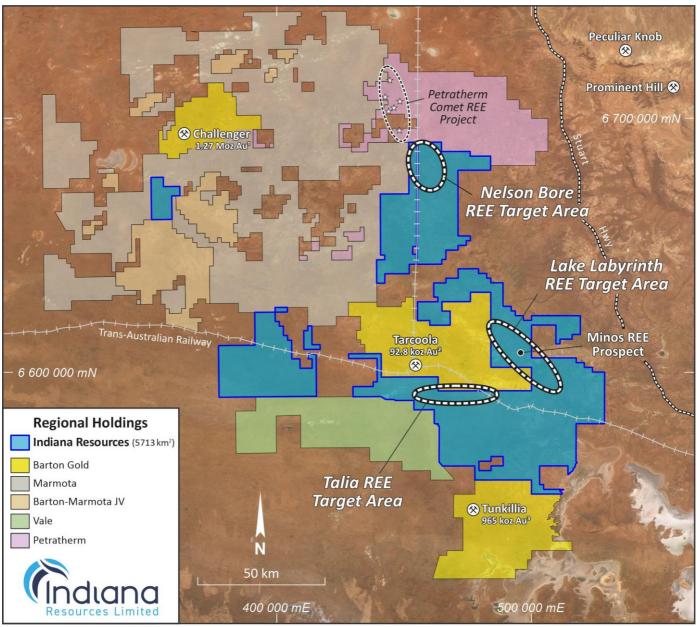
To find out more, please visit www.indianaresources.com.au

Some Facts About Rare Earth Elements

Rare earths are Critical for the Electric Revolution

The group of metals referred to as rare earth elements (REE) comprises the 15 elements of the lanthanide series. Metals in the lanthanide series are: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). In addition, yttrium (Y) and scandium (Sc) are often grouped with the lanthanides and referred to as REE.

- **REO** are Rare Earths Oxides oxides of the rare earth's elements. Grades of rare earths oxides are commonly quoted as parts per million (ppm) or percent (%) of TREO where:
- **TREO** is the sum of the oxides of the so-called heavy rare earths elements (HREO) and the so-called light rare earths elements (LREO).
- **HREO** is the sum of the oxides of the heavy rare earth elements: Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. The HREO are less common than the LREO and are generally of higher value.
- **LREO** is the sum of the oxides of the light rare earth elements: La, Ce, Pr, Nd and Sm.
- **CREO** is a set of oxides the US Department of Energy, in December 2011 defined as critical due to their importance to clean energy requirements and their supply risk. They are Nd, Dy, Eu, Y and Tb.
- **MREO** is a set of oxides that are referred to as the Magnetic Rare Earth Oxides. They are Nd, Pr, Dy, Tb, Gd, Ho and Sm.


Permanent magnets for EVs and wind turbines require four key REEs: Neodymium, Praseodymium, Dysprosium and Terbium. These account for 94% of the total REO market by value*. These rare-earth magnets are 10 times the strength for the same weight as conventional magnets, and there is currently no known substitute.

Global production dominated by China since the late 1990s. China currently produces 94% of permanent rare earth magnets.

*Source: S& P Global: Market Intelligence

Source: Barton Gold 1 Past production 1.2 Moz, current resource 65.6 koz; 2 Past production 77 koz, current resource 15.8 koz; 3 Current resource

Figure 2 Indiana's Central Gawler Craton Exploration project Area and adjacent competitor's holdings

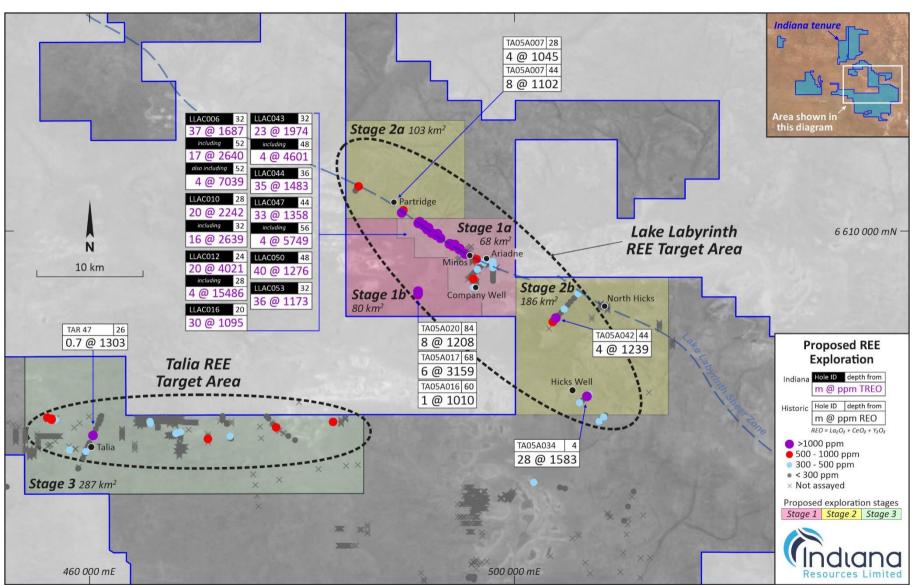


Figure 3: Lake Labyrinth (incl. Minos prospect) and Talia REE Target Areas plan showing regional anomalies and recent highlights

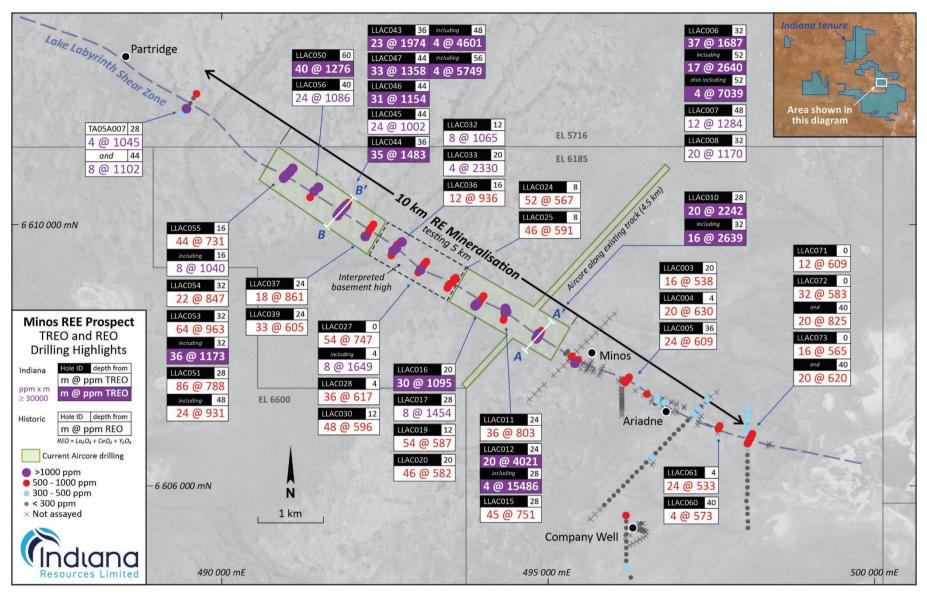


Figure 4: Minos REE prospect plan showing recent highlights

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr David Ward, a Competent Person who is a Director of the Company. Mr Ward is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Ward consents to the inclusion of the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the Exploration Results information included in this report from previous Company announcements.

Forward Looking Statements

Indiana Resources Limited has prepared this announcement based on information available to it. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this announcement. To the maximum extent permitted by law, none of Indiana Resources Limited, its directors, employees or agents, advisers, nor any other person accepts any liability, including, without limitation, any liability arising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this announcement or its contents or otherwise arising in connection with it. This announcement is not an offer, invitation, solicitation or other recommendation with respect to the subscription for, purchase or sale of any security, and neither this announcement nor anything in it shall form the basis of any contract or commitment whatsoever. This announcement may contain forward looking statements that are subject to risk factors associated with exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimate.

Significant TREO results >= 500 ppm

Highlighting TREO results >= 750 ppm and MREO results >= 300 ppm

	High Value MREO					Nd ₂ O ₃ +						
Hole ID	From m	To m	Length m	TREO ppm	MREO ppm	MREO % of TREO	Nd ₂ O ₃	Pr ₆ O ₁₁	Tb ₄ O ₇	Dy ₂ O ₃	% of MREO	Pr ₆ O ₁₁ %
LLAC001				ppm	ppm	of fileo	ppm NSI	ppm	ppm	ppm	,	of TREO
LLAC001							NSI					
LLAC003	20	36	16	538	141	26%	83	25	1	7	83%	20%
LLAC004	4	24	20	630	167	27%	99	29	2	8	82%	20%
inc inc	4 12	8 16	4	819 800	224 208	27% 26%	134 121	42 35	2	9 10	84% 81%	22% 20%
IIIC	44	48	4	513	138	20%	82	24	2	6	83%	20%
	56	60	4	725	194	27%	115	33	2	10	82%	20%
LLAC005	8	16	8	532	137	26%	81	24	1	7	82%	20%
inc	36 56	60 60	24 4	609 773	166 218	27% 28%	97 129	28 37	2 2	9 10	82% 82%	21% 22%
IIIC	72	75	3	537	131	24%	81	25	1	5	85%	22%
LLAC006	32	69	37	1687	419	25%	269	88	2	8	88%	21%
inc	52	69	17	2640	696	26%	448	145	3	14	87%	22%
also inc	52	56	4	7039	2010	29 %	1295	411	9	38	87%	24%
LLAC007 inc	48 52	60 60	12 8	1284 1570	331 408	26% 26%	203 248	60 73	3 3	13 17	84% 84%	20% 20%
LLAC008	32	52	20	1170	188	16%	116	37	1	6	85%	13%
LLAC009	20	28	8	611	167	27%	98	28	2	9	82%	21%
	44	48	4	520	135	26%	78	23	2	8	82%	19%
LLAC010 inc	28 32	48 48	20 16	2242 2639	330 382	15% 14%	204 237	62 71	2 3	11 13	85% 84%	12% 12%
LLAC011	24	60	36	803	212	26%	120	35	3	13	81%	12/0
inc	24	44	20	872	232	27%	132	39	3	14	81%	20%
inc	52	56	4	991	230	23%	126	36	4	18	80%	16%
LLAC012	24	44	20	4021	1684	42%	1064	307	12	52	85%	34%
inc	28	32	4	15487	7436	48%	4747	1365	47	210	86%	39%
LLAC013	52 60	56 64	4	529 501	147 156	28% 31%	87 96	24 30	2	8	82% 84%	21% 25%
LLAC014							NSI			-		/-
LLAC015	24	69	45	751	196	26%	119	37	2	8	84%	21%
inc	24	40	16	1151	290	25%	178	56	3	10	85%	20%
LLAC016 inc	20 20	50 40	30 20	1095 1314	356 451	33% 34%	223 282	67 84	2 3	10 13	85% 85%	26% 28%
LLAC017	20	40	20	927	204	22%	128	41	1	6	86%	18%
inc	28	36	8	1454	286	20%	179	58	2	8	86%	16%
LLAC018 inc	12 16	36 24	24 8	731 848	159 172	22% 20%	101 111	33 36	1	4	87% 88%	18% 17%
inc	32	36	4	921	218	20%	136	43	1	6	86%	20%
LLAC019	12	66	54	587	156	27%	93	27	2	8	83%	20%
LLAC020	20	66	46	582	155	27%	91	27	2	8	82%	20%
LLAC021 LLAC022	12 8	28 28	16 20	539 681	143 178	26% 26%	84 109	26 33	1	7	83% 84%	20% 21%
inc	16	20	8	843	228	20%	107	43	2	8	84% 85%	21%
LLAC023							NSI					
LLAC024	8	60	52	567	152	27%	88	26	2	8	82%	20%
LLAC025 inc	8 16	54 20	46 4	591 813	162 231	27% 28%	95 128	28 36	2 4	8 15	82% 79%	21% 20%
LLAC026	10	32	4 20	641	183	20%	128	38	2	9	82%	20%
inc	16	24	8	781	231	30%	138	41	2	10	83%	23%
LLAC027	0	54	54	747	204	27%	121	36	2	9	83%	21%
inc LLAC028	4	12 40	8 36	1649 617	464 161	28% 26%	283 96	87 29	3	15 7	84% 83%	22% 20%
LLACUZO	4 48	40 60	12	659	165	26%	101	32	2	6	83% 84%	20% 20%
inc	48	52	4	951	236	25%	141	46	2	8	84%	20%
LLAC029	16	24	8	507	150	29%	83	22	2	10	78%	21%
LLAC030	32 12	56 60	24 48	595 596	162 162	27% 27%	96 96	28 28	2	8	83% 82%	21% 21%
inc	12	16	48	596 804	233	27%	96 141	28 39	2	8	82% 83%	21%
LLAC031	12	17	5	533	140	26%	81	24	2	7	82%	20%
LLAC032	8	60	52	662	176	26%	103	30	2	9	82%	20%
inc	12	20	8	1065	292	27%	168	50	3	15	81%	20%
LLAC033 inc	12 20	60 24	48 4	791 2330	214 669	27% 29%	125 394	37 117	2 7	11 31	82% 82%	21% 22%
LLAC034	20	56	32	608	168	28%	98	29	2	8	81%	21%
LLAC035	16	60	44	574	159	28%	93	27	2	8	82%	21%
LLAC036	16	30	14	877	178	20%	106	31	2	8	82%	16%
inc	16	28	12	936	184	20%	110	32	2	8	82%	15%

Ĩ	
	Indiana
	Resources Limited

	_	_						Hi	gh Value N	AREO		Nd ₂ O ₃ +
Hole ID	From m	To m	Length m	TREO ppm	MREO ppm	MREO % of TREO	Nd ₂ O ₃ ppm	Pr ₆ O ₁₁ ppm	Tb₄O ₇ ppm	Dy ₂ O ₃ ppm	% of MREO	Pr ₆ O ₁₁ % of TREO
LLAC037 inc	24 28	42 42	18 14	861 942	203 216	24% 23%	119 128	36 38	2 2	9 10	82% 82%	18% 18%
LLAC038	28	44	16	561	148	26%	87	26	1	7	82%	20%
LLAC039	24	57	33	605	159	26%	94	29	2	8	83%	20%
LLAC040	32 44	36 60	4 16	534 520	155 142	29% 27%	94 84	27 25	2	6 7	83% 83%	23% 21%
LLAC041	28	60	32	574	142	27 %	94	27	2	8	82%	21%
LLAC042	28	60	32	597	157	26%	89	29	2	9	82%	20%
LLAC043	32	55	23	1974	546	28%	332	103	4	18	84%	22%
inc	36	55	19	2280	632	28%	385	120	5	20	84%	22%
also inc also inc	44 48	55 52	11	2908 4601	852 1416	29% 31%	523 868	161 255	6	25 44	84% 83%	24% 24%
LLAC044	36	71	35	1483	428	29%	257	80	4	16	83%	24%
Inc	40	71	31	1607	467	29%	281	87	4	17	83%	23%
also inc	48	60	12	2184	805	37%	492	153	6	23	84%	30%
also inc	52	60	8	2588	1050	41%	643	200	8	28	84%	33%
LLAC045 inc	44 52	68 64	24 12	1002 1392	366 580	36% 42%	215 347	65 104	4 5	15 20	82% 82%	28% 32%
also inc	52	68	16	1247	499	42%	297	87	5	19	82%	31%
LLAC046	44	75	31	1154	367	32%	216	68	4	16	83%	25%
inc	56	75	19	1454	525	36%	314	94	5	20	82%	28%
also inc	56	68	12	1805	687	38%	416	125	6	23	83%	30%
also inc LLAC047	60 44	64 77	4 33	2928 1358	1282 518	44% 38%	784 299	237 91	10 6	38 26	83% 81%	35% 29%
inc	44 56	68	12	2700	1176	30%	691	204	° 12	26 50	81%	33%
also inc	56	60	4	5749	2775	48%	1645	489	27	106	82%	37%
LLAC048	24	28	4	534	182	34%	100	24	3	15	78%	23%
	48	75	27	644	170	26%	95	31	2	11	82%	19%
inc	48	52	4	793	116	15%	65	33	1	5	90%	12%
also inc	64	68	4 8	1042	320	31%	188	56	4	14	82%	23%
also inc LLAC049	64 52	72 56	0 4	919 852	274 110	30% 13%	160 55	47 29	3	13 9	82% 85%	22% 10%
LLAC050	48	88	40	1276	358	28%	211	64	4	17	83%	22%
inc	56	88	32	1444	423	29%	250	75	4	19	82%	23%
also inc	68	72	4	2685	1058	39 %	644	190	9	38	83%	31%
LLAC051	28	114	86	788	225	29%	127	37	3	13	80%	21%
inc inc	48 84	72 88	24 4	931 804	254 226	27% 28%	144 132	42 39	3 2	15 11	81% 82%	20% 21%
inc	96	104	8	1317	420	32%	240	65	5	22	79%	23%
LLAC052	16	20	4	507	142	28%	73	22	2	13	77%	19%
	32	52	20	604	176	29%	104	32	2	8	83%	23%
LLAC053	32	96	64	963	264	27%	150	45	3	15	81%	20%
inc inc	32 84	68 88	36 4	1173 1373	316 395	27% 29%	180 218	55 63	4 5	17 25	81% 79%	20% 20%
LLAC054	4	12	8	999	265	26%	158	48	2	11	83%	20%
	32	54	22	847	234	28%	138	41	3	12	82%	21%
inc	32	44	12	971	271	28%	161	47	3	13	82%	21%
LLAC055	16	60	44	731	194	27%	114	35	2	10	83%	20%
inc inc	16 32	24 36	8 4	1040 856	266 245	26% 29%	164 141	52 40	2 3	9 13	86% 81%	21% 21%
LLAC056	40	64	24	1086	344	32%	205	59	3	16	82%	21%
inc	40	60	20	1178	377	32%	226	65	4	17	82%	25%
LLAC057							NSI					
LLAC058							NSI					
LLAC059	10	17	4	525	142	0707	NSI	25	0	7	0.207	2007
LLAC060	12 40	16 44	4	535 573	143 160	27% 28%	84 94	25 28	2 2	7 7	83% 82%	20% 21%
LLAC061	40	28	24	533	140	26%	82	25	2	8	83%	21%
LLAC062							NSI					
LLAC063							NSI					
LLAC064							NSI					
LLAC065	4	0	4	510	100	0.507	NSI	05	1	,	0.507	0007
LLAC066 LLAC067	4 20	8 24	4	518 504	130 150	25% 30%	78 86	25 24	1	6	85% 81%	20% 22%
LLAC067	0	12	12	593	148	25%	91	24	1	5	85%	22%
	28	40	12	597	158	26%	96	28	1	6	83%	21%
LLAC069	4	12	8	605	156	26%	95	29	1	6	84%	21%
	24	32	8	601	165	27%	102	30	1	6	84%	22%
LLAC070	32	36	4	558	161	29%	93	27	2	9	81%	21%
LLAC071	0 32	12 36	12 4	609 544	162 137	27% 25%	97 79	29 25	2	8 7	83% 83%	21% 19%
	52	60	4 8	564	157	23%	79 90	23	2	8	83%	21%
LLAC072	0	32	32	583	162	28%	93	27	2	9	81%	21%
	40	60	20	825	220	27%	133	39	2	11	84%	21%
inc	44	60	16	872	235	27%	141	42	2	11	84%	21%

	From	То	Length	TREO	MREO	MREO %		Hig	gh Value <i>N</i>	NREO		Nd ₂ O ₃ +
Hole ID	m	m	m	ppm	ppm	of TREO	Nd ₂ O ₃ ppm	Pr₀O ₁₁ ppm	Tb₄O ₇ ppm	Dy₂O₃ ppm	% of MREO	Pr₀O ₁₁ % of TREO
LLAC073	0	16	16	565	160	28%	92	26	2	9	81%	21%
	28	48	20	620	160	26%	96	29	1	7	84%	20%
LLAC074	12	24	12	658	171	26%	102	30	2	8	83%	20%
inc	12	16	4	928	222	24%	133	39	2	10	83%	19%
LLAC075	16	20	4	564	146	26%	87	27	2	7	84%	20%
LLAC076	16	19	3	549	163	30%	102	30	1	5	85%	24%
LLAC077	12	24	12	569	156	27%	91	27	2	8	82%	21%
LLAC078	28	42	14	602	118	20%	70	26	1	5	86%	16%
LLAC079	24	28	4	1544	160	10%	94	31	2	9	85%	8%
	48	60	12	903	239	26%	147	42	2	9	84%	21%
inc	52	60	8	1062	255	24%	156	45	2	10	83%	19%

Notes:

Analysis by Lithium Borate Fusion & ICP.

Reported intersections are downhole lengths - true widths are unknown at this stage.

Coordinates by GPS (positional accuracy approximately ±3m.

These results have additional Yttrium values included which were originally missed in 1 batch of assays.

Resources Limited

011	D 11 7			DI.	D1.		TILLE
Site ID LLAC001	Drill Type RC	MGA East 496086	MGA North 6607509	RL 1 <i>5</i> 0	Dip -60	MGA Azimuth 030	Total Depth
							60
LLAC002 LLAC003	RC RC	496146 496160	6607559 6607590	150 150	-60 -60	030	60 60
LLAC003	RC	496247	6607669	150	-60	210	60
LLAC004 LLAC005	RC	496204	6607619	150	-60	210	75
LLAC005	AC	494821	6608247	140	-60	030	69
LLAC008	RC	494827	6608266	140	-60	030	60
LLAC007	RC	494845	6608306	140	-60	030	60
LLAC008	RC	494912	6608384	140	-60	210	60
LLAC007	RC	494870	6608346	140	-60	210	51
LLAC011	RC	494359	6608732	140	-60	210	60
LLAC012	RC	494374	6608678	140	-60	210	72
LLAC012	AC	494307	6608518	140	-60	030	66
LLAC013	AC	494312	6608568	140	-60	030	75
LLAC015	AC	494338	6608640	140	-60	030	69
LLAC016	AC	493878	6608741	140	-60	030	50
LLAC017	AC	493910	6608774	140	-60	030	42
LLAC018	AC	493948	6608805	140	-60	030	39
LLAC019	AC	493978	6608852	140	-60	030	66
LLAC017	AC	494004	6608888	140	-60	030	66
LLAC020	AC	493460	6609028	140	-60	030	29
LLAC021	AC	493477	6609071	140	-60	030	31
LLAC022 LLAC023	AC	493517	6609102	140	-60	030	23
LLAC023	RC	493517	6609102	140	-60	030	63
LLAC024 LLAC025	AC	493581	6609149	140	-60	030	54
LLAC025	AC	493013	6609264	140	-60	030	35
LLAC028	RC	493045	6609299	140	-60	030	54
LLAC027	RC	493043	6609339	140	-60	030	60
LLAC028	RC	493071	6609388	140		030	60
	RC				-60		
LLAC030		493131	6609416	140 140	-60	030	60 17
LLAC031	AC	492600	6609528		-60	030	
LLAC032	RC	492624	6609586	140	-60	030	60
LLAC033	RC	492673	6609627	140	-60	030	60
LLAC034	RC RC	492681	6609673	140 140	-60	030	63
LLAC035		492729	6609714		-60	030	60
LLAC036	AC	492757	6609720	140	-60	030	30
LLAC037	AC	492194	6609801	140	-60	030	42 45
LLAC038	AC	492232	6609841	140	-60	030	-
LLAC039	RC	492255	6609891 6609924	140 140	-60	030	57
LLAC040	RC	492275			-60	030	60
LLAC041	RC	492311	6609979	140	-60	210	60
LLAC042	RC	492340	6610022	140	-60	210	60
LLAC043	AC	491763	6610115	140	-60	030	55
LLAC044	AC	491794	6610158	140	-60	030	71
LLAC045	AC AC	491824	6610190	140	-60	030	81 75
LLAC046		491856	6610226	140	-60		75
LLAC047	AC	491892	6610264	140	-60	030	
LLAC048	AC	491925	6610306	140	-60	030	75
LLAC049	AC	491345	6610393 6610475	140	-60	030	60
LLAC050	AC	491401		140	-60	030	90
LLAC051	AC	490935 490994	6610681	140	-60	030	114 91
LLAC052	AC		6610750	140	-60	030	
LLAC053 LLAC054	AC AC	490970 491055	6610719	140	-60	030 210	96
			6610816	140	-60		54
LLAC055	AC	491095	6610866	140	-60	210	64
LLAC056	AC	491473	6610546	140	-60	030	69
LLAC057	RC	497573	6606792	130	-60	030	60
LLAC058	RC	497583	6606819	130	-60		60 57
LLAC059	RC	497604	6606864	130	-60	210	57
LLAC060	RC	497622	6606896	130	-60	210	60
LLAC061 LLAC062	RC	497634	6606918	130	-60	210	39 37
	RC RC	497128 497115	6607056 6607037	140	-60	210	25
LLAC063				140	-60	210	
LLAC064	RC Abandoned	497145	6607076	140	-60	210	6
LLAC065	RC	497151	6607074	140	-60	210	60
LLAC066	RC	497159	6607092	140	-60	210	60
LLAC067	RC	497170	6607107	140	-60	210	57

Site ID	Drill Type	MGA East	MGA North	RL	Dip	MGA Azimuth	Total Depth
LLAC068	RC	498054	6606643	136	-60	030	57
LLAC069	RC	498073	6606669	136	-60	210	48
LLAC070	RC	498089	6606708	136	-60	210	60
LLAC071	RC	498105	6606740	136	-60	210	60
LLAC072	RC	498120	6606767	136	-60	210	60
LLAC073	RC	498136	6606802	136	-60	210	54
LLAC074	AC	493042	6609305	140	-60	210	33
LLAC075	AC	493077	6609344	140	-60	210	20
LLAC076	AC	493513	6609101	140	-60	210	19
LLAC077	AC	493549	6609126	140	-60	210	24
LLAC078	AC	494350	6608647	140	-60	210	42
LLAC079	AC	494861	6608318	140	-60	210	75

Notes Coordinates by GPS (positional accuracy approximately ±3m)

ANNEXURE 1:

The following Tables are provided to ensure compliance with JORC Code (2012) edition requirements for the reporting of the Exploration Results at the Central Gawler Project.

SECTION 1: Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

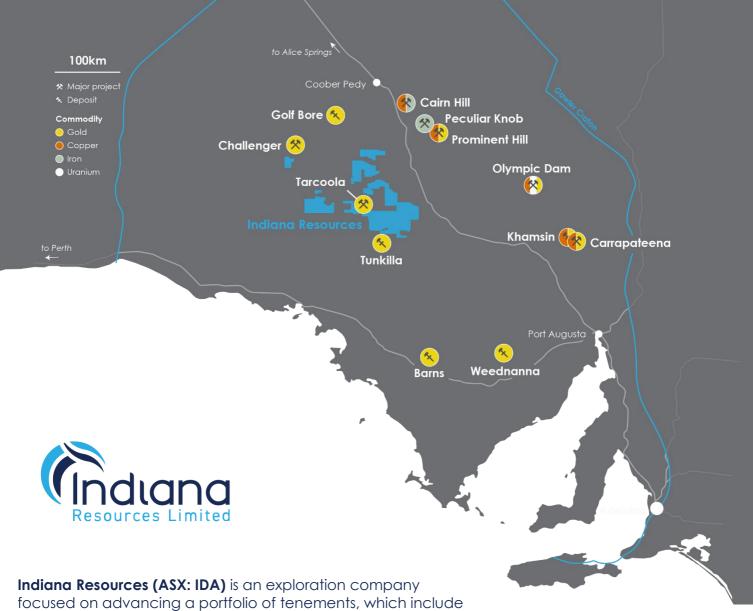
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	All aircore/slimline RC samples were collected every metre from a cyclone directly into a green plastic bag. Samples for laboratory testing comprised mostly 4m samples which were collected using a scoop from each 1m sample to produce a 4m composite sample. Non 4m samples usually were collected if the drill hole finished in a number not divisible by 4. Sample representivity was ensured by a combination of standard company procedures regarding quality control. Standard were used in a ratio of 3 samples per 100. Average sample weight was ~2kg Drill hole sampling technique used is considered as industry standard for this type of drilling. 4m composite samples were collected for the complete drill hole by using a scoop from each 1m bag to produce a ~2kg composite sample. Samples analysed for Au by Bureau Veritas in Adelaide using laboratory method FA001, 40g Fire assay AAS. Re-assaying of selected holes for RE elements by Bureau Veritas in Adelaide using laboratory method s IB100, LB101 & LB102. An aliquot of sample is accurately weighed and fused with lithium metaborate at high temperature in a Pt crucible. The fused glass is then digested in nitric acid. Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y & Yb have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Aircore/slimline RC drilling utilising an AC Drill rig with an 500cfm/250psi on-board compressor for aircore and an auxiliary compressor for slimline RC drilling. A 3.5-inch aircore bit was used for aircore holes and an RC hammer for slimline RC drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Bag weights and sizes observed and assessed as representing suitable recoveries. Drilling capacity suitable to ensure representivity and maximise recovery. There is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All intervals were geologically logged to an appropriate level for exploration purposes. Logging considered qualitative in nature. All drillholes have been logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Drill samples were collected dry with limited wet samples. Drilling was generally terminated in cases of continual wet samples. Sample wetness recorded at time of logging. Quality control procedures include submission of CRMs, and blanks with each batch of samples. Sample preparation techniques, where listed, were considered appropriate for the respective sample types. Sub-sampling stages were considered appropriate for exploration. The sample size is considered industry standard for this type of mineralisation and the grain size of the material being sampled.

Criteria	JORC Code explanation	Commentary				
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 					
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Significant intersections verified by Company personnel. No twinning of holes has been undertaken. Primary data entered to digital, validated, and verified offsite. Drestored physically and digitally under company protocols. Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to-stoichiometric conversion factors. Element Conversion Factor Oxide Ce Ce 1.2284 Ce 1.435 Er 1.1477 Dy203 Er Er 1.1526 Gd 1.1526 La 1.1728 La 1.1728 Lu 1.1371 Lu 1.1664 Nd 1.1664 Nd 1.1626 Sc 1.5338 Scc203 Sm Sm 1.1762 Tb407 Tm Tm 1.1421 Tm203 Y <t< th=""></t<>				
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Collar locations were picked up using handheld GPS with accura of ±3m. Holes were routinely down hole surveyed and are being assessed for accuracy. The grid system for the Central Gawler Gold Project is GDA94 /MC Zone 53. Prospect RL control from DGPS data (estimated accuracy ± 0.2m and GPS (estimated accuracy +-3m). Regional RL control from either: available DTM from airborne surveys or estimation of local from local topographic data.				
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drill hole spacing is highly variable, ranging from 20m drill hole spacing on 100m spaced drill sections to 400m spaced holes on regional traverses. Data spacing and results are insufficient for resource estimate purposes. No sample compositing has been applied.				
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Exploration drilling is either oriented vertically or angled through mineralisation, with no known bias to the sampling of structures assessed to this point. At this early stage of exploration, the certai of the mineralisation thickness, orientation and geometry is unkno No sampling bias is considered to have been introduced by the drilling orientation.				
Sample security	The measures taken to ensure sample security.	Indiana's sample chain of custody is managed by Indiana. Samp for the Central Gawler Project are stored on site and delivered to Bureau Veritas laboratory in Adelaide by an Indiana contractor.				
1						

SECTION 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and	The Central Gawler Project is located in the Gawler Craton, South Australia. The Project is approximately 650 kilometres north-west of Adelaide. Access to the tenements is via unsealed road near Kingoonya, west of Glendambo, on the Stuart Highway.
		The tenements are in good standing. No Mining Agreement has been negotiated.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Previous exploration over the area has been carried out by many companies over several decades for a range of commodities. Companies and the work completed includes but is not limited to: Endeavour Resources – gold – RC and DD drilling MIM – gold and base metals - surface geochemistry, airborne and surface based geophysical surveys and AC and RC drilling Grenfell Resources – gold – AC, RC and DD drilling Range River Gold – gold – surface geochemistry and RC drilling Minotaur Exploration – IOCG, gold – gravity, AC and RC drilling CSR – gold – RAB drilling Kennecott – nickel - auger drilling Mithril – nickel – ground geophysics, AC and RC drilling PIMA Mining – gold – surface geochemistry, RAB drilling Santos – gold, tin – RAB and DD drilling Tarcoola Gold – gold – RAB drilling Aberfoyle/Afmeco – uranium, base metals – AC and rotary mud drilling SADME/PIRSA – regional drill traverses – AC, RC
Geology	• Deposit type, geological setting and style of mineralisation.	and DD drilling It is thought that the regolith hosted REE enrichment originates through weathering of underlying rocks (granite, gneiss).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All hole collar locations, depths, azimuths and dips are provided within the body of this report for information material to the understanding of the exploration results. All relevant information has been included.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No top-cuts have been applied when reporting results. Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to- stoichiometric conversion factors. Weighted averages for the REO mineralisation were calculated using a cut-off grade of 300 ppm REO. No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Reported intersections are downhole lengths – true widths are unknown at this stage. Mineralisation is thoughts to be generally intersected roughly perpendicular to true-width, however try-widths are unknown.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures and tables in body of text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All significant and relevant intercepts have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, 	All relevant exploration data is shown in figures and in text.



ASX:IDA

Criteria	JORC Code explanation	Commentary
	geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	lateral extensions or depth extensions or large-scale step-out	A discussion of further exploration work is outlined in the body of the text. All relevant diagrams and inferences have been
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	illustrated in this report.

rare earths, gold and base metals, in the highly prospective Central Gawler Craton Province in South Australia.

Indiana's ground position in the Gawler Craton covers 5,713km²– with the Company's tenements strategically located between the historic gold mining centres of Tunkillia (965,000 ounce gold resource) and Tarcoola (15,800 ounce gold resource).

With a historical focus on gold, Indiana is progressing plans for a targeted Rare Earth Elements (REE) drilling programme. The Company benefits by its strategic positioning in a tightly held region, known for gold but with exciting REE opportunities.

The Company has a highly experienced management team, led by Executive Chair, Bronwyn Barnes and CEO Richard Maish. Indiana has a tightly held register with benefits from strong support from major shareholders who are aligned with the Company's growth story.

