ASX ANNOUNCEMENT

30 March 2023

ABOUT AIC MINES

AIC Mines is a growth focused Australian resources company. Its strategy is to build a portfolio of gold and copper assets in Australia through exploration, development and acquisition.

AIC Mines owns the Eloise Copper Mine, a high-grade operating underground mine located SE of Cloncurry in North Queensland.

AIC Mines also has significant gold, copper and nickel exploration projects in Western Australia and New South Wales.

BOARD MEMBERS

Josef El-Raghy Non-Executive Chairman

Aaron Colleran Managing Director & CEO

Linda HaleNon-Executive Director

Brett Montgomery

Non-Executive Director

Jon Young Non-Executive Director Audrey Ferguson

Company Secretary

CORPORATE DETAILS

ASX: A1M
www.aicmines.com.au
ABN: 11 060 156 452
E: info@aicmines.com.au
A: A8, 435 Roberts Rd,
Subiaco, WA, 6008
Share Register:
Computershare Investor Services

Significant Increase in Mineral Resources and Ore Reserves at Eloise Copper Mine

AIC Mines Limited (ASX: A1M) ("AIC Mines" or the "Company") is pleased to announce updated Mineral Resource and Ore Reserve ("MROR) estimates for its Eloise Copper Mine as at 31 December 2022. AIC Mines has previously updated its MROR estimates at 30 June each year but has now changed to a 31 December cutoff date to better align with its annual business planning schedule.

HIGHLIGHTS

- Exploration and resource definition drilling completed at Eloise over the 6
 months since the previous MROR estimate has significantly increased both
 Mineral Resources and Ore Reserves.
- Mineral Resources have increased to 137,200 tonnes of contained copper and 118,800 ounces of contained gold, representing a 19% increase in copper and a 19% increase in gold net of mining depletion.
- Ore Reserves have increased to 52,600 tonnes of contained copper and 43,100 ounces of contained gold, representing a 46% increase in copper and a 32% increase in gold net of mining depletion.
- The main source of the Mineral Resource and Ore Reserve increases was the high-grade Lens 6 deposit, discovered in September 2022, which remains open up and down dip and along strike. Lens 6 is located within 150m of current development.
- Combined Eloise and Jericho Mineral Resources now total 15.5Mt grading 2.0%
 Cu and 0.5g/t Au containing 317,200t Cu and 229,400oz Au.

Commenting on the significant Mineral Resource and Ore Reserve increases, AIC Mines Managing Director Aaron Colleran said:

"This MROR update and the discovery of the Lens 6 high-grade deposit at Eloise supports our confidence that ongoing exploration and resource definition drilling will extend the Eloise mine life well beyond 2030."

Mineral Resources

Exploration and resource definition drilling conducted by AIC Mines over the six-month period from 30 June 2022 to 31 December 2022 and improved geological controls have delivered a significant increase in the Mineral Resource estimate in terms of resource tonnes and contained copper, gold and silver. The majority of the increase has been in the Macy, Lens 6 and Deeps (Elrose Levuka South – Lower) deposits.

The Mineral Resources reported here relate to the Eloise Copper Mine only and **do not include the Jericho Copper Deposit**. Jericho Mineral Resources are estimated at 9.8 million tonnes grading 1.8% copper and 0.4g/t gold containing 180,000 tonnes of copper and 110,600 ounces of gold (see AIC Mines ASX announcement "Jericho Mineral Resource" dated 6 February 2023).

The Eloise Mineral Resource estimates (see Table 1 and Figures 1 and 2) are based on a long-term copper price of A\$10,500/t and are reported and classified in accordance with the JORC Code (2012). The economic inputs and cut-off grades used for the 31 December 2022 Mineral Resource estimate are identical to those used for the previous estimate as at 30 June 2022. Further information is provided in Appendix 1 to this announcement.

Table 1. Eloise Copper Mine – Mineral Resources as at 31 December 2022

Resource Category	Tonnes (t)	Cu Grade (%)	Au Grade (g/t)		Contained Copper (t)	Contained Gold (oz)	Contained Silver (oz)
Measured	-	-	-	-	ı	ı	ı
Indicated	3,987,000	2.3	0.6	11.0	93,500	81,100	1,249,900
Inferred	1,717,000	2.5	0.7	10.1	43,700	37,700	556,300
Total	5,704,000	2.4	0.6	9.8	137,200	118,800	1,806,200

Mineral Resources are inclusive of Ore Reserves.

Mineral Resources are estimated using a 1.1% Cu cut-off above 0mRL (1,190mBSL) and 1.4% Cu below 0mRL.

There is no certainty that Mineral Resources not included in Ore Reserves will be converted to Ore Reserves.

Tonnages have been rounded to the nearest 1,000 tonnes.

Net Change is the difference between Mineral Resources as at 30 June 2022 and Mineral Resources as at 31 December 2022.

Total Mineral Resource tonnes at Eloise have increased by 20%, contained copper by 19% and contained gold by 19% net of mining depletion (278,100t grading 1.9% Cu) from 30 June 2022 to 31 December 2022 (see Table 2). The major changes include:

- Increase of 1,176,300t grading 2.6% Cu was contributed by:
 - Initial resource estimate for the Lens 6 deposit of 583,200t grading 3.4% Cu which was only discovered in September 2022 (see AIC Mines ASX announcement "Lens 6 Discovery" dated 30 September 2022). Lens 6 remains open up and down dip and along strike.
 - o Improved geological interpretation, following external review, leading to increases across all resource areas totalling 593,100t grading 1.8% Cu.
- Reduction of 223,300t grading 3.7% Cu in the Elrose Levuka South Upper zone as a result of infill drilling downgrading the continuity of mineralisation.

Table 2. Comparison of 31 December 2022 vs. 30 June 2022 Mineral Resources by Mining Area

			Mineral	Resource	s @ 31 De	ec 2022			Mineral Resources @ 30 June 2022						
Mineral Resource Category	Mining	Tonnes	Cu Grade	Au Grade	Ag Grade	Contained	Contained	Contained	Tonnes	Cu Grade	Au Grade	Ag Grade	Contained	Contained	Contained
	Type	(t)	%	(g/t)	(g/t)	Copper (t)	Gold (oz)	Silver (oz)	(t)	%	(g/t)	(g/t)	Copper (t)	Gold (oz)	Silver (oz)
Macy	LHOS	982,000	1.9	0.6	9.2	18,800	18,800	291,200	682,200	2.1	0.6	9.7	14,100	13,900	212,600
Elrose Levuka North - Upper	LHOS	593,000	2.0	0.5	8.3	12,000	9,700	158,200	454,400	2.2	0.5	8.7	9,900	6,700	127,400
Elrose Levuka South - Upper	LHOS	1,097,000	1.9	0.4	6.7	21,000	15,700	235,000	1,320,300	2.2	0.5	7.9	29,200	22,200	334,000
Elrose Levuka South - Lower	LHOS	2,149,000	3.1	0.8	11.8	67,600	57,200	817,300	1,413,000	3.1	0.9	12.3	44,000	39,900	560,000
Emerson	SLC	883,000	2.0	0.6	10.7	17,800	17,400	304,500	881,100	2.0	0.6	10.7	17,800	17,400	302,200
Total Resource		5,704,000	2.4	0.6	9.8	137,200	118,800	1,806,200	4,751,000	2.4	0.6	10.1	115,000	100,100	1,536,200

Ore Reserves

Similar to the outcome with Mineral Resources, infill drilling, reinterpretation, resource reclassification and mine planning evaluation has delivered a significant increase in the Ore Reserve estimate in terms of ore tonnes and contained copper, gold and silver. The majority of the increase has been in the Upper Zone (Macy, Elrose Levuka North and South) and Lens 6 (included in the Elrose Levuka South Lower Zone).

The Ore Reserves reported here relate to the Eloise Copper Mine only and do not include the Jericho Copper Deposit. AIC Mines expects to report the maiden Jericho Ore Reserve during the June 2023 Quarter.

The Ore Reserve estimates (see Table 3 and Figure 3) are based on a long-term copper price of A\$10,500/t and are reported and classified in accordance with the JORC Code (2012). The economic inputs and cut-off grades used for the 31 December 2022 Ore Reserve estimate are identical to those used for the previous estimate as at 30 June 2022. Further information is provided in Appendix 1 to this announcement.

Table 3. Eloise Copper Mine – Ore Reserves as at 31 December 2022

Reserve Category	Tonnes (t)	Cu Grade (%)	Au Grade (g/t)	Ag Grade (g/t)	Contained Copper (t)	Contained Gold (oz)	Contained Silver (oz)
Proved	5,000	1.5	0.5	7.7	100	100	1,300
Probable	2,193,000	2.4	0.6	8.8	52,500	43,000	619,400
Total	2,198,000	2.4	0.6	8.8	52,600	43,100	620,700

Net Change	+653,000	+0.1	0.0	-0.9	+16,600	+10,500	+137,400

Ore Reserves are estimated using a 1.4% Cu cut-off above 0mRL and 1.6% Cu cut-off below 0mRL.

Tonnages have been rounded to the nearest 1,000 tonnes.

Net Change is the difference between Ore Reserves as at 30 June 2022 and Ore Reserves as at 31 December 2022.

Total Ore Reserve tonnes have increased by 42%, contained copper by 46% and contained gold by 32% net of mining depletion (278,100t grading 1.9% Cu) from 30 June 2022 to 31 December 2022 (see Table 4). The major changes include:

- Maiden Ore Reserve for Lens 6 (included in the Elrose Levuka South Lower Zone) added 347,100t grading 3.3% Cu.
- Infill drilling, improved geological interpretation and an external review, lead to increase across all other reserve areas totalling 395,100t grading 1.7% Cu.
- Reduction of 75,300t grading 2.0% Cu in the Elrose Levuka South Lower longhole open stopes as a result of stope redesign (more pillars and reduced stope height).

Table 4. Comparison of 31 December 2022 vs. 30 June 2022 Ore Reserves by Mining Area

			Ore Res	erves @	31 Dec 20	22			Ore Reserves @ 30 June 2022						
Reserve Category	Mining	Tonnes	Cu Grade	Au Grade	Ag Grade	Contained	Contained	Contained	Tonnes	Cu Grade	Au Grade	Ag g/t	Contained	Contained	Ag Metal
	Type	(t)	%	(g/t)	(g/t)	Copper (t)	Gold (oz)	Silver (oz)	(t)	%	(g/t)	Grade	Copper (t)	Gold (oz)	(oz)
Macy	LHOS	443,200	2.1	0.6	9.3	9,100	8,900	132,200	339,000	2.0	0.6	9.2	6,750	6,000	100,700
Elrose Levuka North - Upper	LHOS	210,000	1.9	0.4	7.2	4,100	2,800	48,400	61,400	2.0	0.4	7.5	1,200	750	14,900
Elrose Levuka South - Upper	LHOS	262,500	1.8	0.5	6.2	4,900	3,900	52,100	230,700	1.9	0.7	7.2	4,450	5,100	53,600
Elrose Levuka South - Lower	LHOS	455,000	3.1	0.8	10.7	13,800	11,800	157,000	183,200	2.2	0.7	9.8	3,950	3,950	57,600
Elrose Levuka South - Lower	SLC	822,200	2.5	0.6	8.7	20,600	15,600	229,700	711,700	2.7	0.7	11.0	19,450	16,450	250,800
Stockpiles		5,000	1.5	0.5	7.7	100	100	1,300	19,000	1.4	0.6	9.1	200	350	5,700
Total		2,198,000	2.4	0.6	8.8	52,600	43,100	620,700	1,545,000	2.3	0.7	9.7	36,000	32,600	483,300

Ongoing Exploration and Resource Definition Drilling

Since taking ownership of the Eloise Copper Mine in November 2021 AIC Mines has completed almost 15,000m of underground drilling in the Macy, Levuka and Deeps areas at a cost of \$4.6M. This drilling has delivered the increase in Ore Reserves and Mineral Resources at a cost of \$0.09/lb of copper and \$0.03/lb of copper respectively.

Ongoing evaluation of the Eloise drilling database continues to identify opportunities for Mineral Resource and Ore Reserve growth.

The current focus of resource definition drilling at Eloise includes targeting additional Ore Reserves in the upper zone at Macy, Levuka North and South as well as extending the extents of the Ore Reserves in the Deeps at Lens 6 and the sublevel cave. A second drilling rig commenced underground drilling recently. The rig will focus on resource definition and in-mine exploration drilling in the Deeps at Lens 6 and the sublevel cave. AIC Mines is planning for two rigs to be drilling underground at Eloise for the remainder of the year.

Moving forwards, AIC Mines will report MROR estimates for the Eloise operations annually at a 31 December cut-off date.

JORC 2012 and ASX Listing Rules Requirements

This annual statement of Mineral Resources and Ore Reserves has been prepared in accordance with the 2012 Edition of the 'Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code 2012).

A Material Information summary is provided in Appendix 1 for the Eloise Copper Mine Mineral Resources and Ore Reserves pursuant to ASX Listing Rules 5.8 and 5.9 and the Assessment and Reporting Criteria in accordance with JORC Code 2012 requirements.

Authorisation

This announcement has been approved for issue by, and enquiries regarding this announcement may be directed to Aaron Colleran, Managing Director, via info@aicmines.com.au

Competent Person's Statement – Eloise Mineral Resources

The information in this announcement that relates to the Eloise Mineral Resource is based on information, and fairly represents information and supporting documentation compiled by Matthew Thomas who is a member of the Australasian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they have undertaken to qualify as a Competent Person as defined in the JORC Code. Mr Thomas is a full-time employee of AIC Copper Pty Ltd and is based at the Eloise Mine. Mr Thomas consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Competent Person's Statement – Eloise Ore Reserves

The information in this announcement that relates to the Eloise Ore Reserve is based on information, and fairly represents information and supporting documentation compiled by Randy Lition who is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the JORC Code. Mr Lition is a full-time employee of AIC Copper Pty Ltd and is based at the Eloise Mine. Mr Lition consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

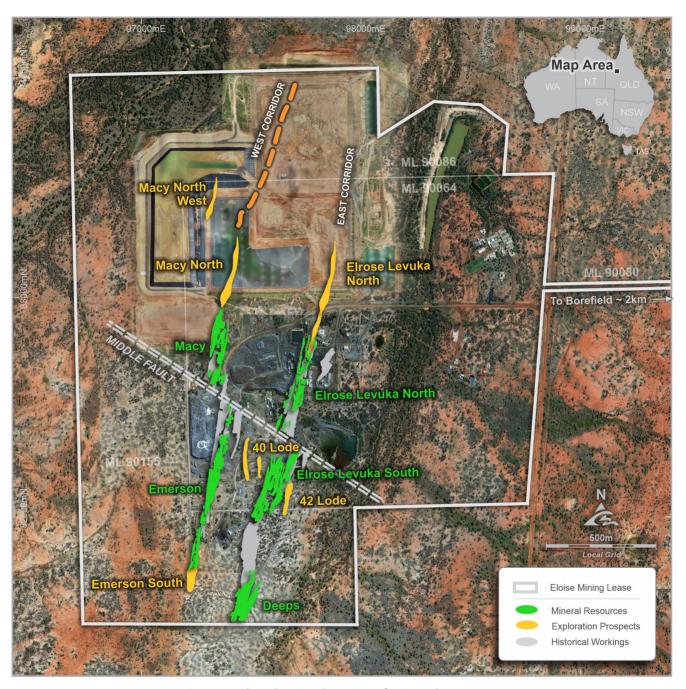


Figure 1. Plan showing location of Mineral Resources

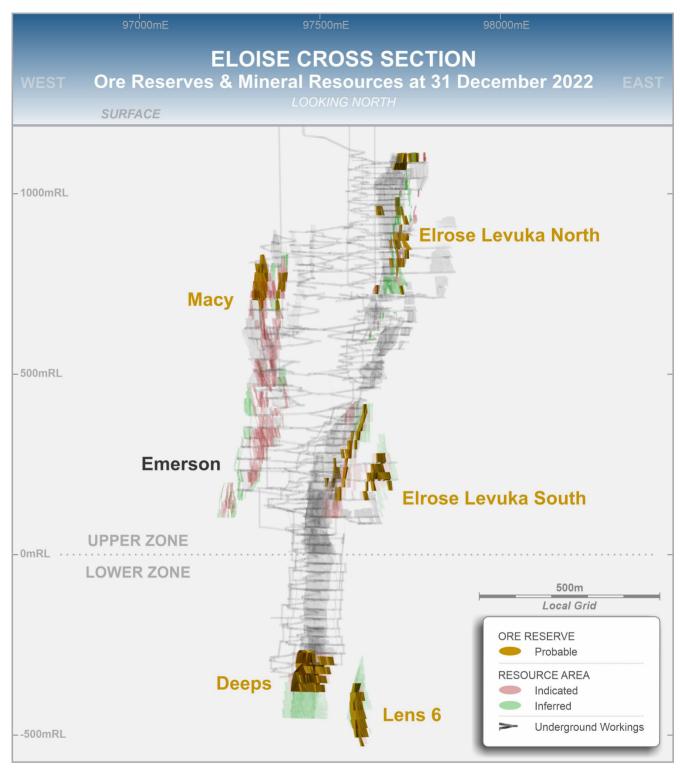


Figure 2. Cross Section (looking north) showing location of Mineral Resources

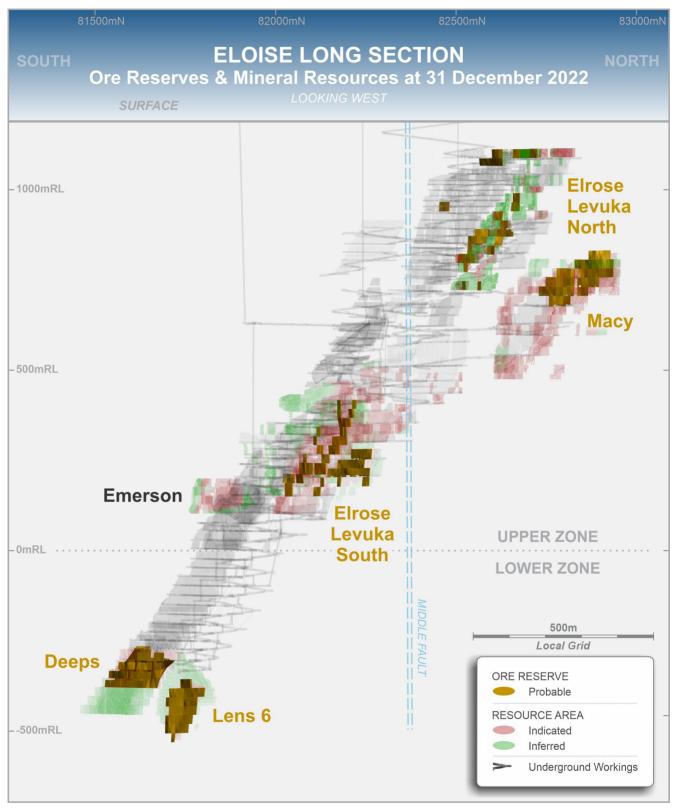


Figure 3. Long Section (looking west) showing location of Mineral Resources and Ore Reserves

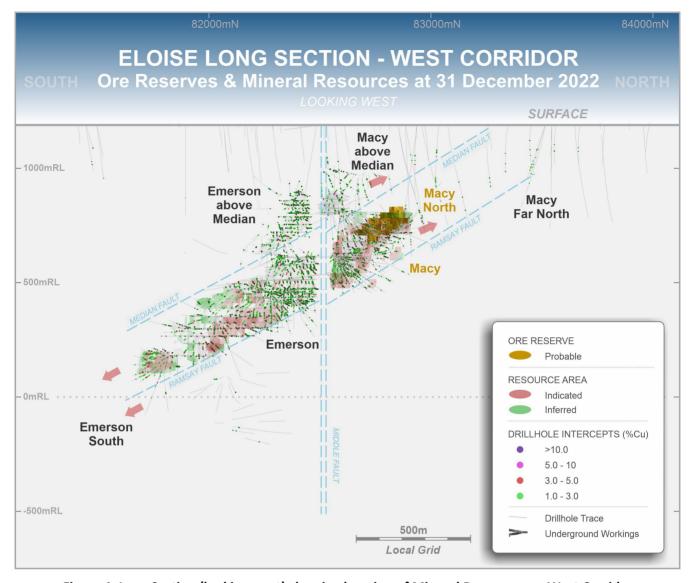


Figure 4. Long Section (looking west) showing location of Mineral Resources on West Corridor

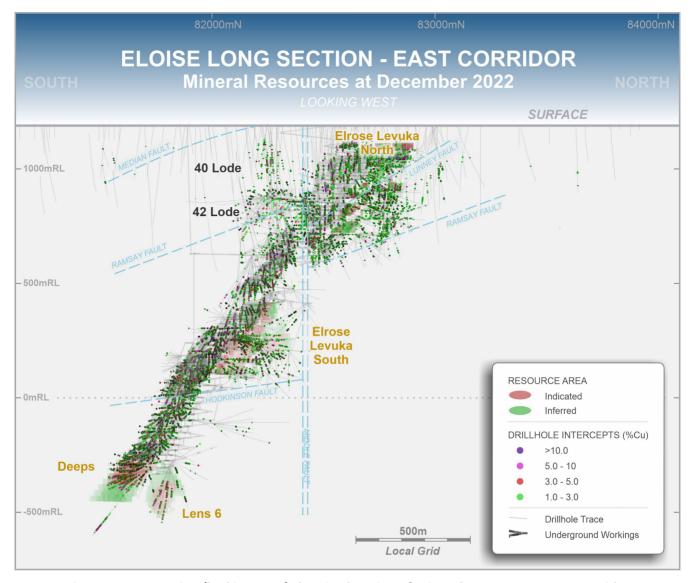


Figure 5. Long Section (looking west) showing location of Mineral Resources on East Corridor

About the Eloise Copper Mine

Eloise is a high-grade operating underground mine located 60 kilometres southeast of Cloncurry in North Queensland. It commenced production in 1996 and has since produced approximately 350,000t of copper and 175,000oz of gold. AIC is targeting annual production of approximately 12,500t of copper and 6,500oz of gold in concentrate.

Current operations consist of an underground mine accessed via decline. The upper levels of the mine (above 1,190m below surface) are extracted by longhole open stoping and the lower levels are extracted by sublevel caving.

Processing is via conventional crushing, grinding and sulphide flotation. Metallurgically the ore is very consistent as the ore mineralogy at Eloise is almost exclusively chalcopyrite. Processing achieves high copper recoveries (generally 94% - 95%) and produces a clean concentrate. The concentrate has significant by-product credits from gold and silver.

Combined Mineral Resource - Eloise and Jericho

Resource	Tonnes	Cu Grade	Au Grade	Ag Grade	Contained	Contained	Contained
Category	(t)	(%)	(g/t)	(g/t)	Copper (t)	Gold (oz)	Silver (oz)
	Eloise (Copper Mine	– Mineral Re	sources as at	31 December	2022	
Measured							
Indicated	3,987,000	2.3	0.6	11.0	93,500	81,100	1,249,900
Inferred	1,717,000	2.5	0.7	10.1	43,700	37,700	556,300
Sub Total	5,704,000	2.4	0.6	9.8	137,200	118,800	1,806,200
	Jericho	Copper Depo	sit – Mineral	Resources as	at 31 January	2023	
Measured	-	-	-	-	-	-	-
Indicated	2,629,000	2.0	0.4	2.3	52,400	31,400	191,600
Inferred	7,214,000	1.8	0.4	2.0	127,600	79,200	453,500
Sub Total	9,843,000	1.8	0.4	2.0	180,000	110,600	645,100
Total	15,547,000	2.0	0.5	4.9	317,200	229,400	2,451,300

Eloise Mineral Resources are estimated using a 1.1% Cu cut-off above OmRL (1,190mBSL) and 1.4% Cu below OmRL. Jericho Mineral Resources are estimated using a 1.0% Cu cut-off within optimised stope shapes.

Forward-Looking Statements

This Announcement includes "forward-looking statements" as that term within the meaning of securities laws of applicable jurisdictions. Forward-looking statements involve known and unknown risks, uncertainties and other factors that are in some cases beyond AIC Mines' control. These forward-looking statements include, but are not limited to, all statements other than statements of historical facts contained in this announcement, including, without limitation, those regarding AIC Mines' future expectations. Readers can identify forwardlooking statements by terminology such as "aim," "anticipate," "assume," "believe," "continue," "could," "estimate," "expect," "forecast," "intend," "may," "plan," "potential," "predict," "project," "risk," "should," "will" or "would" and other similar expressions. Risks, uncertainties and other factors may cause AIC Mines' actual results, performance, or achievements to differ materially from those expressed or implied by the forward-looking statements (and from past results, performance or achievements). These factors include, but are not limited to, the failure to complete the project in the time frame and within estimated costs currently planned; the failure of AIC Mines' suppliers, service providers and partners to fulfil their obligations under supply and other agreements; unforeseen geological, physical or meteorological conditions, natural disasters or cyclones; changes in the regulatory environment, industrial disputes, labour shortages, political and other factors; the inability to obtain additional financing, if required, on commercially suitable terms; and global and regional economic conditions. Readers are cautioned not to place undue reliance on forward-looking statements. Although AIC Mines believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Tonnages have been rounded to the nearest 1,000 tonnes.

APPENDIX 1

Eloise Copper Mine – Mineral Resource and Ore Reserve Statement

Material Information Summary

Material Information Summaries are provided for the Eloise Mineral Resource and Ore Reserves pursuant to ASX Listing Rules 5.8 and 5.9 and the Assessment and Reporting Criteria in accordance with JORC Code 2012 requirements.

Location and Tenure

The Eloise copper-gold deposit is located approximately 60km southeast of Cloncurry and is accessible by the sealed Landsborough Highway to within 12km west of the mine. Access to Eloise is via a well maintained dirt access road. Cloncurry is located in northwest Queensland, 770km west of Townsville via the Flinders Highway.

The operation is located on four mining leases:

- ML90064 (expiry 31 August 2025)
- ML90080 (expiry 31 December 2031)
- ML90086 (expiry 31 March 2032)
- ML90155 (expiry 31 October 2026)

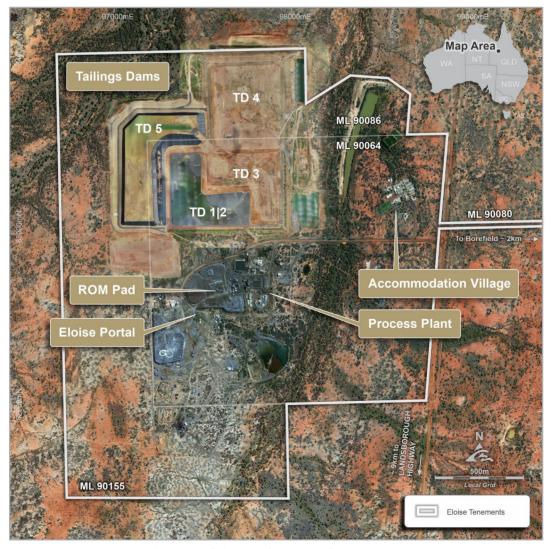


Figure 6. Eloise site layout and tenements.

Eloise Mineral Resources

Geology and the Geological Interpretation

The Eloise copper-gold deposit lies within Early-Middle Proterozoic rocks of the Cloncurry-Selwyn zone, of the Eastern Fold Belt, of the Mount Isa Inlier (see Figure 7). The lithologies have been tentatively assigned to the Table Creek Volcanics and Mount Norma Quartzite members of the Soldiers Gap Group.

At Eloise, this sequence comprises north-south striking arenitic meta-sediments and ortho-amphibolite's located on the sub-vertical eastern limb of the Middle Creek Anticline, coincident with a regional northerly trending shear zone, the "Levuka Shear". The deposit is located under 60 metres of Mesozoic sediment cover of the Eromanga Basin.

Mineralisation is hosted within a strongly foliated meta-sedimentary sequence comprising arenites and schists (see Figure 7). The metasediment sequence also contains a coarse-grained amphibolite body possibly representing an early intrusion of gabbroic composition. Mineralised zones occur as steeply plunging lenticular bodies with strike lengths between 200m and 250m and attaining a maximum width of 40m. The main zone of mineralisation (Levuka-Eloise Deeps) demonstrates continuity down plunge over 1,500m and remains open at depth.

Post-mineralisation faulting has severely dislocated the orebodies, resulting in a complex arrangement of fault bounded ore blocks. These faults display considerable variability in regard to strike, dip and amount and direction of movement.

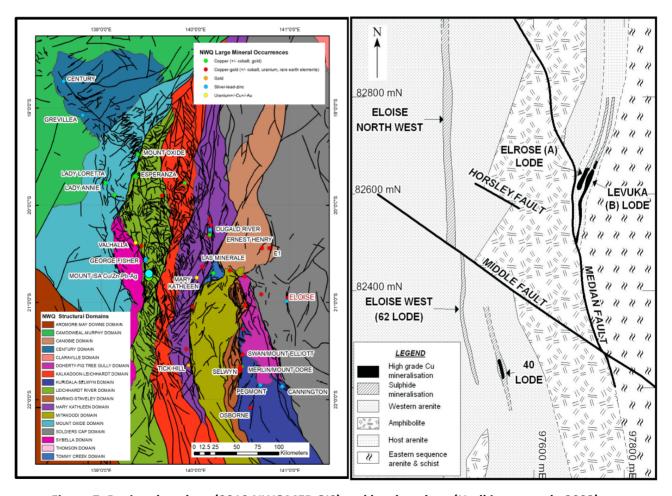


Figure 7. Regional geology (2010 NWQMEP GIS) and local geology (Hodkinson et.al., 2003).

Mineralisation at Eloise occurs within two main mineralised corridors (west and east). The main control to the mineral system is structural, and mineralisation occurs as a series of en echelon sub vertical lodes. The known structural framework has been defined from underground face and development mapping, visual observation and core logging. The interpretation is represented as series of continuous wireframed domains.

The interpretation of the mineralised boundaries is based predominantly using both the sulphide mineralogy (chalcopyrite/pyrrhotite) and a nominal 0.5% Cu cut-off grade. Some intercepts below 0.5% Cu have been included for continuity purposes.

Up to five separate lodes or zones are interpreted within each resource area. Post-mineralisation faulting has created a series of mineralised compartments, approximately 400m x 400m in size. The five ore zones are interpreted and continued into each fault block compartment.

The framework for the Eloise Mineral Resources is modelled in the local mine grid between 81,310mN to 83,095mN. The dip extent extends from 1,200mRL to -695mRL. The lenses have variable strike and dip continuity. The plan width of the lenses varies between approximately 2m and 40m.

Sampling and Sub-sampling

Samples used in the Mineral Resource Estimate were obtained through diamond drilling methods collected from campaigns completed since 1986. The sampling methodology has been consistent at the mine since recommencement of operations in 2011, and prior to 2011, the methodology is considered to meet industry standards.

Diamond drill core is transferred to core trays for logging and sampling, the core is metre marked in preparation for logging. Diamond drill sample intervals are generally of 1m lengths, with some occasional changes varying from 0.3m to 1.2m in length to honour geological zones of interest (lithology or grade) as identified by the mine geologist. Resource drilling is sampled predominantly from half core and some whole core samples. Sample intervals do not cross zones of core loss, which are infrequent.

Core is cut longitudinally using an Almonte core saw, with half-core sampled for analysis. Waste samples both before and after the mineralised intercept are also sampled half-core. Where a trend is obvious in the mineralisation the core is cut at an appropriate orientation to gain an unbiased sample. The remaining half-core is retained in the drill tray, with all drillholes remaining onsite for future reference.

Core samples are placed into calico bags. The sample sequence is routinely checked by core shed staff and supervising geologists to identify sampling issues. On completion of the validation checks, the samples are sent to the Principal Laboratory, ALS Global, Mount Isa, for sample preparation and analysis.

ALS Global, Mount Isa, on receipt of the samples again checks the sample sequence to ensure all samples have been received and then allocates a bar code number to each sample for tracking through the analytical process.

All primary samples are subjected to industry standard processes for particle size reduction and sub sampling. In the first sub sampling stage, the core samples are passed through a Boyd crusher and reduced to a nominal particle size of 70% of samples passing <4mm. The crushed sample is passed through a rotary splitter and a catch weight of approximately 1kg is collected. Between each half-core sample, the crusher and associated trays are cleaned with compressed air to minimise cross contamination. In the second sub sampling stage, approximately 1 kg of retained sample is then placed into a LM2 pulveriser, and the particle size is reduced to approximately 85% passing 75 μ m. In the final sampling stage, a 200g Master Pulp subsample is collected from this pulverised sample for ICP/AES analyses. Also a separate 60g subsample is collected and dispatched to ALS Global (Townsville) for the fire assay analysis for gold.

Sample Analysis Methods

The assaying and laboratory procedures used are consistent with industry good practice. The sample analyses are undertaken using a total digestion of a sub sample of the primary pulps.

From the 200g master pulp, approximately 0.5g of pulverised material is digested in aqua regia (ALS – GEO-AR01). The solution is diluted in 12.5mL of de-ionized water, mixed, and analysed by ICP-AES (ALS Global – ME-ICP41) for the following elements: Cu, As, Ag and Fe. Over range samples, in particular Cu >5% are reanalysed (ALS Global methods ASY-AR01 and ME-OG46) to account for the higher metal concentrations.

Gold analysis is undertaken at ALS Global (Townsville) laboratory where a 30 g fire assay charge is used with a lead flux in the furnace. The prill is totally digested by HCL and HNO3 acids before AAS determination for gold analysis (Au-AA25).

The Principal Laboratory, ALS Global (Mount Isa and Townsville) conduct their own QAQC protocol, including grind size, standards and duplicates, and all QAQC data is made available to the mine via the ALS Global Webtrieve website.

AIC Mines runs an independent QAQC program with the insertion of blanks, 1 in 20, and certified reference material (CRM) 1 in 20. Analysis of the QAQC shows there is no contamination and that assaying of CRMS's report within 3 standard deviations of the expected value.

Drilling Techniques

Drilling data used in the Mineral Resource Estimate were obtained through diamond drilling methods collected from multiple drilling campaigns completed since 1986. Historical surface drilling used a combination of HQ and NQ size diamond core and underground diamond drilling is undertaken with LM90 skid-based rig and mobile carrier rig with LM90 drill attachment. Drillhole core size collected since 2011 has been NQ2. Drillhole lengths vary between 40m and 500m with an average depth of 150m.

Drilling from 1986 through 1992 was completed by BHP-UTAH/BHP Minerals. MIM Exploration completed drilling in 1992 and Amalg Resources completed drilling from 1994 through 2002. Breakaway Resources completed drilling in 2003 and Barminco/FMR Investments Pty Ltd (FMR) completed drilling from 2004 through October 2021. AIC Mines have completed all drilling since November 2021. The geological database contains a total of 1,240 DDH holes for 183,075m.

Estimation Methodology

All geological modelling, statistical analysis and grade estimation was completed using the SupervisorTM and Surpac software packages. The raw assay data was flagged inside each ore wireframe and then composited to one metre intervals. The composites were used for the classical statistical analysis, variography analysis and ordinary kriged estimation. Inputs for the estimation including nugget, sill, ranges, direction and anisotropy were determined using the SupervisorTM software package.

No top cutting was applied to the copper composites, however cuts were applied to the gold and silver assays to limit the effect of outliers to the estimate . A summary of the top cutting strategy is listed below.

Model	Domain / Lens	Cu %	Au ppm	Ag ppm	Fe %
Elrose Levuka North	Ore – 1 to 3	Nil	Nil	Nil	Nil
	Waste	Nil	9	Nil	Nil
Elrose Levuka South	Ore – 1 to 6	Nil	10.3	Nil	Nil
	Waste	6	2.6	18	Nil
Elrose Levuka North	Ore – 1 to 3	Nil	9	Nil	Nil
	Waste	6.5	2.5	20	Nil
Macy	Ore – 1 to 6	Nil	6	Nil	Nil
	Waste	3	6.5	Nil	Nil

Grade estimation for Cu, Au and Ag and Fe was interpolated using ordinary kriging and the dynamic anisotropy module in Surpac. The dynamic anisotropy method aligned the strike and dip of the grade

interpolation parallel to the orientation of the ore wireframe. A total of 15 separate ore wireframe domains were estimated using a hard boundary methodology. This ensured only composite grades within each wireframe were estimated into the block model ore zones. Outside of the ore lenses, a background waste estimation was undertaken.

A three pass search strategy was used for the grade estimation. The search radii was based on the variography. The range of the search ellipse was 300m in the down plunge orientation and 100m along strike. The first pass used a minimum of 12 samples and maximum of 32 samples. The second pass used the same range and a minimum of 6 samples, while the third pass used a minimum of 3 samples. The major axis of the search ellipse was oriented with a plunge of 60° south.

A 5mE x 10mN x 5mRL parent block size was used with sub-celling to 1.25m for E,N and RL. The sub block size was selected to provide sufficient wireframe to block fill resolution. All sub cells were assigned the grade of the parent block.

The drillhole data spacing is variable but approximates 25m to 50m along strike (north-south) by 25m to 50m down-dip. The block size represents approximately half of the drill spacing in the more densely drilled areas of the deposit.

For density, a relatively strong relationship between Fe and Fe + Cu and density was observed. Based on this analysis, it was decided that the most optimal manner to assign density to the block model was to apply a regression formula whereby density is calculated based on interpolated Fe and Cu grades. The regression was based on 2,878 water immersion records with associated Cu and Fe data. Density was calculated using the formula below, established from historical density measurements.

• Density=0.0265*(Cu%+Fe%) +2.6401 with a 3.3t/m³ top cut

No assumptions have been made regarding recovery of by-products. Fe and As were estimated however are not considered to represent issues for the mine given the long history of producing a saleable concentrate.

No assumptions were made regarding selective mining units.

Validation of the estimation included i) visualisation of the MRE grade distribution against the underground geology backs and wall mapping. This review confirmed the MRE grade estimate reflected the underground geological mapping ii) drillhole and the block model grades for each domain were analysed using swath plots throughout the deposit, the review confirmed the block model reflected the drillhole grades both globally and locally and iii) spatial and quantitative comparison of the 31 Dec 2022 against the 30 June 2022 MRE. No bias or material changes were identified.

Reconciliation is undertaken to measure the performance of the mined portion of the Resource model relative to the reconciled Mill production.

Resource Classification

The Mineral Resources were evaluated using economic and minimum mining block sizes located outside of either the historical mine workings or geotechnical pillar areas.

Consideration was given to data quality, variography ranges, drill spacing, interpolation pass number and estimation quality and estimation quality (slope of regression). A proxy code for the quality of the estimation was calculated and visualised.

To enable a more realistic spatial representation of geological confidence, the competent person then undertook a four step process including i) reviewing the estimation quality proxy code in plan and digitising polygon boundaries to define contiguous zones of geological confidence. The polygons were wireframed and recoded back into the res_cat attribute in the block model. ii) Deswick stope optimiser software was used to optimise the res_cat and grade attributes to evaluate blocks that achieved the criteria for reasonable prospect for eventual economic extraction (RPEEE) iii) outlier and lower confidence blocks were manually deleted from the optimised inventory iv) the final optimised block inventory was used to

recode the reported Indicated and Inferred boundaries into the block model CLASS field. All blocks outside the optimised boundaries were reclassified as Mineral Inventory.

Indicated generally had a drill spacing of at least 25m and the Inferred drill spacing was from 25 to 50m. The Indicated and Inferred tonnes and grade were also reported undiluted, that is, without any external edge dilution.

Cut-off Grade

Cut-off grades are based on the Life of Mine operating costs for mining, processing and G&A using a copper price of A\$10,500/t. Copper represents roughly 90% of the value of the concentrate produced at Eloise.

The MRE is reported above a 1.1% Cu cut-off grade in the Upper Zone (above the 0mRL) and above a 1.4% Cu cut-off grade in the Lower Zone (below 0mRL, 1,190mBSL).

Mining and Metallurgical methods, parameters and other modifying factors considered to date

The Mineral Resources were evaluated and optimised to determine if they met the minimum cut-off and mining thresholds. Any blocks that did not meet the minimum threshold criteria were subsequently reclassified as Mineral Inventory.

The Indicated and Inferred Mineral Resource are reported excluding any mining modifying factors, hence the MRE is undiluted.

Metallurgical and operational test work has confirmed Eloise contains and produces a high-quality concentrate with very low contaminants. Hence no areas have been excluded from the Mineral Resources Estimate based on metallurgy.

Eloise Mineral Resources as at 31 December 2022

Resource Category	Tonnes (t)	Cu Grade (%)	Au Grade (g/t)	Ag Grade (g/t)	Contained Copper (t)	Contained Gold (oz)	Contained Silver (oz)
Measured	-	-	-	-	-	-	-
Indicated	3,987,000	2.3	0.6	11.0	93,500	81,100	1,249,900
Inferred	1,717,000	2.5	0.7	10.1	43,700	37,700	556,300
Total	5,704,000	2.4	0.6	9.8	137,200	118,800	1,806,200

The Mineral Resources Estimate is inclusive of Ore Reserves. There is no certainty that Mineral Resources not included in Ore Reserves will be converted to Ore Reserves. The Mineral Resources Estimate is reported using a 1.1% Cu cut-off above OmRL (1,190mBSL) and 1.4% Cu below OmRL. Tonnages have been rounded to the nearest 1,000 tonnes.

Eloise Ore Reserves

Material Assumptions for Ore Reserves

To comply with the JORC (2012) Code , only the Indicated Mineral Resources were considered for reporting as Probable Ore Reserve. The Ore Reserve has been assessed using a design, schedule and financial evaluation following the application of mining and processing modifying factors. The Ore Reserves estimation analysis addresses the key technical and economic parameters to an appropriate level of confidence to meet the production requirements of the mine.

The Ore Reserve is based on several assumptions including:

- Current minimum mining widths.
- Geotechnical similarities to current mining areas.
- Historical costs base for estimation of operating and capital costs.
- Historical metallurgical performance.

The breakeven cut-off grade was calculated using a copper price of A\$10,500/t as follows:

- Longhole open stopes in the Upper Zone (above 0mRL) at 1.4% Cu and Lower Zone (below 0mRL) at 1.6% Cu.
- Sublevel cave in the Lower Zone at 1.6% Cu.

The following material assumptions were used to estimate the longhole open stope Ore Reserves:

- Only Indicated Resources that were located within an optimised stope shape above the breakeven cut-off grade were evaluated.
- Panel strike length of 5m long and level spacing of 25m.
- Minimum width of 3m.
- External dilution skin of 0.50m either side of the stope shape.
- Mining recovery of 90% was applied.
- All blocks were the fully costed within a mine design including declines, access and ore drives and vertical rises on 25m level spacings to determine if they met the economic threshold.
- Metallurgical recovery is a function of feed grade, and historically reports at ≥ 95% Cu, 50% Au and 83.5% Ag.

The following material assumptions were used to estimate the sublevel cave Ore Reserves:

- Only Indicated Resources located within the sublevel cave optimisation boundary were evaluated.
- Panel strike length of 5m long and level spacing of 25m.
- Minimum and maximum panel mining width of 5m and 35m.
- No external dilution was applied, however as part of the cave draw process, internal dilution of 20% at 1.5% Cu was applied.
- Mining recovery of 80% was applied.
- All blocks within the sublevel cave boundary were fully costed against a mine design on 25m level spacings to determine if they met the economic threshold.

Previous mine performance has demonstrated the current mining methods are technically achievable and economically viable. The modifying factors are based on historical data utilising the same mining method.

Eloise Ore Reserves as at 31 December 2022

Reserve Category	Tonnes (t)	Cu Grade (%)	Au Grade (g/t)	Ag Grade (g/t)	Contained Copper (t)	Contained Gold (oz)	Contained Silver (oz)
Proved	5,000	1.5	0.5	7.7	100	100	1,300
Probable	2,193,000	2.4	0.6	8.8	52,500	43,000	619,400
Total	2.198.000	2.4	0.6	8.8	52.600	43.100	620.700

The Ore Reserves Estimate for LHOS is reported using a 1.4% Cu cut-off (above 0mRL) and 1.6% Cu (below 0mRL) and for the SLC is reported using a 1.6% Cu cut-off. Tonnages have been rounded to the nearest 1,000 tonnes.

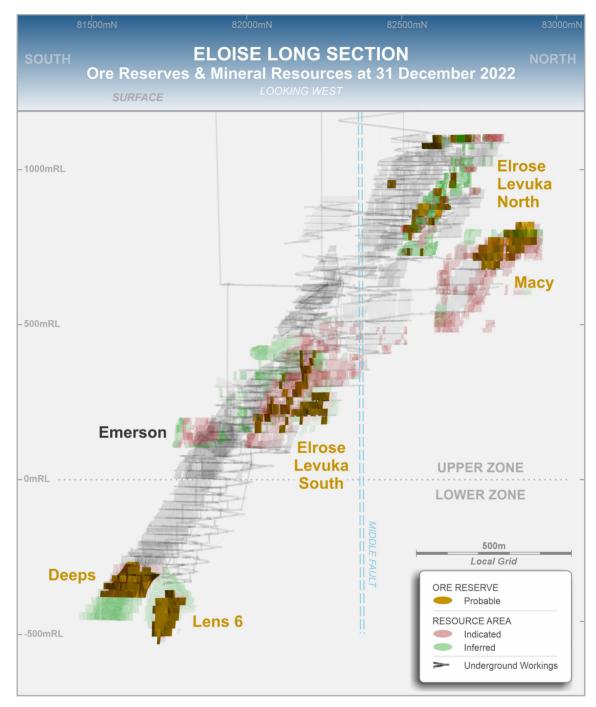


Figure 8. Long section (looking west) showing Ore Reserves and Mineral Resources limits

Ore Reserve Classification

Indicated Mineral Resources that are within the mine design and are above the breakeven cut-off grade, have been converted to Probable Ore Reserves. Proven Reserves is used for all surface Run of Mine (ROM) stockpile ore. The Competent Person considers this classification to be appropriate.

Mining Method

Eloise is mined by both contractor (development) and AIC Mines (stoping). All underground development is undertaken by Pybar mining contractors utilising two jumbos and all production drilling and stoping activities are completed by AIC Mines. Ore is hauled up a 1:7 decline from a current maximum depth of 1,535m below surface level.

Ore is extracted using longhole open stoping (LHOS) and sublevel caving (SLC) techniques. In the Upper Zone (surface to the 0mRL, 1,190m below surface level) ore is mined using LHOS and in the Lower Zone (below 0mRL) ore is mined predominantly using SLC with LHOS located adjacent to the SLC.

Ground conditions are good in the upper levels (<650mBSL), however seismic activity occurs in the Deeps (>0mRL). The stress fracturing and strain bursting is managed by increased ground support and limiting the vertical advance rate to 25 vertical metres (one level of the SLC) per year. Ambient rock temperatures can exceed 55 degrees Celsius below 1,000m in depth and a bulk air cooling system is utilised to maintain operating temperatures within acceptable limits. The vent system is sufficient to support and sustain mining to a depth of 2,000m at a production rate of approximately 60,000t/month.

Processing Method

Eloise operates a conventional flotation circuit to produce a high-grade copper concentrate with gold and silver credits.

The mill can sustain a rate up to 725,000 dry metric tonnes per annum. The plant operates a three-stage crushing facility capable of producing a -12 mm product at 120 tonnes per hour. This is comprised of a primary jaw crusher and two-stage cone crushing in closed circuit with a screening plant. Comminution is via a two-stage grinding circuit achieving a P80 particle size of $125\mu m$.

The flotation circuit comprises rougher and scavenger flotation cells and a bank of cleaner and recleaner cells. Concentrate thickening and American disc filtering produces cake with moisture content of about 13%. The concentrate is sun dried to about 8–9% moisture content ready for transport and shipment.

The final product is a concentrate comprising approximately 27% Cu, 4.4 g/t Au and 100 g/t Ag. Eloise has a long history of producing and selling concentrate with no material issues from deleterious elements.

Cut-off Grade

The break-even cut-off grade calculation included all operating and mining capital costs to cover the mining of declines, accesses, vertical development and ventilation within the mine design. Inputs included operating and capital costs, mill recoveries, transport costs, smelting - refining costs, royalty payments and commodity prices. The cut-off grade calculations also considered the depth of the Ore Reserves below the surface.

Using a copper price of A\$10,500/t, the breakeven cut-off grade calculated for the LHOS in the Upper Zone was 1.4% Cu and Lower Zone was 1.6% Cu. For the SLC the break-even cut-off grade was calculated at 1.6% Cu.

Estimation Methodology

Ore Reserve estimation involves the steps of optimisation, mine design, development and production scheduling and financial modelling. All Indicated Resources were evaluated using a stope optimisation. Mineable stope shapes have been created and mining dilution and recovery factors have been applied. All operating and capital costs have estimated and applied in the financial model. The Ore Reserves return a positive NPV and is most sensitive to copper price, grade and metallurgical recovery.

Material Modifying Factors

The modifying factors are based on existing practice and analysis of performance. Ore boundaries have been defined to reflect the grades and tonnage of smallest mining units within the Resource model at values above the cut-off grade. The mine design has been generated and scheduled to an appropriate level of confidence.

Mining dilution for the longhole stopes in the Upper and Lower Zones was applied using a 0.5m external dilution skin. For the sublevel cave no external dilution was applied, however as part of the cave draw process, internal dilution of 20% at 1.5% Cu was applied.

Mining Recovery Factors for the longhole stopes was applied at 90% and for the sublevel cave at 80%. The Mining Modifying factors are based on reconciliation performance.

The metallurgical recovery is a function of feed grade, and historically reports at \geq 95%. Eloise has a long history of producing and selling concentrate with no material issues from deleterious elements.

The modifying factors applied are those that have been in use and assessed at Eloise. Ongoing reconciliation has demonstrated that they are appropriate and are in line with the relative accuracy expected at a feasibility study level or better. Confidence in the mine design and schedule are high as mining rates and modifying factors are based on actual site performance. Mine design is consistent with industry practice and is effective at the operation. The approach applied has been deemed appropriate by the Competent Person.

Infrastructure

Eloise is a long-established operation with appropriate infrastructure in place. This includes workshops, offices, warehouses, fuel storage, road access for transport, the processing plant, diesel power generation, surface water management, underground mining infrastructure, ROM stockpiles, and waste dumps.

Environmental Approvals and Permitting

The Eloise project operates under an established permitting framework and has developed a range of management plans and related instruments to support compliance with regulatory requirements. All necessary regulatory approvals, licenses and agreements for the current operation are in place.

Operating Costs

Operating costs include mining, geology, administration, processing, transport, marketing, insurance and refining costs and Queensland State mineral royalties. These have been validated against the actual costs for the last 2 years.

Capital Costs

The mine design, schedule and financial evaluation includes the cost for the mining of declines, accesses, vertical development and ventilation for the life of mine.

Appendix 2. JORC Code 2012 Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling	Samples used in this Mineral Resource estimate were obtained through diamond drilling methods.
techniques	• The sampling methodology described below has been consistent at the mine since 2011, the methodology is considered to comply with industry standard.
	Diamond drill core is transferred to core trays for logging and sampling, the core is metre marked in preparation for logging.
	• Diamond drill sample intervals are generally of 1 m lengths, with some occasional changes varying from 0.3 m to 1.2 m in length to honour geological zones of interest (lithology or grade) as identified by the mine geologist.
	Resource drilling is sampled predominantly from half core and some whole core samples.
	• Core is cut longitudinally using an Almonte core saw, with half-core sampled for analysis. Waste samples both before and after the mineralised intercept are also sampled half-core. Where a trend is obvious in the mineralisation the core is cut at an appropriate orientation to gain an unbiased sample.
	The remaining half-core is retained in the drill tray, with all drillholes remaining onsite for future reference.
	• Core samples placed in calico bags. The sample sequence is routinely checked by core shed staff and supervising geologists to identify sampling issues and sent to a commercial laboratory, ALS Global, Mount Isa, for analysis.
	• ALS Global, Mount Isa, on receipt of the samples again checks the sample sequence to ensure all samples have been received and then allocate a bar code number to each sample for tracking through the analytical process.
	• Drill core samples (at a nominal interval of 1 m) are analysed for copper, silver, arsenic, and iron using aqua regia digestion followed by determination by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Additional elements have occasionally been analysed including bismuth, cadmium, cobalt, mercury, nickel, lead, antimony, titanium, zinc, calcium, and manganese.
	All copper analysis throughout the project's history has been completed at the ALS Global Mt Isa Laboratory.
	Gold is determined by 30-gram fire assay with determination by atomic absorption spectroscopy (AAS) methods. All work has been completed at ALS Global, Townsville laboratory or other ALS Laboratories.
Drilling techniques	Underground diamond drilling was undertaken using a skid mounted LM90 drill rig, operated by Deepcore Australia Pty Ltd. Surface drilling has been conducted using a DE810 truck mounted diamond drill rig. Drillhole size is currently NQ2 for both rigs
	The geological database contains a total of 1,344 DDH holes for 199,941m.
Drill sample recovery	• Drill core is pieced together, and the length of drill core is measured and compared with the theoretical interval from the depths written on the core blocks. Recovery is then recorded as a percentage calculated from measured core versus drilled interval.
	• The host rocks and mineralised intervals are generally very competent, with core recovery very high, in excess of 95%. Some core loss occurs when drillholes pass through post-mineralisation faults. Any zones of identified core loss are noted and excluded from recorded sampling intervals.
	• No specific study has been conducted to determine a relationship between sample recovery and grade, however as core recoveries are generally very high, the potential for bias is considered low.

Criteria	Commentary
Logging	 All diamond drill core is geologically/geotechnically logged on site. Qualitative measures include lithology, sulphide habit, alteration, colour, grainsize, structure type, and mineral form. Quantitative measures include strength of alteration, structural intensity, and visually estimated sulphide content. All core is photographed (wet and dry). Logging is generally qualitative in nature. All stored drill core has been photographed wet and dry. All diamond core has been geologically logged, therefore 100% of the relevant intersections have been logged.
Sub-sampling techniques and sample preparation	 Core is longitudinally cut in half with an Almonte core saw. NQ2 sized diamond core is considered a representative sample of the in-situ material. Sampling intervals are selected by an AIC geologist and a drillhole sampling sheet is completed. Sample intervals do not cross zones of core loss, which are infrequent. Samples are usually 1 m in length and are only occasionally sampled to geological contacts. Core (which weigh approximately 3–5 kg) and full core samples are placed in calico bags which are then inserted into polyweave sacks which are labelled with the laboratory name, sample numbers and the number of the polyweave sack in the sequence. Polyweave sacks are then transported to the laboratory. All samples are subjected to the same industry standard sample preparation regime: Half-core samples are passed through a Boyd crusher with nominal 70% of samples passing <4 mm. Between each half-core sample, the crusher and associated trays are cleaned with compressed air to minimise cross contamination. The crushed sample is then passed through a rotary splitter and a catch weight of approximately 1 kg is retained. Between crushed samples the splitter is cleaned with compressed air to minimise cross contamination. Approximately 1 kg of retained sample is then placed into a LM2 pulveriser, where approximately 85% of the sample passes 75 um. An approximate 200 g Master Pulp subsample is taken from this pulverised sample for ICP/AES analyses, with a 60 g subsample also taken and dispatched to ALS Global (Townsville) for the FA analysis for gold (Au-AA25). All pulps are inserted in a box along with one blank, one standard and two random duplicate samples. Quality control (QC) results are checked by ALS Global prior to release to AIC. Sample sizes are considered appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The assaying and laboratory procedures used are consistent with industry good practice. From the 200g master pulp, approximately 0.5 g of pulverised material is digested in aqua regia (ALS – GEO-AR01). The solution is diluted in 12.5 mL of de-ionized water, mixed, and analysed by ICP-AES (ALS Global – ME-ICP41) for the following elements: Cu, As, Ag and Fe. Over range samples, in particular Cu >5% are reanalysed (ALS Global methods ASY-AR01 and ME-OG46) to account for the higher metal concentrations. Gold analysis is undertaken at ALS Global (Townsville) laboratory where a 30 g fire assay charge is used with a lead flux in the furnace. The prill is totally digested by HCL and HNO3 acids before AAS determination for gold analysis (Au-AA25). Sample analyses are based upon a total digestion of the pulps. ALS Global (Mount Isa and Townsville) conduct their own QAQC protocol, including grind size, standards, and duplicates, and all QAQC data is made available to the mine via the ALS Global Webtrieve website. Pulps are maintained by ALS Global laboratory in Mount Isa for 90 days to give adequate time for re-analysis and are then disposed. AIC Mines runs an independent QAQC program with the insertion of blanks, 1 in 20, and certified reference material (CRM) 1 in 20. Analysis of the QAQC shows there is no contamination and that assaying of CRMS's report within 3 standard deviations of the expected value Inspection of the principal laboratory (ALS Global in Mount Isa) has been conducted by AIC Mines geologists and external consultants.

Criteria	Commentary
Verification of sampling and assaying	 All mineralisation intersections, both significant and anomalous are verified by the Geologists during the drillhole validation process. All data are stored and validated within the site Microsoft Access database. Records of primary location, downhole deviation, logging, and sample results are filed for each hole and retained onsite, historically in hard copy and more recently in electronic copy only. Assay results are received in csv format and loaded into the database by the mine/supervising geologist who then checks the results have been entered correctly. The database was subjected to manual validation of drillholes relevant to the drilling results focusing primarily on the assay data, collar location and downhole surveying. The Competent Person and AIC Mines geologists verify the significant intersections during monthly and resource reporting. No twinning has been completed. Templates have been set up to facilitate geological logging. The templates provide some validation of imputed data. Prior to the import into the central database, logging data is validated for conformity and overall systematic compliance by the geologist. No adjustments were made to the analytical data other than replacing below detection results with a value equal to half the detection limit or 0.001% Cu.
Location of data points	 Drill hole collars have been marked out using a high precision theodolite and the underground drill rig aligned using the Azi Aligner north seeking Gyro technology. Downhole surveys are conducted using a Reflex Sprint IQ multishot gyro survey tool with a shot every 3m Current process is for survey markup of the collar position if required, setup using the Reflex TN-14 North seeking gyro, and downhole survey with the Reflex Sprint IQ Gyro. The survey department survey the hole collar, azimuth and dip while the rig is on the hole. All data generated is based on a Mine Grid. The formula to transform data points from Mine Grid to GDA94, Zone 54 is as follows: GDA94 Northing = (7602501.6964366 + Mine Grid North x 0.999291659136294) - (Mine Grid East x 0.0235759042250658), GDA94 Easting = (398281.423635065 + Mine Grid North x 0.0235759042250658) + (Mine Grid East x 0.999291659136294),
Data spacing and distribution	 The drill spacing varies along strike and down dip. The drillhole density is denser than 25m by 25m in some areas, extending out to 50–75m by 50–100 m in less drilled areas. The Competent Person believes the mineralised lens have sufficient geological and grade continuity from the current drill pattern. Sample compositing was applied prior to geostatistical analysis and grade interpolation.
Orientation of data in relation to geological structure	 The UG drill program aims to intersect the mineralisation perpendicular to the strike of the orebody. The Competent Person considers that the orientation of the sampling is unlikely to have caused biased sampling. No bias based on hole orientation is known to exist.
Sample security	 Chain of custody is managed by AIC Mines and the principal laboratory ALS Mt Isa. Core is delivered daily by the drillers to the core yard, where it is laid on racks for logging and sampling. All core is photographed when marked up for a permanent record. On completion of logging, samples are tied and bagged for transport to Mount Isa by commercial courier.

Criteria	Commentary
	 Pulps are stored at the ALS Global laboratory in Mount Isa for a period of 90 days before being discarded. Assay results are currently received from the laboratory in digital format. Once data is finalised, it is transferred to a Microsoft Access database. There are no security measures in place to protect the database from malicious or accidental edits of data except for routine backup.
Audits or reviews	• AIC Mines has completed reviews of the Principal Laboratory, ALS Mount Isa, and reviewed all drill core handling, logging, and sampling processes. All laboratory equipment was well-maintained and the laboratory was clean with a high standard of housekeeping. ALS regular monitor the sample preparation and analytical processes.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 Eloise is located on contiguous mining leases and includes ML90064, ML90080, ML90086 and ML90155. All mining leases are current and in good standing. Mining leases are expected to be renewed on expiry without modification.
Exploration done by other parties	 The deposit was discovered by BHP in 1988 targeting magnetic highs identified from aeromagnetic surveys. The deposit was evaluated between 1992 and 1998. In 1993, MIM evaluated the deposit through drilling and structural interpretation of core under an option agreement. Amalg Resources NL (Amalg) purchased the deposit in 1994 and commenced decline development in 1995, first ore was mined in April 1996. The mine was acquired by Barminco Investments in January 2004 with subsequent name change to FMR Investments Pty Ltd (FMR) in 2011. AIC Mines' wholly owned subsidiary AIC Copper Pty Ltd acquired the mine from FMR effective 1 November 2021. Various academic studies have contributed to the knowledge and understanding of the deposit, including: Baker, T., 1996; The Geology and genesis of the Eloise Cu-Au deposit, Cloncurry District, NW Queensland. Unpublished PhD Thesis James Cook University. Fellows, J.C., 2001; Metamorphism and metasomatism at the Eloise Cu-Au deposit, Cloncurry District: Metamorphic history and a Metasomatic Origin for Biotite Schists. Unpublished MSc Thesis James Cook University.
Geology	 The deposit lies within Early-Middle Proterozoic rocks of the Cloncurry-Selwyn zone in the Eastern Fold Belt, of the Mount Isa Inlier. The lithologies have been tentatively assigned to the Table Creek Volcanics and Mount Norma Quartzite members of the Soldiers Gap Group. At Eloise, this sequence comprises north-south striking arenitic meta-sediments and ortho-amphibolite's located on the sub-vertical eastern limb of the Middle Creek Anticline, coincident with a regional northerly trending shear zone, the "Levuka Shear." The deposit is located under 60m of Mesozoic sediment cover of the Eromanga Basin. Mineralisation is hosted within a strongly foliated meta-sedimentary sequence comprising arenites and schists. The metasediment sequence also contains a coarse-grained amphibolite body possibly representing an early intrusion of gabbroic composition. Mineralised zones occur as steeply plunging lenticular bodies with strike lengths between 100m and 200m and attaining a maximum width of 25m. The main zone of mineralisation (Levuka-Eloise Deeps) demonstrates continuity down plunge over 1,500m and remains open at depth. Post-mineralisation faulting has severely dislocated the orebodies, resulting in a complex arrangement of fault bounded ore blocks. These faults

Criteria	Commentary
	display considerable variability in regard to strike, dip and amount and direction of movement.
Drill hole Information	Not applicable – exploration results are not being reported.
Data aggregation methods	Not applicable – exploration results are not being reported.
Relationship between mineralisation widths and intercept lengths	Not applicable – exploration results are not being reported.
Diagrams	See diagrams included in announcement.
Balanced reporting	Not applicable – exploration results are not being reported.
Other substantive exploration data	 2003 – Moving Loop Electromagnetic Survey (Inloop and Slingram configurations), three anomalous responses from CH30 in Slingram configuration were identified. 2016 – Moving Loop Electromagnetic Survey in conjunction with adjoining tenement holder, Sandfire Resources, using the German High Temp SQUID system, a twin peak in-loop anomalous response was observed coincident with Anomaly A identified in the 2003 Slingram data.
Further work	Further drilling will focus on infill and resource drilling in all resource areas at Eloise.

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	Commentary
Database integrity	 Core logging is completed by the site geologists at the site core yard using project-specific logging codes. Data is entered directly into a laptop. Data is then loaded directly into the site database. Assay results are currently received from the laboratory in digital format. Once data is finalised it is transferred to a Microsoft Access database. There are no security measures in place to protect the database from malicious or accidental edits of data except for routine backup. AIC Mines systematically checks the drillhole files for the following errors prior to Mineral Resource estimation: Absent collar data Multiple collar entries Questionable downhole survey results Absent survey data Overlapping intervals Negative sample lengths Sample intervals which extended beyond the hole depth defined in the collar table.
Site visits	 The Competent Person is full time employee of AIC Mines and is responsible for compiling this Mineral Resource estimate. The Competent person continuously reviews and monitors the following items, including: Procedures related to the Mineral Resources, Planning and supervision of all diamond drilling and sampling activities, Inspection and quality control of logging, photography, sampling, and sample submission of diamond core. Monitoring of laboratory sample preparation, assaying and internal QAQC activities, including audits of the principal laboratory at Mt Isa, Internal QAQC protocols including analysing the performance of CRM's, blanks, replicates and duplicates. Geological data collection, management, and sectional interpretation of the deposit. The principal assay laboratory at Mt Isa have been inspected. All equipment was found to be well maintained and the laboratory was found to be clean and well organised. Management had a sound understanding of sample preparation and analytical methods. The outcome of the visits concluded the drillhole planning, core logging, sampling, assaying, QAQC, data management are consistent with industry good practice. Furthermore, geological controls to the mineralisation were sufficiently understood to enable a Mineral Resource to be reported in accordance with the JORC Code.

Criteria	Commentary
Geological interpretation	 Geological interpretation was completed by the site Mine Geologists. After 25 years of diamond drilling and underground mining the continuity and grade characteristics of the mineralised system are well understood by the site Mine Geologists. Interpretation utilised all available data including diamond drilling, longhole sludge sampling, face photographs and ore development mapping. The main controls to the mineralisation are structural, occurring within two main north-south striking corridors. Post-mineralisation faulting has created a series mineralised compartments, approximately 400 x 400m in size. Based on visual observation and logging, and guided by the known structural framework, all ore bodies were interpreted as a series of up to six en echelon sub vertical lenses, that are represented by continuous wireframed domains. The interpretation of the mineralised boundaries is based predominantly using both the sulphide mineralogy (chalcopyrite/pyrrhotite) and a nominal 0.5% copper cut-off grade. Some intercepts below 0.5% Cu have been included for continuity purposes. No material assumptions have been made which effect the MRE reported herein. Alternative geological interpretations are not likely to materially impact on the MRE.
Dimensions	 The resource models cover the entire extent of the Eloise deposit, ranging from 81,310mN to 83,095mN, 97,155mE to 97,912mE and vertically from 1,200mRL to -695mRL (Local Mine Grid). The lenses have variable continuity along strike and dip, while down plunge continuity is up to 2km. Individual lenses have a plan width between approximately 2m and 10m. The width of the entire mineralised halo ranges from 20m to 40m.
Estimation and modelling techniques	 All geological modelling, statistical analysis and grade estimation were completed using the SupervisorTM and Surpac software packages. The raw assay data were flagged inside each ore wireframe and then composited to one metre intervals. No top cutting was applied to the copper composites, however cuts were applied to the gold and silver assays to limit the effect of outliers to the coefficient of variation (CoV). A summary of the top cutting strategy is listed below.
	Model Domain / Lens Cu % Au ppm Ag ppm Fe % Elrose Levuka North Ore - 1 to 3 Waste Nil
	 The Supervisor™ software package was used to undertake the classical statistical, variography analysis and estimation parameters. Within each resource area, all ore zone composites within the fault compartments, were analysed as a single domain. The variography identified two to three nested structures. Grade estimation for Cu, Au and Ag and Fe was interpolated using ordinary kriging and the dynamic anisotropy module in Surpac. The dynamic anisotropy method aligned the strike and dip of the grade interpolation parallel to the orientation of the ore wireframe. A total of 15 separate ore wireframe domains were estimated using a hard boundary methodology. This is to ensure only grades within each wireframe have been used to estimate the block inside the same wireframe. Outside of the ore lenses, a background waste estimation was undertaken. A three pass search strategy was used for the grade estimation. The search radii was based on the variography. The range of the search ellipse was

Criteria	Commentary
	300m in the down plunge orientation and 100m along strike. The first pass used a minimum of 12 samples and maximum of 32 samples. The second pass used the same range and a minimum of samples 6, while the third pass used a minimum of 3 samples. The search ellipse was oriented with a plunge of 60° south. A 5mE x 10mN x 5mRL parent block size was used with sub-celling to 1.25m for E,N and RL. The sub block size was selected to provide sufficient wireframe to block fill resolution. All sub cells were assigned the grade of the parent block. The drillhole data spacing is variable but approximates 25m to 50m along strike (north-south) by 25m to 50m down-dip. The block size represents approximately half of the drill spacing in the more densely drilled areas of the deposit. For density, a relatively strong relationship between Fe and Fe + Cu and density was observed. Based on this analysis, it was decided that the most optimal manner to assign density to the block model was to apply a regression formula whereby density is calculated based on interpolated Fe and Cu grades. The regression was based on 2,878 water immersion records with associated Cu and Fe data. Density was calculated using the formula below, established from historical density measurements. Density=0.0265*(Cu%+Fe%) +2.6401 with a 3.3t/m3 top cut No assumptions have been made regarding recovery of by-products. Fe and As were estimated however are not considered to represent issues for the mine given the long history of producing a saleable concentrate. No assumptions were made regarding selective mining units. Validation of the estimation included the: Visualisation of the estimation included the: Visualisation of the MRE grade distribution against the underground geology backs and wall mapping. This review confirmed the MRE grade estimate reflected the underground geological mapping. Drillhole and the block model grades for each domain were visually and quantitively analysed using swath plots throughout the deposit. The review confirmed the blo
	Resource Category Tonnes (t) Cu Grade % Au Grade (g/t) Ag Grade Contained Contained Copper (t) Gold (oz) Silver (oz)
	Measured
	Indicated 2,668,000 2.5 0.7 10.6 65,900 59,600 912,500
	Inferred 2,083,000 2.4 0.6 9.3 49,100 40,500 623,700
	Total 4,751,000 2.4 0.6 10.1 115,000 100,100 1,536,200
Moisture	Tonnages are estimated on a dry basis.
Cut-off parameters	 Cut-off grades applied within this estimate are based on the life of mine operating costs for mining, processing and G & A and a copper price of A\$10,500/t. Copper represents roughly 90% of the value of the concentrate produced at Eloise. The MRE is reported above a 1.1% Cu cut-off grade in the Upper Zone (above the 0mRL) and above a 1.4% Cu cut-off grade in the Lower Zone (below 0mRL, 1,190mBSL).

Criteria	Commentary
Mining factors or assumptions	 In selecting the reporting cut-off grades, consideration has been given to the mining method and Reasonable Prospects for Eventual Economic Extraction (RPEEE). All Mineral Resources were optimised, using Deswick DSO, to determine the reasonable prospect for eventual economic extraction. Blocks were required to meet minimum cut-off and mining block sizes (5m length, 25m high and 2 – 35m wide). Blocks that did not met the threshold were reclassified as Mineral Inventory. The Indicated and Inferred Mineral Resource are reported excluding any mining modifying factors, hence the MRE is undiluted. Metallurgical and operational test work has confirmed Eloise contains and produces a high-quality concentrate with very low contaminants. Hence no areas have been excluded from the Mineral Resources Estimate based on metallurgy. Some internal dilution exists within the interpreted mineralisation boundaries, but this material was not modelled. Further drilling is required to ascertain if these zones are continuous and can therefore be selectively removed during mining.
Metallurgical factors or assumptions	 Eloise operates a conventional flotation circuit to produce a high-grade copper concentrate with gold and silver credits. The mill can sustain a rate up to 725,000 dry metric tonnes per annum. The plant operates a three-stage crushing facility capable of producing a -12 mm product at 120 tonnes per hour. This is comprised of a primary jaw crusher and two-stage cone crushing in closed circuit with a screening plant. Comminution is via a two-stage grinding circuit achieving a P80 particle size of 150µm. The flotation circuit comprises rougher and scavenger flotation cells and a bank of cleaner and recleaner cells. Concentrate thickening and American disc filtering produces cake with moisture content of about 13%. The concentrate is sun dried to about 8–9% moisture content ready for transport and shipment. The final product is a concentrate comprising approximately 27% Cu, 4.4 g/t Au and 100 g/t Ag. The mine has a long history of producing and selling a concentrate by flotation methods with no material issues from deleterious elements. Metallurgical and operational test work has confirmed Eloise produces a high-quality concentrate with very low contaminants. Hence no areas have been excluded from the Mineral Resources Estimate.
Environmental factors or assumptions	The mine is currently in operation and operates with an environmental management plan to meet its operational licence conditions. The site is regularly visited by Queensland Department of Environment and Science officers who inspect the environmentally relevant activities and audit for compliance to the licence conditions.
Bulk density	 Since 2008, a regression analysis approach has been adopted to estimate density. This is based on the strong relationship observed between Fe, Cu and density. Density values are calculated using the formula: Density = 0.0265 x (Cu%+Fe%) +2.6401 Following the running of the density formula, all calculated values above 3.3 t/m³ were reset to 3.3 t/m³. The accuracy of the density estimates is calibrated each month during the mine to mill reconciliation analysis for ore mined and processed.
Classification	 The Mineral Resources were classified into Indicated and Inferred in accordance with the JORC 2012 guidelines and was based on attributes including data quality, variography ranges, drill spacing, interpolation pass number and estimation quality (slope of regression). A proxy code for the quality of the estimation was calculated and visualised. The resource classification was evaluated using economic and minimum mining block sizes located outside of either the historical mine workings or geotechnical pillar areas. To enable a more realistic spatial representation of geological confidence, the competent person then undertook a four step process including i) reviewing the estimation quality proxy code in plan and digitising polygon boundaries to define contiguous zones of geological confidence. The

Criteria	Commentary
	polygons were wireframed and recoded back into the res_cat attribute in the block model. ii) Deswick stope optimiser software was used to optimise the res_cat and grade attributes to evaluate blocks that achieved the criteria for reasonable prospect for eventual economic extraction (RPEEE) iii) outlier and lower confidence blocks were manually deleted from the optimised inventory iv) the final optimised block inventory was used to recode the final Indicated and Inferred boundaries into the block model CLASS field. All blocks outside the optimised boundaries were reclassified as Mineral Inventory. Indicated resource had a drill spacing of at least 25m and the Inferred drill spacing was from 25 to 50m. The Indicated and Inferred tonnes and grade were also reported undiluted, that is, without any external edge dilution. The MRE classification appropriately reflects the Competent Person's views of the deposit.
Audits or reviews	 A review of the data quality, classical statistics, variography, grade estimation and resource classification criteria was conducted by an external consultant during 2022. The current model has been subject to AIC's an internal peer review processes. The performance of the MRE is reviewed each month as part of the end-of-month (EOM) reconciliation reporting process. These reviews have verified the technical inputs, methodology, parameters, and results of the estimate. The relative accuracy and confidence of the Mineral Resources is based on the extents of the Indicated and Inferred Resource boundaries.
Discussion of relative accuracy/confidence	 The Competent Person considers the Mineral Resources classification to comply with the accuracy requirements in accordance with the JORC Code, 2012. The Mineral Resources Estimate relates to a global tonnage and grade estimate. Grade estimates have been made for each block in the model. The Indicated and Measured Mineral Resource excludes any mining modifying factors. The Mineral Resources Estimate have been effectively employed for mine design and mining and is reconciling within acceptable limits. Resource Category Tonnes (kt) (g/t) Grade (g/t) Grade (Gold (oz) Silver (oz) (Gold (oz) Silver (oz) (Gold (oz) (Go

Section 4 Estimation and Reporting of Ore Reserves

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	Comment
Mineral Resource estimate for conversion to Ore Reserves	 The parameters used for the Mineral Resources are described in Section 3 and only the Indicated Resource has been considered for conversion to Probable Ore Reserve. The Probable Ore Reserve was estimated by only evaluating the Indicated Resource and applying the mining modifying factors. The Mineral Resources are reported as inclusive of Ore Reserves Eloise Ore Reserves as at 31 December 2022
	Reserve Category Tonnes Cu Grade (%) Au Grade (g/t) Ag Grade (g/t) Contained Contained Gold (oz) Contained Silver (oz) Proved 5,000 1.5 0.5 7.7 100 100 1,300 Probable 2,193,000 2.4 0.6 8.8 52,500 43,000 619,400 Total 2,198,000 2.4 0.6 8.8 52,600 43,100 620,700
Site visits	The Competent Person for the Ore Reserves is the Senior Mining Engineer who is a qualified Mining Engineer and a full-time employee of AIC Copper Pty Ltd based at the Eloise Copper Mine.
Study status	 The Eloise Copper Mine has been in been in production since 1996. The modifying factors used in the conversion of Mineral Resources to Ore Reserves are based on current and historic operational experience and are in line with the relative accuracy expected at a feasibility study level or better. As part of the operational procedure a Life of Mine (LOM) study including design, schedule and evaluation was completed. This work was undertaken as part of the annual budget and LOM planning process. The type and level of study is suitable to convert the Mineral Resources to Ore Reserves. The Ore Reserve reported within the LOM plan includes Indicated Resource only. Inferred Resource have been excluded from the reported Ore Reserve. The parameters used to estimate modifying factors and the subsequent Ore Reserve are based on existing operations and actual performance. The Ore Reserves are contained within a mine design and are viable. A portion of the Ore Reserve is currently being mined and processed. Material Modifying Factors have been considered and used for the Ore Reserves Estimate. The Ore Reserve analysis addresses the key technical and economic parameters relating to the deposit to an appropriate level of confidence to meet the production requirements of the mine.
Cut-off parameters	 Copper only cut-off grades have been calculated and applied as economic cut-offs in the determination of the underground Ore Reserves. These are based on current and forecasted costs, revenues, mill recoveries, modifying factors and depth of Reserves below the surface. Cut-off grade assessments consider grade of copper only (i.e. does not consider gold or silver). The cut-off values for the: Longhole open stope (LHOS) in the upper zone is 1.4% Cu (Surface to the 0mRL) and lower zone is 1.6% Cu (below 0mRL) and Sublevel cave (SLC) is 1.6% Cu (below the 0mRL, deeper than 1,190m BSL).
Mining factors or assumptions	 Underground Ore Reserves have been estimated by generating detailed mining shapes for all areas that contain Indicated Mineral Resource as well as access development. Internal stope dilution has been designed into the mining shapes and interrogated. External stope dilution and mining recovery factors have been applied post geological block model interrogation to generate final mining diluted and recovered ore tonnage and grade.

Criteria	Comment
	 Eloise is an active mining operation and modifying factors are based on existing practice and analysis of performance. Stopes to be mined in the short term are assessed on an individual basis using all related local mining, geological and geotechnical experience to date. This includes data gathered from back-analysis of stopes mined to date in adjacent or similar areas. Reserve stope blocks employ geotechnical parameters derived from area mining experience and / or diamond drill core. A LOM design has been generated and scheduled to an appropriate level of confidence. Minimum mining width of 3 metres. Sublevel spacing ranging between 25m (single lift) to 50m (double lift). Mining dilution for the longhole stopes in the Upper and Lower Zones was applied using a 0.5m external dilution skin. For the sub level cave no external dilution was applied, however as part of the cave draw process, internal dilution of 20% at 1.5% Cu was applied. Mining Recovery Factors for the longhole stopes was applied at 90% and for the sublevel cave at 80%. The Mining Modifying factors are based on reconciliation performance. Eloise is an operating mine and the infrastructure to support the mining operations is in place. This includes workshops, offices, warehouses, fuel storage, road construction for transport and access, the processing plant, diesel power generation, surface water management, underground mining infrastructure, ROM stockpiles, and waste dumps.
Metallurgical factors or assumptions	 Eloise operates a conventional flotation circuit to produce a high-grade copper concentrate with gold and silver credits. The mill can sustain a rate of 725,000 dry metric tonnes per annum. The plant operates a three-stage crushing facility capable of producing a -12 mm product at 120 tonnes per hour. This is comprised of a primary jaw crusher and two-stage cone crushing in closed circuit with a screening plant. Comminution is via a two-stage grinding circuit achieving a P80 particle size of 150µm. The flotation circuit comprises rougher and scavenger flotation cells and a bank of cleaner and recleaner cells. Concentrate thickening and American disc filtering produces cake with moisture content of about 13%. The concentrate is sun dried to about 8–9% moisture content ready for transport and shipment. The metallurgical recovery is a function of feed grade, and historically reports at ≥ 95% Cu, 50% Au and 83.5% Ag. The final product is a concentrate comprising approximately 27% Cu, 4.4 g/t Au and 100 g/t Ag. The mine has a long history of producing and selling a concentrate with no material issues from deleterious elements.
Environmental	 The mine is currently in operation and operates with an environmental management plan to meet its operational licence conditions. The site is regularly visited by QLD DES officers who inspect the environmentally relevant activities (ERAs) and audit for compliance to the licence conditions.
Infrastructure	The mine is currently in operation and has all necessary infrastructure in place.
Costs	 Eloise is an operating mine and capital costs are generally limited to that required to sustain the operation. Costs are based on contract schedules of rates and life of mine forecasts. These are reconciled against historical averages. All costs are estimated in Australian dollars. Eloise produces a high-quality concentrate and does not attract any penalties for deleterious elements (see Market Assessment). Queensland government royalty of between 2.50% and 5.00% (depending on average metal prices) is payable on the gross value of the mineral after deducting certain permitted expenses. There are no applicable private royalties. Transportation costs are based on contract rates from site to Mt Isa. Copper concentrate treatment, refining charges and freight are based on offtake agreement contract rates with a third party commodity trading firm.

Criteria	Comment
Revenue factors	All metal prices and revenues are estimated in Australian dollars.
	Revenue is generated from the sale of concentrate under a life of mine offtake agreement with a third party commodity trading firm.
	The assumed copper price used in the Ore Reserves estimation is A\$10,500/t.
	Eloise produces a high-quality concentrate and does not attract any penalties for deleterious elements.
Market	The world market for copper concentrate is large compared to production from the mine. The copper concentrate is a clean product with low
assessment	impurities and demand for this product from copper smelters is expected to remain high.
	All copper concentrate is sold under a life of mine offtake agreement with a third party commodity trading firm.
	The Competent Person is satisfied that the market assessment is appropriate to support the Ore Reserves Estimate.
Economic	Eloise is an operating mine with a focus on operating cash margins.
	The mine plan generates positive annual free cash flow based on the long run commodity price assumptions.
	Project economics are most sensitive to metal price assumptions and grade assumptions.
Social	The mine is currently in operation and has all necessary licences.
Other	No material naturally occurring risks have been identified that could impact on the estimation or classification of the Ore Reserves.
	Eloise is currently compliant with all legal and regulatory requirements and valid marketing arrangements are in place.
Classification	• The Ore Reserves have been derived from a mine plan considering all mining, metallurgical, social, environmental and financial aspects of the project.
	The Probable Ore Reserve Estimate were derived from the conversion of Indicated Mineral Resource.
	• Classification of the Ore Reserves appropriately reflects the Competent Person's view of the deposit based on the application of the modifying factors and economic parameters.
Audits or reviews	The Ore Reserves were peer reviewed internally and were found to comply with accepted industry practice.
Discussion of	Ongoing mining experience, underground diamond drilling, Mineral Resource Estimation improvements, mining studies and a maturing operation
relative	have continued to combine to improve understanding of the geological and mining aspects of the underground.
accuracy/	The relative accuracy of the parameters used to estimate the Ore Reserves are deemed to be appropriate and meet industry standards as these have
confidence	been based on current and historical performance of the similar operations and correlated to the achieved parameters.