

Market Announcement

10 November 2023

Coolgardie Gold Operations – Bonnie Vale Ore Reserve Update

Highlights:

- Bonnie Vale Underground Ore Reserve ounces increase by 17% to 177,920oz.
- The current mine life is 4 years and demonstrates robust economics with all in production cost estimated at A\$1,374 per oz.
- The Bonnie Vale Resource remains open at depth and along strike with potential for growth with further drilling.
- Excellent Resource to Reserve conversion of 79%.
- A clear pathway to production is anticipated with mining targeted for commencement in the second half of 2024.

West Australian gold company Focus Minerals Limited (**ASX: FML**) (**Focus** or the **Company**) is pleased to announce results of the 2023 Ore Reserve update for the Bonnie Vale Underground project, a part of Coolgardie Gold Operations (**Coolgardie**). The Coolgardie project includes 121km² of highly prospective tenements on the outskirts of the Coolgardie township in Western Australia's Eastern Goldfields.

Commenting on the 2023 Ore Reserve for Bonnie Vale, Focus Minerals' Executive Chairman, Mr Wanghong Yang, said:

"This updated Ore Reserve demonstrates robust economics for the Bonnie Vale Underground Project, delivering low-cost ounces for our Coolgardie Gold Operations. The result reflects the good work of our team this year, in optimising the Resource Model with further drilling and delivering a high confidence mine plan for commencement of underground mining. Following final evaluation and project approvals, Focus hopes to bring the mine online in 2024 consistent with our current life of mine plan."

This 2023 Bonnie Vale Ore Reserve is derived from the updated Mineral Resource estimate published in September 2023 (refer to ASX announcement dated 26 September 2023), using a gold price of A\$2,500 per oz and a cut-off grade of 1.87 g/t for stope design:

PROJECT	PRO	VEN	PROBA	BLE	TOTAL Ore			
FROJECT	Tonnes	(g/t Au)	Tonnes	(g/t Au)	Totals	(g/t Au)	(oz.)	
Bonnie Vale Underground	-	-	932,000	5.94	932,000	5.94	177,920	

The 2023 Bonnie Vale Ore Reserve is shown below with comparison to the previous Ore Reserve as stated in the October 2022 Ore Reserve update (refer to ASX announcement dated 12 October 2022):

Bonnie Vale UG Ore Reserve	20)22 Upda	ite	2023 Update			
	Tonnes	g/t	Ounces	Tonnes	g/t	Ounces	
Probable	925,800	5.11	152,220	932,000	5.94	177,920	
Total	925,800	5.11	152,220	932,000	5.94	177,920	

The 2023 Ore Reserve update sees an increase in of 25,700oz on the previous 2022 result largely driven by a 16% increase in mined grade. This improvement in grade has resulted from increased drill density and a higher confidence Mineral Resource model.

Bonnie Vale Underground Resource

Extensive Reverse Circulation, Diamond, geotechnical and hydrogeological drilling at Bonnie Vale has been carried out since the Mineral Resource Update in 2020 (see ASX announcement dated 2 September 2020).

The decrease in drill spacing and oriented diamond core drill holes allowed development of the higher confidence in the 2023 Mineral Resource (see ASX announcement dated 26 September 2023) which was used for development of the Bonnie Vale 2023 Ore Reserve Update:

Classification	Tonnage (Kt)	Au Grade (g/t)	Au Oz
Indicated	879	8.01	226,300
Inferred	325	2.58	27,000
Total Underground Mineral Resource	1,204	6.54	253,300

Figure 1 below is a long section of the Bonnie Vale Resource looking South, showing the historical workings, the 2023 Ore Reserve mine development (Dark Blue). As indicated by the arrows, the mineralisation is open for potential resource growth with further drilling.

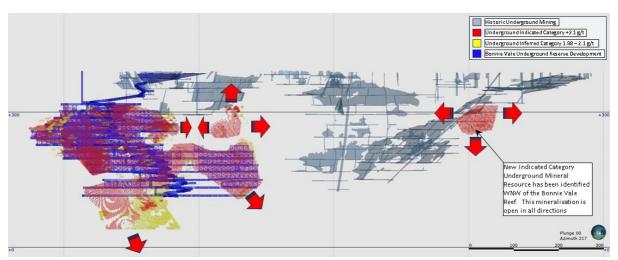


Figure 1: Bonnie Vale long Section Looking South - Indicated Mineral Resource Centroids as per insert legend.

Bonnie Vale UG Ore Reserve Estimation

The mining method planned to be utilised is mechanised jumbo development and longhole stoping with a combination of backfilled and open stopes. The planned backfill is a combination of cemented rockfill (CRF) and loose rockfill. The stoping sequence is planned to be a bottom-up mining sequence in blocks of three to four levels.

This mining method is being utilised successfully and efficiently in comparable and similar orebody size, configuration, and ground conditions in Western Australia and elsewhere.

The 2023 Ore Reserve for Bonnie Vale Underground was completed with the following key assumptions:

Key Assumptions	Unit	Value	Basis of Assumption
Mining (Production) Cost	\$/t (O +W)	133	Unit cost of total mined material based on current Contractor
			Mining Budget Rates and supplier quotations
Processing Cost	\$/t	31	Budget TMH Processing Costs
Ore Haulage Cost	\$/t	5.12	Current Ore Haulage Agreements
Gold Price	\$/oz	2,500	
Processing Recovery	%	95.8	Feasibility test work results after a 3% discount
Royalties	%	3.0	Current applicable rate
Fully Costed Stope COG	g/t	3.05	Covers all costs (CAPEX, OPEX and mine G&A)
Level Costed Stope COG	g/t	2.47	Covers all Ore development, OPEX and mine G&A)
Incremental Stope COG – Backfilled Stope	g/t	2.10	Excludes all development costs but covers for all other OPEX and mine G&A)
Incremental Stope COG – No Backfill	g/t	1.87	Requires no backfill, excludes all development costs but covers for all other OPEX and mine G&A)
Development Ore COG	g/t	0.50	Covers Surface Haulage and Processing costs only.
Stope Parameters			
Orebody dip	degrees	40 to 55	
Level Intervals Floor to Floor	m	15	
Ore Drive width	m	4	
Minimum Stope Mining Width	m	1.8	
Dilution Skin HW	m	0.5	ELOS from stope stability curve
Dilution Skin FW	m	0.5	ELOS from stope stability curve
Additional Unplanned Stope Dilution	%	10	
Overall Mining Recovery	%	93	
Mining Recovery for Backfilled Stopes	%	98	
Mining Recovery for Open Stopes	%	83	17% ore lost in pillars
Mining Recovery for Development Ore	%	100	

More details are provided in Table 1 sections below.

In summary the mining plan developed for the 2023 Underground Ore Reserve estimate sees:

- 4-year mine life, with potential for extension.
- 2.3Km of decline development to a depth of 260m below surface, a further 2.3km of other capital development.
- 5.0 km of ore drives mining 247K tonnes at 4.48g/t for 35,562oz and stoping of 685k Tonnes at 6.46g/t for 142,358oz.
- 932k tonnes of ore at a diluted grade of 5.94g/t for 170,000 mill recovered ounces.
- All in sustainable cost estimate of A\$1,374 per ounce.

The conversion of Mineral Resource to Ore Reserve is excellent as 79% of the Indicated Resource is in the mine production ounces, giving confidence in future Mineral Resource conversion.

Figure 2 below shows the development and stoping design of the Bonnie Vale UG Reserve. The economic risk is considered very low as the mine plan is underpinned by the fact that 93% of the Ore Reserve is above the fully costed cut-off grade. This demonstrates the robust economics of the Bonnie Vale UG project.

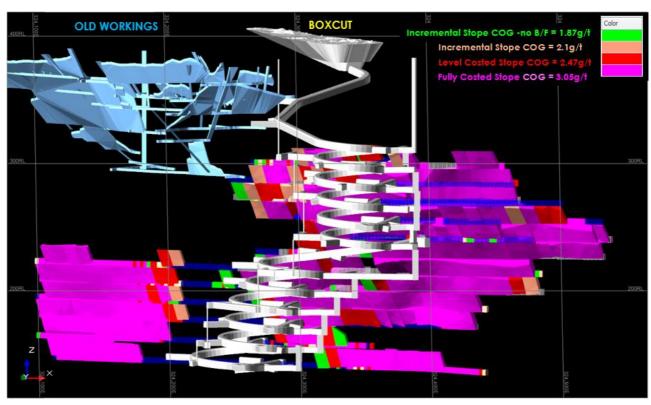


Figure 2: Long Section view from North of Current Mine Plan showing development and stoping design.

Following on from this 2023 Updated Ore Reserve and the development of the detailed mine and infrastructure plan for the Bonnievale Underground Project, Focus hopes to bring the mine online in 2024 consistent with our current life of mine plan.

The release of this ASX announcement was authorised by Mr Wanghong Yang, Executive Chairman of Focus Minerals Ltd.

For further information please contact:

Nicholas Ong

Company Secretary Focus Minerals Ltd. Phone: +61 8 9215 7888

Email: info@focusminerals.com.au

About Focus Minerals Limited (ASX: FML)

Focus Minerals is Western Australia's newest gold producer and focused on delivering shareholder value from its 100%-owned Coolgardie Gold Operation and Laverton Gold Project, in Western Australia's Goldfields.

Focus is committed to delivering shareholder value from the Coolgardie Gold Operation, a 121km² tenement holding that includes a 1.2Mtpa processing plant at Three Mile Hill, with commencement of mining activities in mid-2023. A new Life of Mine plan with 7-year production for 402,000oz of gold was announced to the ASX on 24 October 2022.

The Laverton Gold Project covers 384km² area of highly prospective ground that includes the historic Lancefield and Chatterbox Trend mines. Focus' priority target is to confirm sufficient gold mineralisation to support production restart at Laverton.

Competent Person Statement

Mineral Resources

The Mineral Resource estimates for Bonnie Vale Deposits were undertaken by Ms Hannah Kosovich, an employee of Focus Minerals. Ms Kosovich is a member of Australian Institute of Geoscientists and has sufficient experience to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Kosovich consent to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Ore Reserves

The information in this announcement that relates to the Bonnie Vale underground Ore Reserve estimate is based on an assessment completed by Mr Elias Mudzamba, a Competent Person who is a member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Mudzamba is a fulltime employee of Focus Minerals Pty Ltd. Mr Mudzamba has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Mudzamba consents to the inclusion in any report or public announcement of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 This report relates to results from Reverse Circulation (RC) drilling and diamond core drilling. The information of sampling techniques below applies to the drill holes drilled by Focus Minerals (FML) only. RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m or 4m composite samples basis, with sampling width geologically determined. Composite 4m samples were collected manually using spear sampling of green bags and 1m samples were generated off the rig mounted cyclone mounted cone splitter. Where the RC composite samples returned an assay value of 0.2g/t Au or greater, the 1m cone-split samples were then submitted for analysis. When visible gold was observed in RC chips, this sample was then flagged by the supervising geologist for the benefit of the laboratory. RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole using a bullseye level. At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. The samples were then prepared for fire assay. The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. Sample widths varied between a minimum of 0.2m and a maximum of 1.2m. The core was cut in half using an Almonte automatic core saw guided by the BOH core orientation line or in the absence of an orientation line the core was reassembled in the tray and a "cut-line" drawn down the axis of the core. Half-core samples submitted to Jinnings Kalgoorlie assay laboratories for fire assay analysis by a 50g fire assay with An ICP-OES or AAS Finish. Sampling of the vertical historic Bonnie Vale
Drilling techniques	FML drilling was completed using an RC face sampling hammer or NQ2/HQ size diamond core. Drill core was oriented by the drilling contractor using an Ezy-mark or electronic system were core conditions allowed. Most holes were surveyed upon completion of drilling using a north-seeking gyroscope. The holes were surveyed initially open-hole and in later programs within the rods. Otherwise, a single shot

Criteria	Commentary
	 Eastman camera downhole survey was used. The historic Bonnie Vale tails grade control RC drilling was completed using an Atlas Copco L8 rig using a 5 ¼ inch diameter Aircore drill bit to improve sample recovery. Matador used RC drilling methods and surveyed the hole using Electronic Multi-Shot (EMS) system. Other companies state using an RC rig. ARM used an RC pre-collar from surface to 78m, HQ core to 293m and then NQ diamond core to EOH at 450m.
Drill sample recovery	 FML Sample recovery was recorded by a visual estimate during the logging process. All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust. Study of sample recovery versus gold grade does not indicate a bias in the gold grade caused by any drop in sample recovery. Diamond core sample recovery was measured and calculated (core loss) during the logging process, generally there was excellent recovery. ARM state only 0.2m of core loss and a recovery of 99.95% from the 1 diamond hole.
Logging	 The information of logging techniques below applies to the drill holes drilled by FML only. All core samples were oriented, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database. All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. All diamond core was logged for structure, and geologically logged using the same system as that for RC. The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. Diamond core was photographed wet and dry one core tray at a time using a standardised photography jig. Samples from RC holes were archived in standard 20m plastic chip trays and in later programs photographed up to 4 chip trays per photo. The entire length of all holes is logged. Historical holes have been logged at 1m intervals to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present for RC samples.
Sub-sampling techniques and sample preparation	 The information of sub-sampling and sample preparation below applies to the drill holes drilled by FML only. Core samples were taken from half core, cut using an Almonte automatic core saw. The remainder of the core was retained in core trays tagged with a hole number and metre mark. RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag. Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table. Sample condition was recorded (wet, dry, or damp) at the time of sampling and recorded in the database. The samples were collected in a pre-numbered calico bag bearing a unique sample ID. Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight. Gold analysis was determined by a 30g to 50g fire assay with an ICP-OES or AAS Finish. The assay laboratories' sample preparation procedures follow industry best practice,

Criteria	Commentary
	with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. Prior to 2016 FML inserted 3 standards and took 5 duplicates for every 100 samples. Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples, excluding the 100th sample as this was a standard. Diamond core field duplicates were not taken. From 2016 - 2018 FML inserted 1 standard every 25th sample, while the 1 duplicate every 20th sample remained unchanged from previous years. From 2018 a standard is inserted every 20th sample and all batches delivered to the lab have at least three standards in them. RC field duplicate samples are taken from the second sample shoot on the cone splitter. Rather than individual field duplicates at a regular spacing, whole holes are duplicate sampled with a frequency rate not less than 1 in every 20 holes drilled. Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. Limited reporting of historic sample preparation exists in the WAMEX reports. Matador RC samples were drilled dry and cone or riffle split to achieve a 4-6kg sample weight. Certified standards were inserted every 20 samples. At the laboratory either a blank or a certified standards were inserted every 20 samples and a duplicate was taken every 10 samples.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used. The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances. Matador samples were submitted for analysis for gold by standard 30g fire assay with the finish by Atomic Absorption (AA) with a 0.01g/t detection limit. CGNL analysis methods and QA/QC checks are unknown. Magnet Minerals used duplicates for check assays.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Normally if old historic drilling was present, twinned holes are occasionally drilled to test the veracity of historic assay data; however, no twinned holes were drilled during this program. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations. Historic holes were validated against paper copies and WAMEX reports where possible.
Location of data points	 FML drill collars were surveyed after completion, using a DGPS instrument. All drill core was oriented by the drilling contractor using an Ezy-mark or electronic system. Most holes were surveyed upon completion of drilling using a north-seeking gyroscope and holes were surveyed either open-hole or within the rods. Otherwise, a single shot Eastman camera downhole survey was used. The shallow vertical tails holes were collar surveyed by DGPS but not down hole

Criteria	Commentary									
	 surveyed. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments. Matador has not stated the collar survey method, down-hole surveys used the Electronic Multi-Shot (EMS) system. ARM used an Eastman camera for down-hole surveys. 									
Data spacing and distribution	 Drill spacing across the Coolgardie prospects varied depending on the exploration stage that the drill target currently existed. Drilling varied from wide spaced exploration RC drilling to precisely placed diamond tails designed to test mineralisation at depth and along strike. Following drilling completed 2021 to 2023 the Drill spacing within the Bonnie Vale Mineral Resources comprises: 									
	Mineral Resource	Depth Range	DD hole Spacing	RC + DD Hole Spacing						
	Bonnie Vale Tails	Surface stockpile 2.5 to _5m thick	NA	10m x 10m						
	Bonnie Vale Open Pit indicated Mineral Resources	Surface to 70m (315mRL)	6 holes 80m spaced	20m × 30m						
	Bonnie Vale Open Pit infered Mineral Resources	Surface to 70m (315mRL)	NA	60m x 7 0m						
	Bonnie Vale Underground indicated Mineral Resources	Below 315mRL to 40mRL	40m x 60m in shoots to 50m x 70m in periphery	20m × 30m in shoots, generally 40m × 40m and 50m × 60m in periphery						
	Bonnie Vale Underground infered Mineral Resources Below 315mRL to -100mRL 60m x 70m Parts at 40m x 40 general 60 x									
Orientation of data in relation to geological structure	 Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation. Drill holes were generally oriented at right angles to strike of the main veins, with dip optimised for drill capabilities and the dip of the ore body. 									
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel. Historic sample security is not recorded. 									
Audits or reviews	part of a database a the QA/QC intervals	g techniques was carried ou amalgamation project. Their is to bring them into line with of standards and duplicate mbering sequence.	only recommendati the FML Laverton s	on was to change system, which uses						

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commenta	Commentary									
Mineral tenement and land tenure status	or its sub standing. • The Malin	stage no Coolgardie claims have progressed to determined status.									
Exploration done by other parties	(Westrali	 Bonnie Vale is the site of a number of historic workings including the "Varischetti Mine" (Westralia). Modern exploration has been conducted by Coolgardie Gold NL, Gold Mines of Coolgardie and FML. 									
Geology	ultramafii of the ma carbonat >400m) o The knov and north between	ultramafic to the northeast and a pendant of ultramafic to the southwest in the footwall of the main vein system. This ultramafic has been logged as variably sericite-chlorite-carbonate altered komatiitic lavas. Mineralisation is hosted within large (strike lengths >400m) quartz reefs which range in thickness from centimetre scale to several metres. The known reefs have a variety of orientations with most dipping to the north northeast and north east within the granodiorite and close to its margins. Reefs typically dip at between 40 to 60 degrees.									
Drill hole	Historica	lly drilled holes WA	MEX reference tabulated below:								
Information	Company	ı	Drill Hole Number Report A- Number		ort A-	WAME Report Date	t				
			BVC077	14052		Jul-84					
	WMC	BVC085,	16	5231	Apr-85	;					
	VVIVIC	BVC119,	16449		Apr-85	;					
	MAGNET G	BVRC01, BVR	20	711	Apr-87	,					
	ARM		BVDDH02	27	650	Oct-88	3				
		EHC001, EHC002,	EHC003, EHC005, EHC006, EHC007	27	787	May-89	9				
		EHC015, EHC016,	EHC018, EHC019, EHC021, EHC022	30781		Jun-90)				
		EHC029, EHC030,	33604		Jan-91	L					
	CGNL		EHC042	36	344	Jun-92	2				
		*	016, BMC018, BMC019, BMC032, 034, BMC035, BMC036, BMC038	37	701	Jan-93	}				
		EHC058, EHC059,	EHC060, EHC061, EHC064, EHC068, EHC069	38	8631	Jun-93	}				
		BVC127, BVC128, BVC130, BVC131, BVC132, BVC133, BVC135, BVC140, BVC141, BVC142, BVC143, BVC146, BVC147, BVC148, BVC149, BVC150, BVC151, BVC152, BVRC153 Oct-95									
	MATADOR	05BLC001 72821 Jul-06									
	Previous	ly reported FML dri	ill holes at Bonnie Vale. See table b	elow.	•	1					
	Drill H	ole Number	ASX Rele								
		031 - 35, 42 NCD036	Results from Coolgardie and Lavert Exploration	on	30/07	/2014					

Criteria	Commentary	
	BONC044 - 53 Focus Hits High Grade Gold at Bonnie Vale	8/10/2014
	BONC054 - 56, 58 - 62 FCAC00038, 39, FCRB00110 Coolgardie Exploration Success	21/01/2015
	BONC064, 69 - 71, 79, 81 BONCD065, 66, 68 Coolgardie Exploration Update	24/07/2015
	BONC084 - 87, 89 - 95, 98 - 100, Bonnie Vale Mineral Resource 102 - 111, 114 - 115 Modelling Commenced	15/10/2015
	BONC119 - 126 Update on Exploration at Coolgardie BONCD069 - 74 and Laverton	29/04/2016
	BONC127, 128, 130 - 134, 136 - 142, 144, 146, 148, 151 - 153, 155, 158 - 161 Exploration Update	22/09/2016
	BONCD069, 70, 71, 72, 73, 74 BONC160, 162, 163, 164	
	BONCD075, 77 Coolgardie Operational Update	24/05/2017
	BONCD078, 79 Progress Report	16/01/2018
	BONCD080, 81, 82, 83 Coolgardie Exploration Update	27/04/2018
	BONC165 – BONC169 Mineral Resource Update for Bonnie Vale Deposit	30/05/2018
	New holes drilled by FML at Bonnie Vale during 2021 - 2023:	
	Hole ID Easting Northing RL Dip Azimuth EOH Intersection (MGA 94 Zone 51) (MGA94) (m)	n
	Bonnie Vale RC significant Intersections calculated at 0.5g/t Au cut off and up to 3m in	ternal dilution
	21BVRC001 - 2.00m @ 0.67g/t	, , , , , ,
	21BVRC001 - 5.00m @ 0.58g/t 21BVRC001 - 3.00m @ 0.55g/t	
	21BVRC001 324201 6584151 389 -77 346 102 21BVRC001 - 3.00m @ 0.55g/t 21BVRC001 - 2.00m @ 1.05g/t	
	21BVRC001 - 2.00m @ 0.85g/t	
	21BVRC001 - 1.00m @ 0.62g/t f	rom 101m for (GxM 1)

Commer	ntary						
Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	le RC signifi	cant	Inters	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
21BVRC002	323596	6584364	389	-83	0	102	
21BVRC003	323856	6584307	389	-79	76	132	21BVRC003 - 3.00m @ 7.94g/t from 89m for (GxM 24)
22BVDD001	324310	6583952	390	-50	20	150	
							22BVRC012 - 1.00m @ 0.55g/t from 82m for (GxM 1)
							22BVRC012 - 1.00m @ 0.81g/t from 88m for (GxM 1)
22BVRC012	224421	6584108	206	-60	255	200	22BVRC012 - 9.00m @ 0.79g/t from 100m for (GxM 7)
22BV NCU12	324431	0364106	300	-00	233	200	22BVRC012 - 3.00m @ 0.51g/t from 116m for (GxM 2)
							22BVRC012 - 7.00m @ 60.27g/t from 146m for (GxM 422)
							22BVRC012 - 1.00m @ 0.58g/t from 164m for (GxM 1)
							22BVRC013 - 1.00m @ 1.47g/t from 118m for (GxM 1)
22BVRC013	324405	6584222	385	-62	207	216	22BVRC013 - 6.00m @ 7.62g/t from 188m for (GxM 46)
							22BVRC013 - 1.00m @ 0.93g/t from 203m for (GxM 1)
							22BVRC014 - 1.00m @ 0.5g/t from 100m for (GxM 1)
22BVRC014	324437	6584112	386	-55	221	162	22BVRC014 - 14.00m @ 24.36g/t from 125m for (GxM 341)
							22BVRC014 - 2.00m @ 1.78g/t from 147m for (GxM 4)
							22BVRC015 - 1.00m @ 0.83g/t from 74m for (GxM 1)
0001100015		6504447			0.54	400	22BVRC015 - 1.00m @ 0.6g/t from 106m for (GxM 1)
22BVRC015	324446	6584117	386	-66	261	186	22BVRC015 - 2.00m @ 6.17g/t from 134m for (GxM 12)
							22BVRC015 - 6.00m @ 1.25g/t from 158m for (GxM 8)
							22BVRC015 - 6.00m @ 16.39g/t from 177m for (GxM 98)
							22BVRC016 - 1.00m @ 0.58g/t from 2m for (GxM 1) 22BVRC016 - 1.00m @ 0.79g/t from 66m for (GxM 1)
							22BVRC016 - 1.00m @ 0.75g/t from 72m for (GxM 1)
							22BVRC016 - 3.00m @ 2.23g/t from 77m for (GxM 7)
							22BVRC016 - 1.00m @ 6.95g/t from 107m for (GxM 7)
22BVRC016	324284	6584249	390	-66	187	210	22BVRC016 - 3.00m @ 0.57g/t from 116m for (GxM 2)
							22BVRC016 - 1.00m @ 0.56g/t from 131m for (GxM 1)
							22BVRC016 - 1.00m @ 0.58g/t from 135m for (GxM 1)
							22BVRC016 - 5.00m @ 0.53g/t from 171m for (GxM 3)
							22BVRC016 - 1.00m @ 2.19g/t from 181m for (GxM 2)
							22BVRC018 - 1.00m @ 1.45g/t from 115m for (GxM 1)
22BVRC018	324468	6584260	384	-63	230	270	22BVRC018 - 2.00m @ 0.78g/t from 153m for (GxM 2)
							22BVRC018 - 1.00m @ 0.54g/t from 173m for (GxM 1)
				Ш			22BVRC018 - 1.00m @ 1.12g/t from 251m for (GxM 1)
							22BVRC019 - 1.00m @ 0.9g/t from 53m for (GxM 1)
							22BVRC019 - 15.00m @ 29.61g/t from 109m for (GxM 444)
22BVRC019	324412	6584068	387	-89	193	168	22BVRC019 - 1.00m @ 0.64g/t from 134m for (GxM 1)
							22BVRC019 - 9.00m @ 15.85g/t from 142m for (GxM 143)
							22BVRC019 - 1.00m @ 0.78g/t from 165m for (GxM 1)
							22BVRC020 - 2.00m @ 0.78g/t from 69m for (GxM 2)
							22BVRC020 - 1.00m @ 0.52g/t from 94m for (GxM 1) 22BVRC020 - 1.00m @ 0.84g/t from 99m for (GxM 1)
							22BVRC020 - 1.00m @ 0.54g/t from 106m for (GxM 1)
							22BVRC020 - 1.00m @ 0.62g/t from 145m for (GxM 1)
22BVRC020	324409	6584135	386	-89	290	222	22BVRC020 - 1.00m @ 0.53g/t from 156m for (GxM 1)
							22BVRC020 - 1.00m @ 0.86g/t from 161m for (GxM 1)
							22BVRC020 - 2.00m @ 0.71g/t from 175m for (GxM 1)
							22BVRC020 - 1.00m @ 0.57g/t from 184m for (GxM 1)
							22BVRC020 - 8.00m @ 15.92g/t from 190m for (GxM 127)

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG	A 94 Zone 5	1)		(MGA94)	(m)	
E	,			nters			at 0.5g/t Au cut off and up to 3m internal dilution
							22BVRC021 - 1.00m @ 1.05g/t from 21m for (GxM 1)
							22BVRC021 - 1.00m @ 1.63g/t from 80m for (GxM 1)
							22BVRC021 - 2.00m @ 0.85g/t from 87m for (GxM 2)
							22BVRC021 - 2.00m @ 0.69g/t from 96m for (GxM 1)
							22BVRC021 - 2.00m @ 4.59g/t from 103m for (GxM 9)
22BVRC021	324304	6584150	387	-90	185	210	22BVRC021 - 3.00m @ 1.05g/t from 116m for (GxM 3)
							22BVRC021 - 1.00m @ 0.66g/t from 127m for (GxM 1)
							22BVRC021 - 1.00m @ 0.59g/t from 150m for (GxM 1)
							22BVRC021 - 6.00m @ 2.25g/t from 157m for (GxM 14)
							22BVRC021 - 1.00m @ 0.55g/t from 197m for (GxM 1)
							22BVRC021 - 1.00m @ 2.24g/t from 209m for (GxM 2)
22BVRD001	324152	6584070	390	-45	76	72	22BVRD001 - 1.00m @ 0.59g/t from 58m for (GxM 1)
							22BVRD002 - 1.00m @ 1.26g/t from 40m for (GxM 1)
							22BVRD002 - 1.00m @ 0.64g/t from 45m for (GxM 1)
							22BVRD002 - 15.00m @ 0.95g/t from 60m for (GxM 14)
22BVRD002	324326	6584162	387	-51	188	210.5	22BVRD002 - 1.00m @ 0.5g/t from 84m for (GxM 1)
ZZBVNBOOZ	32 1320	0301102	307	31	100	210.5	22BVRD002 - 2.00m @ 0.51g/t from 87m for (GxM 1)
							22BVRD002 - 1.00m @ 1.03g/t from 96m for (GxM 1)
							22BVRD002 - 3.00m @ 3.09g/t from 124m for (GxM 9)
							22BVRD002 - 0.50m @ 4.48g/t from 193m for (GxM 2)
							22BVRD003 - 1.00m @ 0.94g/t from 31m for (GxM 1)
							22BVRD003 - 1.00m @ 1.12g/t from 42m for (GxM 1)
							22BVRD003 - 1.00m @ 0.7g/t from 79m for (GxM 1)
220/00002	22.422.6	6504307	200		204	240.5	22BVRD003 - 17.00m @ 1.75g/t from 99m for (GxM 30)
22BVRD003	324326	6584207	386	-50	204	210.5	22BVRD003 - 1.05m @ 1.15g/t from 126.4m for (GxM 1)
							22BVRD003 - 1.00m @ 0.69g/t from 136m for (GxM 1)
							22BVRD003 - 8.85m @ 1.08g/t from 143m for (GxM 10)
							22BVRD003 - 0.40m @ 0.87g/t from 157.6m for (GxM 0) 22BVRD003 - 0.80m @ 0.51g/t from 158.6m for (GxM 0)
							22BVRD004 - 0.75m @ 1.45g/t from 111.25m for (GxM 1) 22BVRD004 - 7.00m @ 0.59g/t from 135m for (GxM 4)
							22BVRD004 - 7.00m @ 0.39g/t from 164m for (GxM 7)
22BVRD004	324501	6584134	385	-70	237	222.6	22BVRD004 - 1.00m @ 0.78g/t from 176m for (GxM 1)
							22BVRD004 - 1.00m @ 0.57g/t from 183m for (GxM 1)
							22BVRD004 - 3.00m @ 7.78g/t from 199m for (GxM 23)
							22BVRD005 - 5.00m @ 1.29g/t from 112m for (GxM 6)
							22BVRD005 - 2.12m @ 28.26g/t from 174.74m for (GxM 60)
22BVRD005	324512	6584153	385	-51	239	234.4	22BVRD005 - 8.60m @ 0.66g/t from 178.4m for (GxM 6)
							22BVRD005 - 3.85m @ 3.93g/t from 199.4m for (GxM 15)
							22BVRD006 - 1.00m @ 27.94g/t from 40m for (GxM 28)
							22BVRD006 - 1.00m @ 1.15g/t from 87m for (GxM 1)
							22BVRD006 - 2.52m @ 0.59g/t from 134.48m for (GxM 1)
22BVRD006	324288	6584243	390	E C	168	210.4	22BVRD006 - 4.42m @ 0.6g/t from 139.58m for (GxM 3)
22BV ND000	324200	0304243	350	-30	100	210.4	22BVRD006 - 1.34m @ 3.31g/t from 156.4m for (GxM 4)
							22BVRD006 - 1.13m @ 0.69g/t from 167m for (GxM 1)
							22BVRD006 - 1.00m @ 1.56g/t from 174m for (GxM 2)
							22BVRD006 - 2.48m @ 0.78g/t from 189.12m for (GxM 2)
							22BVRD007 - 1.00m @ 1.01g/t from 0m for (GxM 1)
							22BVRD007 - 0.73m @ 1.66g/t from 107.27m for (GxM 1)
22BVRD007	324287	6584250	390	-69	169	210.5	22BVRD007 - 1.36m @ 4.35g/t from 136.64m for (GxM 6)
							22BVRD007 - 1.20m @ 1.18g/t from 150m for (GxM 1)
	Ī						22BVRD007 - 1.85m @ 2.59g/t from 182.15m for (GxM 5)
							22BVRD007 - 8.00m @ 1.22g/t from 192m for (GxM 10)

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MGA	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant	Inters	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
0001100000		6504445		4.0	100		22BVRD008 - 1.00m @ 0.53g/t from 283m for (GxM :
22BVRD008	324338	6584415	386	-48	193	309.4	22BVRD008 - 1.07m @ 2.97g/t from 289.73m for (GxN
							22BVRD009 - 1.00m @ 1g/t from 150m for (GxM 1)
0001100000		6504057				0.07.4	22BVRD009 - 1.00m @ 0.56g/t from 227m for (GxM :
22BVRD009	324469	6584257	384	-64	209	267.4	22BVRD009 - 0.40m @ 0.89g/t from 233.7m for (GxM
							22BVRD009 - 2.05m @ 2.83g/t from 252.95m for (GxN
							22BVRD010 - 1.00m @ 0.65g/t from 152m for (GxM
			l				22BVRD010 - 1.08m @ 1.56g/t from 217.82m for (GxN
22BVRD010	324466	6584259	384	-60	245	288.3	22BVRD010 - 1.00m @ 0.56g/t from 237m for (GxM
							22BVRD010 - 5.50m @ 8.13g/t from 270.5m for (GxM
							22BVRD011 - 2.00m @ 1.4g/t from 21m for (GxM 3
							22BVRD011 - 1.60m @ 0.5g/t from 96.4m for (GxM 2
							22BVRD011 - 5.80m @ 0.63g/t from 149.2m for (GxM
22BVRD011	324455	6584113	386	-75	273	210.7	22BVRD011 - 1.00m @ 0.55g/t from 160m for (GxM
							22BVRD011 - 0.53m @ 1.86g/t from 164.9m for (GxM
							22BVRD011 - 3.00m @ 1.32g/t from 169m for (GxM
							22BVRD011 - 12.10m @ 2.12g/t from 177m for (GxM
							22BVRD017 - 1.10m @ 19.57g/t from 98.1m for (GxM
22BVRD017	324175	6584084	390	-53	92	204.6	22BVRD017 - 1.00m @ 0.68g/t from 103m for (GxM
							22BVRD017 - 2.84m @ 1.39g/t from 110.5m for (GxM
							23BVRC001 - 3.00m @ 0.57g/t from 16m for (GxM 2
23BVRC001	324279	6584133	300	-58	225	126	23BVRC001 - 1.00m @ 0.99g/t from 33m for (GxM 1
2300110001	324273	0304133	300	-30	223	120	23BVRC001 - 1.00m @ 0.96g/t from 59m for (GxM 1
							23BVRC001 - 7.00m @ 16.09g/t from 67m for (GxM 1
							23BVRC002 - 1.00m @ 7.25g/t from 23m for (GxM 7
							23BVRC002 - 3.00m @ 0.77g/t from 51m for (GxM 2
							23BVRC002 - 7.00m @ 3.25g/t from 59m for (GxM 2
23BVRC002	324308	6584158	387	-55	228	162	23BVRC002 - 2.00m @ 0.61g/t from 76m for (GxM 1
							23BVRC002 - 9.00m @ 1.94g/t from 83m for (GxM 1
							23BVRC002 - 1.00m @ 0.96g/t from 101m for (GxM
							23BVRC002 - 4.00m @ 2.65g/t from 115m for (GxM 1
							23BVRC002 - 4.00m @ 2.51g/t from 125m for (GxM 1
							23BVRC003 - 1.00m @ 0.61g/t from 68m for (GxM 1
23BVRC003	324406	6584070	387	-61	226	126	23BVRC003 - 11.00m @ 7.79g/t from 96m for (GxM 8
					225		23BVRC003 - 1.00m @ 4.08g/t from 116m for (GxM
							23BVRC003 - 1.00m @ 0.6g/t from 123m for (GxM 1
23BVRC004	324376	6584076	387	-58	233	126	23BVRC004 - 3.00m @ 1.68g/t from 89m for (GxM 5
0000:							23BVRC005 - 3.00m @ 1.86g/t from 76m for (GxM 6
23BVRC005	324430	6584035	387	-61	200	146	23BVRC005 - 1.00m @ 0.5g/t from 119m for (GxM 1
							23BVRC005 - 4.00m @ 1.45g/t from 142m for (GxM
220/22	22	650.46=-			224	45-	23BVRC006 - 1.00m @ 0.62g/t from 48m for (GxM 1
23BVRC006	324461	6584076	386	-61	201	156	23BVRC006 - 2.00m @ 5.46g/t from 108m for (GxM 1
	\vdash						23BVRC006 - 6.00m @ 1.6g/t from 124m for (GxM 1
220/00011	224455	CE04077	201		407	160	23BVRC014 - 1.00m @ 1.16g/t from 87m for (GxM 1
23BVRC014	324462	6584074	386	-60	197	162	23BVRC014 - 3.00m @ 14.27g/t from 108m for (GxM
							23BVRC014 - 2.00m @ 0.64g/t from 125m for (GxM
000110					05-		23BVRC015 - 8.00m @ 1.61g/t from 141m for (GxM 1
23BVRC015	324499	6584130	385	-59	200	170	23BVRC015 - 1.00m @ 0.55g/t from 158m for (GxM
							23BVRC015 - 5.00m @ 0.73g/t from 165m for (GxM
23BVRC016	324475	6584012	386	-54	216	112	
23BVRC017	324312	6584096	390	-61	225	126	23BVRC017 - 2.00m @ 0.77g/t from 0m for (GxM 2)
			<u> </u>		-		23BVRC017 - 1.00m @ 1.02g/t from 47m for (GxM 1
23BVRC018	324301	6584092	390	-46	244	132	23BVRC018 - 2.00m @ 1.13g/t from 0m for (GxM 2

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG	A 94 Zone 5	1)		(MGA94)	(m)	
Вс	onnie Val	e RC signifi	cant	nters	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
							23BVRC019 - 1.00m @ 0.5g/t from 33m for (GxM 1)
							23BVRC019 - 1.00m @ 1g/t from 71m for (GxM 1)
							23BVRC019 - 1.00m @ 0.69g/t from 96m for (GxM 1)
23BVRC019	224226	6584161	200	-68	221	150	23BVRC019 - 1.00m @ 0.58g/t from 112m for (GxM 1)
23BVRC019	324326	0304101	386	-00	221	156	23BVRC019 - 5.00m @ 0.55g/t from 114m for (GxM 3)
							23BVRC019 - 7.00m @ 5.17g/t from 132m for (GxM 36)
							23BVRC019 - 3.00m @ 0.72g/t from 149m for (GxM 2)
							23BVRC019 - 1.00m @ 0.61g/t from 155m for (GxM 1)
							23BVRC020 - 1.00m @ 0.64g/t from 48m for (GxM 1)
							23BVRC020 - 9.00m @ 2.12g/t from 69m for (GxM 19)
23BVRC020	324325	6584159	386	-59	197	150	23BVRC020 - 1.00m @ 0.75g/t from 90m for (GxM 1)
							23BVRC020 - 1.00m @ 1.33g/t from 110m for (GxM 1)
							23BVRC020 - 5.00m @ 4.93g/t from 124m for (GxM 25)
23BVRC029	324407	6584221	385	-60	192	216	23BVRC029 - 7.00m @ 0.75g/t from 176m for (GxM 5)
2301110023	324407	0504221	303	00	132	210	23BVRC029 - 9.00m @ 0.88g/t from 192m for (GxM 8)
							23BVRC031 - 1.00m @ 2.2g/t from 79m for (GxM 2)
23BVRC031	324403	6584224	385	-61	202	208	23BVRC031 - 1.00m @ 0.6g/t from 165m for (GxM 1)
							23BVRC031 - 12.00m @ 6g/t from 196m for (GxM 72)
							23BVRC032 - 7.00m @ 0.91g/t from 42m for (GxM 6)
23BVRC032	324267	6584201	390	-72	201	162	23BVRC032 - 1.00m @ 0.61g/t from 127m for (GxM 1)
							23BVRC032 - 9.00m @ 5.57g/t from 136m for (GxM 50)
							23BVRC034 - 1.00m @ 0.6g/t from 64m for (GxM 1)
23BVRC034	323936	6584325	390	-61	221		23BVRC034 - 1.00m @ 0.62g/t from 96m for (GxM 1)
						150	23BVRC034 - 1.00m @ 2.59g/t from 144m for (GxM 3)
23BVRC036	323953	6584238	393	-47	222	90	23BVRC036 - 1.00m @ 0.69g/t from 21m for (GxM 1)
23BVRC038	323980	6584271	392	-49	223	120	23BVRC038 - 1.00m @ 0.63g/t from 55m for (GxM 1)
2384110030	323300	0301271	332	13	223	120	23BVRC038 - 2.00m @ 1.04g/t from 93m for (GxM 2)
							23BVRC039 - 1.00m @ 0.98g/t from 50m for (GxM 1)
							23BVRC039 - 2.00m @ 0.73g/t from 70m for (GxM 1)
23BVRC039	324281	6584247	390	-72	197	185	23BVRC039 - 1.00m @ 0.71g/t from 76m for (GxM 1)
							23BVRC039 - 1.00m @ 0.66g/t from 94m for (GxM 1)
							23BVRC039 - 1.00m @ 2.33g/t from 108m for (GxM 2)
							23BVRC039 - 7.00m @ 0.71g/t from 174m for (GxM 5)
23BVRC040	324001	6584297	392	-55	220	156	23BVRC040 - 1.00m @ 0.5g/t from 89m for (GxM 1)
							23BVRC040 - 1.00m @ 1.57g/t from 99m for (GxM 2)
							23BVRC042 - 1.00m @ 0.72g/t from 70m for (GxM 1)
23BVRC042	323966	6584300	392	-46	228	144	23BVRC042 - 1.00m @ 4.47g/t from 76m for (GxM 4)
							23BVRC042 - 1.00m @ 7.87g/t from 142m for (GxM 8)
							23BVRC043 - 2.00m @ 0.65g/t from 122m for (GxM 1)
23BVRC043	324229	6584282	389	-58	224	168	23BVRC043 - 3.00m @ 0.83g/t from 130m for (GxM 2)
							23BVRC043 - 4.00m @ 4.08g/t from 157m for (GxM 16)
23BVRC044	323966	6584302	392	-69	230	162	23BVRC044 - 1.00m @ 1.25g/t from 152m for (GxM 1)
							23BVRC045 - 4.00m @ 0.53g/t from 63m for (GxM 2)
							23BVRC045 - 2.00m @ 1.05g/t from 71m for (GxM 2)
							23BVRC045 - 1.00m @ 0.54g/t from 104m for (GxM 1)
23BVRC045	324376	6584205	386	-60	217	194	23BVRC045 - 2.00m @ 0.67g/t from 135m for (GxM 1)
1							23BVRC045 - 5.00m @ 0.55g/t from 141m for (GxM 3)
							22DVDC04F 1 00m @ 0 C0g/t from 1F0m for (CvM 1)
							23BVRC045 - 1.00m @ 0.68g/t from 159m for (GxM 1) 23BVRC045 - 4.00m @ 7.68g/t from 179m for (GxM 31)

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant l	nters	sections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
							23BVRC046 - 4.00m @ 0.88g/t from 47m for (GxM 4)
23BVRC046	324007	6584247	393	-46	202	114	23BVRC046 - 1.00m @ 1.19g/t from 55m for (GxM 1)
							23BVRC046 - 1.00m @ 1.29g/t from 65m for (GxM 1)
220/06047	224162	6584325	200	75	202	202	23BVRC047 - 5.00m @ 4.99g/t from 165m for (GxM 25
23BVRC047	324162	6584325	388	-/5	202	203	23BVRC047 - 1.00m @ 0.85g/t from 186m for (GxM 1)
23BVRC048	323749	6584357	390	-45	235	72	23BVRC048 - 2.00m @ 0.77g/t from 0m for (GxM 2)
							23BVRC049 - 1.00m @ 1.92g/t from 104m for (GxM 2)
23BVRC049	324495	6584095	386	-61	211	167	23BVRC049 - 3.00m @ 3.49g/t from 122m for (GxM 10
							23BVRC049 - 23.00m @ 1.57g/t from 133m for (GxM 36
23BVRC050	323768	6584346	390	-46	221	60	23BVRC050 - 5.00m @ 0.57g/t from 0m for (GxM 3)
23BVRC051	324498	6584057	386	-59	215	157	23BVRC051 - 1.00m @ 0.74g/t from 131m for (GxM 1)
2300110031	324430	0384037	360	-33	213	137	23BVRC051 - 1.00m @ 2.67g/t from 137m for (GxM 3)
23BVRC052	323798	6584319	390	-45	223	60	23BVRC052 - 1.00m @ 0.85g/t from 1m for (GxM 1)
23BVRC053	324522	6584060	385	-59	211	143	23BVRC053 - 1.00m @ 1.3g/t from 103m for (GxM 1)
2301110033	324322	0304000	303	33	211	173	23BVRC053 - 1.00m @ 3.37g/t from 108m for (GxM 3)
23BVRC054	323848	6584308	389	-63	216	84	23BVRC054 - 1.00m @ 0.8g/t from 34m for (GxM 1)
2384110031	323010	030 1300	303	03	210	01	23BVRC054 - 1.00m @ 1.13g/t from 45m for (GxM 1)
23BVRC055	324529	6584086	385	-63	224	65	
23BVRC056	323852	6584301	389	-46	168	96	23BVRC056 - 3.00m @ 0.58g/t from 49m for (GxM 2)
2357110030	323032	030 1301	303	10	100	50	23BVRC056 - 1.00m @ 0.79g/t from 60m for (GxM 1)
23BVRC057 3245					222	173	23BVRC057 - 1.00m @ 1.04g/t from 122m for (GxM 1)
	324528	6584084	385	-63			23BVRC057 - 10.00m @ 1.01g/t from 128m for (GxM 10
							23BVRC057 - 8.00m @ 3.16g/t from 142m for (GxM 25
							23BVRC057 - 2.00m @ 1.38g/t from 171m for (GxM 3)
23BVRC058	323862	6584364	390	-62	222	113	23BVRC058 - 1.00m @ 1.17g/t from 56m for (GxM 1)
23BVRC059	324530	6584087	385	-75	183	180	23BVRC059 - 2.00m @ 1.15g/t from 138m for (GxM 2)
23BVRC060	323910	6584295	390	-61	238	114	23BVRC060 - 1.00m @ 2.88g/t from 0m for (GxM 3)
							23BVRC061 - 1.00m @ 14.96g/t from 21m for (GxM 15
					196	203	23BVRC061 - 1.00m @ 0.76g/t from 170m for (GxM 1)
23BVRC061	324218	6584337	386	-61			23BVRC061 - 1.00m @ 1.39g/t from 179m for (GxM 1)
							23BVRC061 - 1.00m @ 0.56g/t from 194m for (GxM 1)
							23BVRC061 - 1.00m @ 0.63g/t from 199m for (GxM 1)
23BVRC062	323739	6583661	402	-45	151	72	23BVRC062 - 1.00m @ 0.89g/t from 37m for (GxM 1)
							23BVRC063 - 1.00m @ 0.52g/t from 108m for (GxM 1)
23BVRC063	324523	6584057	385	-74	181	149	23BVRC063 - 1.00m @ 0.65g/t from 123m for (GxM 1)
							23BVRC063 - 6.00m @ 0.66g/t from 128m for (GxM 4)
		5500500	400	45	450		23BVRC063 - 7.00m @ 15.7g/t from 139m for (GxM 110
23BVRC064	323799	6583699	400		150	66	22DVDC0CC 1.00
23BVRC066	323858	6583803	399		161	108	23BVRC066 - 1.00m @ 2.05g/t from 91m for (GxM 2)
23BVRC067	323939	6583792	397	-45	150	66	
23BVRC068	323988	6583858	396	-45	150	90	
23BVRC069	324062	6583883	394		150	78	
23BVRC070	324342	6584076	388	-56	230	102	220000074 4.00 0.445 // (/ / / /
23BVRC071	324374	6584074	388	-56	211	108	23BVRC071 - 1.00m @ 1.16g/t from 56m for (GxM 1)
23BVRC072	324414	6584036	387	-69	227	120	23BVRC072 - 1.00m @ 3.88g/t from 85m for (GxM 4)
							23BVRC072 - 1.00m @ 0.51g/t from 106m for (GxM 1)
2201/00072	224526	CE0400E	20.4	c -	225	100	23BVRC073 - 1.00m @ 0.67g/t from 119m for (GxM 1)
23BVRC073	324526	6584095	384	-0/	235	190	23BVRC073 - 41.00m @ 5.48g/t from 133m for (GxM 12
23BVIIC073		l	ı				23BVRC073 - 1.00m @ 0.66g/t from 181m for (GxM 1)
	224224	CE04004	200	00	0	2	
23BVRC074 23BVRC075	324334 323834	6584094 6584205	390 392		0	3	

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant	nter	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC077	323829	6584175	392	-90	0	3	
23BVRC078	323826	6584160	392	-90	0	3	
23BVRC079	323841	6584157	392	-90	0	3	
23BVRC080	323844	6584172	392	-90	0	3	
23BVRC081	323846	6584187	392	-90	0	3	23BVRC081 - 1.00m @ 0.52g/t from 0m for (GxM 1)
							23BVRC081 - 1.00m @ 0.52g/t from 2m for (GxM 1)
23BVRC082	323849	6584202	392	-90	0	3	23BVRC082 - 1.00m @ 0.68g/t from 2m for (GxM 1)
23BVRC083	323863	6584200	392	-90	0	3	
23BVRC084	323861	6584185	392	-90	0	3	
23BVRC085	323859	6584170	392	-90	0	3	
23BVRC086	323783	6584167	392	-90	0	3	23BVRC086 - 1.00m @ 0.57g/t from 0m for (GxM 1)
23BVRC087	323785	6584182	392	-90	0	3	
23BVRC088	323787	6584197	392	-90	0	3	
23BVRC089	323790	6584212	392	-90	0	3	
23BVRC090	323792	6584226	392	-90	0	3	
23BVRC091	323795	6584242	392	\vdash	0	3	
23BVRC092	323807	6584224	392	\vdash	0	3	
23BVRC093	323805	6584210	392	-90	0	3	23BVRC093 - 1.00m @ 0.51g/t from 0m for (GxM 1)
23BVRC094	323802	6584195	392	-90	0	3	23BVRC094 - 1.00m @ 0.59g/t from 1m for (GxM 1)
23BVRC095	323800	6584180	392	-90	0	3	
23BVRC096	323797	6584165	392	-90	0	3	
23BVRC097	323812	6584163	392	-90	0	3	
23BVRC098	323814	6584177	392	-90	0	3	
23BVRC099	323817	6584192	392	\vdash	0	3	
23BVRC100	323819	6584207	392	-90	0	3	
23BVRC101	323822	6584222	392	-90	0	3	23BVRC101 - 1.00m @ 0.5g/t from 0m for (GxM 1)
23BVRC102	323825	6584321	390	\vdash	0	2	23BVRC102 - 1.00m @ 2.89g/t from 1m for (GxM 3)
23BVRC103	323826	6584336	391	\vdash	0	2	23BVRC103 - 1.00m @ 1.12g/t from 1m for (GxM 1)
23BVRC104	323811	6584351	391		0	2	
23BVRC105	323825	6584349	391	\vdash	0	2	23BVRC105 - 1.00m @ 0.79g/t from 1m for (GxM 1)
23BVRC106	323839	6584363	390		0	2	23BVRC106 - 1.00m @ 0.65g/t from 0m for (GxM 1)
23BVRC107	323825				0	2	23BVRC107 - 1.00m @ 1.24g/t from 1m for (GxM 1)
23BVRC108	323815	6584380	391		0	2	
23BVRC109	323810	6584366	390	\vdash	0	2	
23BVRC110	323811	6584337	391	\vdash	0	2	23BVRC110 - 1.00m @ 0.83g/t from 1m for (GxM 1)
23BVRC111	323811	6584321	390	\vdash	0	2	23BVRC111 - 1.00m @ 1.38g/t from 1m for (GxM 1)
23BVRC112	323796	6584321	390	\vdash	0	2	
23BVRC113	323796	6584336	391	\vdash	0	2	
23BVRC114	323796	6584351	391	\vdash	0	2	23BVRC114 - 2.00m @ 0.52g/t from 0m for (GxM 1)
23BVRC115	323796	6584366	390	\vdash	0	2	23BVRC115 - 1.00m @ 0.9g/t from 1m for (GxM 1)
23BVRC116	323781	6584381	390	\vdash	0	2	23BVRC116 - 1.00m @ 0.57g/t from 1m for (GxM 1)
23BVRC117	323781	6584366	390	\vdash	0	2	23BVRC117 - 2.00m @ 0.93g/t from 0m for (GxM 2)
23BVRC118	323784	6584351	391	-	0	2	23BVRC118 - 2.00m @ 0.64g/t from 0m for (GxM 1)
23BVRC119	323767	6584366	390	\vdash	0	2	23BVRC119 - 2.00m @ 1.25g/t from 0m for (GxM 3)
23BVRC120	323751	6584366	390		0	2	23BVRC120 - 1.00m @ 0.5g/t from 0m for (GxM 1)
23BVRC121	323766	6584351	391	\vdash	0	2	23BVRC121 - 1.00m @ 0.67g/t from 0m for (GxM 1)
23BVRC122	323766	6584336	390	-	0	2	23BVRC122 - 1.00m @ 0.6g/t from 0m for (GxM 1)
23BVRC123	323781	6584334	390		0	2	23BVRC123 - 1.00m @ 1.6g/t from 0m for (GxM 2)
23BVRC124	323751	6584336	390	\vdash	0	2	23BVRC124 - 1.00m @ 2.28g/t from 1m for (GxM 2)
23BVRC125	323751	6584347	390	\vdash	0	2	23BVRC125 - 1.00m @ 1.4g/t from 0m for (GxM 1)
23BVRC126	323736	6584351	389	-90	0	2	23BVRC126 - 2.00m @ 0.84g/t from 0m for (GxM 2)

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant l	nters	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC127	323735	6584366	390	-90	0	2	23BVRC127 - 1.00m @ 0.85g/t from 0m for (GxM 1)
23BVRC128	323721	6584366	389	-90	0	2	23BVRC128 - 1.00m @ 0.63g/t from 1m for (GxM 1)
23BVRC129	323881	6584361	393	-90	0	3	23BVRC129 - 3.00m @ 0.71g/t from 0m for (GxM 2)
23BVRC130	323877	6584347	393	-90	0	3	
23BVRC131	323873	6584332	393	-90	0	3	23BVRC131 - 1.00m @ 1.37g/t from 0m for (GxM 1)
23BVRC132	323878	6584319	393	-90	0	4	23BVRC132 - 4.00m @ 0.9g/t from 0m for (GxM 4)
23BVRC133	323887	6584328	393	-90	0	4	
23BVRC134	323891	6584342	393		0	4	23BVRC134 - 2.00m @ 1g/t from 0m for (GxM 2)
23BVRC135	323895	6584357	393	-90	0	3	23BVRC135 - 1.00m @ 0.6g/t from 1m for (GxM 1)
23BVRC136	323909	6584353	393	-90	0	3	23BVRC136 - 2.00m @ 0.62g/t from 0m for (GxM 1)
23BVRC137	323906	6584338	393		0	4	23BVRC137 - 3.00m @ 0.53g/t from 0m for (GxM 2)
23BVRC138	323901	6584324	393	-	0	3	23BVRC138 - 3.00m @ 1.15g/t from 0m for (GxM 3)
23BVRC139	323894	6584316	393	-90	0	4	23BVRC139 - 4.00m @ 1.37g/t from 0m for (GxM 5)
23BVRC140	323874	6584296	390	-	0	3	
23BVRC141	324007	6584222	393	\vdash	0	3	23BVRC141 - 2.00m @ 1.09g/t from 0m for (GxM 2)
23BVRC142	324011	6584236	393	-90	0	3	23BVRC142 - 2.00m @ 0.99g/t from 0m for (GxM 2)
23BVRC143	324011	6584251	393	-90	0	3	23BVRC143 - 3.00m @ 1g/t from 0m for (GxM 3)
23BVRC143	324014	6584265	392	-90	0	4	23BVRC144 - 2.00m @ 1.02g/t from 1m for (GxM 2)
23BVRC145	324022	6584280	392	-90	0	3	23BVRC145 - 2.00m @ 0.91g/t from 1m for (GxM 2)
23BVRC146	324025	6584294	392	-90	0	3	23BVRC146 - 3.00m @ 0.81g/t from 0m for (GxM 2)
23BVRC147	324011	6584298	392	-90	0	3	23BVRC147 - 2.00m @ 0.69g/t from 1m for (GxM 1)
23BVRC147	324011	6584284	392	-	0	3	
23BVRC149	324004	6584269	392		0	3	23BVRC148 - 2.00m @ 0.55g/t from 0m for (GxM 1)
23BVRC150	324004	6584254	393	-	0	3	23BVRC149 - 3.00m @ 0.76g/t from 0m for (GxM 2)
			393		0	3	23BVRC150 - 3.00m @ 1.82g/t from 0m for (GxM 5)
23BVRC151	323997	6584240	_	-			22DVDC1F2 2 00m @ 0 F0g/t from 1m for (CvM 1)
23BVRC152	323993	6584225	393	\vdash	0	3	23BVRC152 - 2.00m @ 0.58g/t from 1m for (GxM 1)
23BVRC153	323978	6584229	393	-	0	3	23BVRC153 - 2.00m @ 0.6g/t from 1m for (GxM 1)
23BVRC154	323966	6584233	393		0	4	220,400455 4.22 0.250 4.5 4.5 (0.444)
23BVRC155	323982	6584244	393	\vdash	0	3	23BVRC155 - 1.00m @ 0.59g/t from 1m for (GxM 1)
23BVRC156	323985	6584258	393	-	0	2	23BVRC156 - 2.00m @ 7.46g/t from 0m for (GxM 15)
23BVRC157	323989	6584273	392		0	4	23BVRC157 - 4.00m @ 1.17g/t from 0m for (GxM 5)
23BVRC158	323993	6584287	393	-	0	3	23BVRC158 - 3.00m @ 3.08g/t from 0m for (GxM 9)
23BVRC159					0	3	23BVRC159 - 3.00m @ 1.54g/t from 0m for (GxM 5)
23BVRC160	323982	6584305	393		0	3	23BVRC160 - 3.00m @ 0.7g/t from 0m for (GxM 2)
23BVRC161	323967	6584309	392	-	0	3	23BVRC161 - 1.00m @ 2.02g/t from 2m for (GxM 2)
23BVRC162	323964	6584297	392	-	0	3	
23BVRC163	323978	6584289	392		0	3	
23BVRC164	323975	6584276	393	\vdash	0	3	
23BVRC165	323971	6584262	393	-	0	3	
23BVRC166	323967	6584247	393	-	0	3	23BVRC166 - 3.00m @ 0.7g/t from 0m for (GxM 2)
23BVRC167	323985	6584134	395	\vdash	0	3	
23BVRC168	323989	6584149	395	-90	0	3	
23BVRC169	323993	6584164	395	-90	0	3	23BVRC169 - 1.00m @ 0.51g/t from 1m for (GxM 1)
23BVRC170	323978	6584167	395	-90	0	3	23BVRC170 - 1.00m @ 0.61g/t from 2m for (GxM 1)
23BVRC171	323974	6584152	395	-90	0	3	
23BVRC172	323971	6584138	395	-90	0	3	23BVRC172 - 1.00m @ 0.83g/t from 0m for (GxM 1)
23BVRC173	323957	6584142	395	-90	0	3	23BVRC173 - 1.00m @ 0.73g/t from 1m for (GxM 1)
23BVRC174	323856	6584155	392	-90	0	3	
23BVRC175	323960	6584156	395	-90	0	3	23BVRC175 - 1.00m @ 0.55g/t from 0m for (GxM 1)
23BVRC176	323964	6584171	395	-90	0	3	
23BVRC177	323949	6584174	395	-90	0	3	
23BVRC178	323946	6584160	394	-90	0	3	
23BVRC179	323942	6584145	395		0	3	
23BVRC180	323927	6584149	395	-	0	3	23BVRC180 - 2.00m @ 0.84g/t from 1m for (GxM 2)

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MGA	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant l	nters	sections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC181	323931	6584164	394	-90	0	3	
23BVRC182	323934	6584178	394	-90	0	3	23BVRC182 - 1.00m @ 0.78g/t from 2m for (GxM 1)
23BVRC183	323938	6584192	395	-90	0	4	
23BVRC184	323952	6584189	395	-90	0	4	
23BVRC185	323967	6584185	395	-90	0	4	
23BVRC186	323981	6584182	395	-90	0	4	
23BVRC187	323996	6584178	395	-90	0	4	23BVRC187 - 3.00m @ 0.6g/t from 0m for (GxM 2)
23BVRC188	323949	6584236	393	-90	0	3	23BVRC188 - 1.00m @ 0.5g/t from 2m for (GxM 1)
23BVRC189	323953	6584251	393	-90	0	3	
23BVRC190	323957	6584265	393	-90	0	3	
23BVRC191	323960	6584280	392	-90	0	3	
23BVRC192	324076	6584369	390	-90	0	2	23BVRC192 - 1.00m @ 0.58g/t from 0m for (GxM 1)
23BVRC193	324076	6584355	390	-90	0	2	2 6/
23BVRC194	324079	6584342	390	-90	0	2	
23BVRC195	324089	6584327	390	-90	0	2	23BVRC195 - 1.00m @ 1.1g/t from 0m for (GxM 1)
23BVRC196	324091	6584340	390		0	2	23BVRC196 - 2.00m @ 0.83g/t from 0m for (GxM 2)
23BVRC197	324090	6584355	391	-90	0	2	23BVRC197 - 1.00m @ 0.63g/t from 1m for (GxM 1)
23BVRC198	324105	6584355	391	-90	0	2	23BVRC198 - 1.00m @ 0.56g/t from 0m for (GxM 1)
23BVRC199	324114	6584362	391	-90	0	2	23571(C136 1.0011 @ 0.366) (11011 011 101 (0.001 1)
23BVRC200	324115	6584355	391	-90	0	2	23BVRC200 - 1.00m @ 0.68g/t from 0m for (GxM 1)
23BVRC201	324106	6584340	390	-90	0	2	23BVRC201 - 1.00m @ 0.69g/t from 0m for (GxM 1)
23BVRC202	324118	6584339	391	-90	0	2	23BVRC202 - 2.00m @ 0.77g/t from 0m for (GxM 2)
23BVRC203	324053	6584384	391	-90	0	3	23BVRC203 - 3.00m @ 0.68g/t from 0m for (GxM 2)
23BVRC203.1	324042	6584395	391	-90	0	3	23BVRC203.1 - 3.00m @ 0.58g/t from 0m for (GxM 2)
23BVRC203.1	324031	6584404	392	-90	0	3	23BVRC204 - 2.00m @ 0.92g/t from 0m for (GxM 2)
23BVRC205	324041	6584415	392	-90	0	3	23BVRC205 - 2.00m @ 0.82g/t from 0m for (GxM 2)
23BVRC206	324052	6584406	391	-90	0	3	23BVRC206 - 3.00m @ 1.02g/t from 0m for (GxM 3)
23BVRC207	324063	6584396	391	-90	0	3	23BVRC207 - 3.00m @ 1.43g/t from 0m for (GxM 4)
23BVRC208	324073	6584407	391	-90	0	3	23BVRC208 - 1.00m @ 0.68g/t from 2m for (GxM 1)
23BVRC209	324061	6584417	392	-90	0	3	23BVRC209 - 1.00m @ 0.59g/t from 0m for (GxM 1)
23BVRC210	324050	6584427	391	-90	0	3	
	324060			-90 -90		3	23BVRC210 - 1.00m @ 0.81g/t from 2m for (GxM 1) 23BVRC211 - 1.00m @ 1.28g/t from 1m for (GxM 1)
23BVRC211	324000	6584428	391	-90	0	3	23BVRC211 - 1.00m @ 1.20g/t from 0m for (GxM 1)
23BVRC213	324083	6584418	391	-90	0	3	23BVRC213 - 2.00m @ 0.9g/t from 1m for (GxM 2)
23BVRC214	324107	6584328	391	-90	0	2	22DVDC245
23BVRC215	324152	6584503	392	-90	0	3	23BVRC215 - 1.00m @ 0.71g/t from 2m for (GxM 1)
23BVRC216 23BVRC217	323900 323896	6584438 6584430	393 393	-90 -90	0	3 4	
							22DVDC210 1 00m O 0.77-/- franco 0m for /C+A41)
23BVRC218	323896	6584414	393	-90	0	5	23BVRC218 - 1.00m @ 0.87g/t from 0m for (GxM 1)
23BVRC219	323896	6584400	393	-90	0	4	
23BVRC220	323881	6584385	393	-90	0	3	
23BVRC221	323896	6584384	393	-90	0	3	
23BVRC222	323896	6584370	393	-90	0	4	23BVRC222 - 1.00m @ 0.7g/t from 1m for (GxM 1)
23BVRC223	323911	6584370	393	-90	0	4	23BVRC223 - 1.00m @ 0.86g/t from 2m for (GxM 1)
23BVRC224	323919	6584372	393	-90	0	4	23BVRC224 - 2.00m @ 0.57g/t from 1m for (GxM 1)
23BVRC225	323911	6584384	393	-90	0	3	23BVRC225 - 1.00m @ 0.51g/t from 0m for (GxM 1)
23BVRC226	323911	6584399	393	-90	0	3	
23BVRC227	323911	6584414	393	-90	0	3	23BVRC227 - 3.00m @ 0.6g/t from 0m for (GxM 2)
23BVRC228	323911	6584429	393	-90	0	3	
23BVRC229	323926	6584430	393	-90	0	3	23BVRC229 - 2.00m @ 1.23g/t from 1m for (GxM 2)
23BVRC230	323926	6584415	393	-90	0	3	23BVRC230 - 2.00m @ 0.9g/t from 0m for (GxM 2)

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant l	Inters	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC231	323925	6584400	393	-90	0	3	23BVRC231 - 1.00m @ 0.53g/t from 0m for (GxM 1)
23BV NC231	323323	0304400	333	-90	U	3	23BVRC231 - 1.00m @ 0.52g/t from 2m for (GxM 1)
23BVRC232	323921	6584388	393	-90	0	5	23BVRC232 - 2.00m @ 0.59g/t from 0m for (GxM 1)
23BVRC233	324042	6584395	391	-90	0	3	
23BVRC234	324212	6584410	389	-90	0	3	23BVRC234 - 1.00m @ 1.1g/t from 0m for (GxM 1)
23BVRC235	324213	6584396	389	-90	0	3	23BVRC235 - 2.00m @ 0.87g/t from 0m for (GxM 2)
23BVRC236	324214	6584381	389	-90	0	3	23BVRC236 - 2.00m @ 1.19g/t from 0m for (GxM 2)
23BVRC237	324229	6584381	389	-90	0	3	23BVRC237 - 2.00m @ 1.25g/t from 0m for (GxM 3)
23BVRC238	324228	6584396	389	-90	0	3	23BVRC238 - 1.00m @ 1.12g/t from 0m for (GxM 1)
23BVRC239	324227	6584411	389	-90	0	3	
23BVRC240	324241	6584413	389	-90	0	3	23BVRC240 - 2.00m @ 0.99g/t from 0m for (GxM 2)
23BVRC241	324243	6584398	389	-90	0	3	23BVRC241 - 1.00m @ 1.69g/t from 0m for (GxM 2)
23BVRC242	324244	6584383	389	-90	0	3	23BVRC242 - 2.00m @ 1.41g/t from 0m for (GxM 3)
23BVRC243	324259	6584384	389	-90	0	3	23BVRC243 - 2.00m @ 1.2g/t from 0m for (GxM 2)
23BVRC244	324261	6584399	389	-90	0	4	23BVRC244 - 4.00m @ 0.54g/t from 0m for (GxM 2)
23BVRC245	324258	6584413	389	-90	0	3	23BVRC245 - 1.00m @ 0.9g/t from 1m for (GxM 1)
23BVRC246	324271	6584415	389	-90	0	3	23BVRC246 - 2.00m @ 0.88g/t from 0m for (GxM 2)
23BVRC247	324273	6584401	389	-90	0	3	23BVRC247 - 1.00m @ 0.8g/t from 1m for (GxM 1)
23BVRC248	324274	6584386	389	-90	0	3	23BVRC248 - 3.00m @ 0.69g/t from 0m for (GxM 2)
23BVRC249	324289	6584387	389	-90	0	3	23BVRC249 - 2.00m @ 0.97g/t from 1m for (GxM 2)
23BVRC250	324288	6584402	389	-90	0	3	23BVRC250 - 2.00m @ 0.72g/t from 0m for (GxM 1)
23BVRC251	324286	6584417	389	-90	0	3	23BVRC251 - 3.00m @ 0.76g/t from 0m for (GxM 2)
23BVRC252	324286	6584295	390	-90	0	4	23BVRC252 - 2.00m @ 0.55g/t from 2m for (GxM 1)
23BVRC253	324298	6584310	390	-90	0	4	23BVRC253 - 4.00m @ 0.51g/t from 0m for (GxM 2)
23BVRC254	324301	6584325	390	-90	0	4	23BVRC254 - 2.00m @ 0.52g/t from 0m for (GxM 1)
23BVRC255	324286	6584325	390	-90	0	4	23BVRC255 - 1.00m @ 0.51g/t from 3m for (GxM 1)
23BVRC256	324286	6584310	390	-90	0	4	23BVRC256 - 1.00m @ 1.03g/t from 0m for (GxM 1)
23BVRC257	324271	6584325	390	-90	0	4	23BVRC257 - 1.00m @ 0.54g/t from 0m for (GxM 1)
23BVRC258	324271	6584310	390	-90	0	4	23BVRC258 - 1.00m @ 0.52g/t from 0m for (GxM 1)
23BVRC259	324271	6584295	390	-90	0	4	23BVRC259 - 3.00m @ 0.52g/t from 1m for (GxM 2)
23BVRC260	324271	6584280	390	-90	0	4	23BVRC260 - 4.00m @ 0.61g/t from 0m for (GxM 2)
23BVRC261	324286	6584280	390	-90	0	4	23BVRC261 - 3.00m @ 0.59g/t from 1m for (GxM 2)
23BVRC262	324301	6584291	390	-90	0	4	23BVRC262 - 3.00m @ 0.66g/t from 1m for (GxM 2)
23BVRC263	324301	6584280	390	-90	0	4	23BVRC263 - 1.00m @ 0.51g/t from 2m for (GxM 1)
23BVRC264	324300	6584266	391	-90	0	4	23BVRC264 - 4.00m @ 0.57g/t from 0m for (GxM 2)
23BVRC265	324301	6584250	390	-90	0	4	23BVRC265 - 4.00m @ 0.51g/t from 0m for (GxM 2)
23BVRC266	324287	6584263	391	-90	0	4	23BVRC266 - 3.00m @ 0.51g/t from 0m for (GxM 2)
23BVRC267	324273	6584250	390	-90	0	3	
23BVRC268	324286	6584235	390	-90	0	3	23BVRC268 - 1.00m @ 0.51g/t from 0m for (GxM 1)
23BVRC269	324299	6584235	390	-90	0	3	23BVRC269 - 3.00m @ 0.52g/t from 0m for (GxM 2)
23BVRC270	324300	6584217	390	-90	0	3	
23BVRC271	324301	6584205	390	-90	0	3	23BVRC271 - 3.00m @ 0.57g/t from 0m for (GxM 2)
23BVRC272	324301	6584190	390	-90	0	3	23BVRC272 - 3.00m @ 0.57g/t from 0m for (GxM 2)
23BVRC273	324268	6584189	390	-90	0	3	
23BVRC274	324286	6584189	390	-90	0	3	23BVRC274 - 2.00m @ 0.61g/t from 1m for (GxM 1)
23BVRC275	324286	6584204	390	-90	0	3	23BVRC275 - 1.00m @ 0.5g/t from 1m for (GxM 1)
23BVRC276	324286	6584219	390	-90	0	3	23BVRC276 - 2.00m @ 0.69g/t from 0m for (GxM 1)
23BVRC277	324271	6584235	390	-90	0	3	
23BVRC278	324222	6584235	389	-90	0	3	23BVRC278 - 2.00m @ 0.71g/t from 0m for (GxM 1)
23BVRC279	324226	6584250	389	-90	0	3	23BVRC279 - 1.00m @ 0.51g/t from 1m for (GxM 1)
23BVRC280	324227	6584265	389	-90	0	3	23BVRC280 - 2.00m @ 0.8g/t from 1m for (GxM 2)

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG/	A 94 Zone 5:	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant	nters	sections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC281	324226	6584279	389	-90	0	3	23BVRC281 - 1.00m @ 0.59g/t from 0m for (GxM 1)
23BVRC282	324230	6584291	389	-90	0	3	23BVRC282 - 1.00m @ 0.58g/t from 2m for (GxM 1)
23BVRC283	324241	6584295	389	-90	0	3	23BVRC283 - 1.00m @ 0.6g/t from 1m for (GxM 1)
23BVRC284	324241	6584280	389	-90	0	3	23BVRC284 - 1.00m @ 0.56g/t from 0m for (GxM 1)
23BVRC285	324254	6584295	390	-90	0	3	23BVRC285 - 3.00m @ 0.56g/t from 0m for (GxM 2)
23BVRC286	324254	6584280	390	-90	0	3	23BVRC286 - 3.00m @ 0.86g/t from 0m for (GxM 3)
23BVRC287	324254	6584265	389	-90	0	3	23BVRC287 - 2.00m @ 0.68g/t from 0m for (GxM 1)
23BVRC288	324256	6584250	389	-90	0	3	23BVRC288 - 2.00m @ 0.65g/t from 0m for (GxM 1)
23BVRC289	324244	6584265	389	-90	0	3	
23BVRC290	324241	6584250	389	-90	0	3	23BVRC290 - 1.00m @ 0.75g/t from 1m for (GxM 1)
23BVRC291	324237	6584235	389	-90	0	3	23BVRC291 - 2.00m @ 1.42g/t from 0m for (GxM 3)
23BVRC292	324252	6584235	389	-90	0	3	23BVRC292 - 3.00m @ 1.23g/t from 0m for (GxM 4)
23BVRC293	324271	6584205	390	-90	0	3	23BVRC293 - 1.00m @ 0.79g/t from 1m for (GxM 1)
23BVRC294	324297	6584112	390	-90	0	3	23BVRC294 - 1.00m @ 0.73g/t from 2m for (GxM 1)
23BVRC295	324310	6584117	390	-90	0	3	23BVRC295 - 3.00m @ 0.73g/t from 0m for (GxM 2)
23BVRC296	324324	6584122	389	-90	0	3	23BVRC296 - 3.00m @ 1.21g/t from 0m for (GxM 4)
23BVRC297	324338	6584127	390	-90	0	3	22 @ 2.22 ₆ / C.Toni on Tor (OXIVI 4)
23BVRC298	324353	6584132	389	-90	0	3	23BVRC298 - 3.00m @ 0.87g/t from 0m for (GxM 3)
23BVRC298	324358	6584118	389	-90	0	3	23BVRC299 - 1.00m @ 0.5g/t from 0m for (GxM 1)
23BVRC300	324344	6584113	389	-90	0	3	23BVRC300 - 2.00m @ 0.66g/t from 0m for (GxM 1)
23BVRC301	324329	6584108	390	-90	0	3	238VRC301 - 2.00m @ 1.45g/t from 0m for (GxM 1)
23BVRC301	324325	6584103	390	-90	0	3	23BVRC302 - 2.00m @ 0.8g/t from 0m for (GxM 1)
23BVRC302	324301	6584098	390	-90	0	3	•
			_	-90 -90			23BVRC303 - 2.00m @ 0.99g/t from 0m for (GxM 2)
23BVRC304	324303	6584086	390	-	0	3	23BVRC304 - 2.00m @ 0.95g/t from 0m for (GxM 2)
23BVRC305	324321	6584090	390	-90	0	3	23BVRC305 - 2.00m @ 0.64g/t from 0m for (GxM 1)
3BVRC305.1	324334	6584094	390	-90	0	3	23BVRC305.1 - 2.00m @ 2.26g/t from 0m for (GxM 5)
23BVRC306	324348	6584099	390	-90	0	3	
23BVRC307	324362	6584104	390	-90	0	3	23BVRC307 - 1.00m @ 0.51g/t from 1m for (GxM 1)
23BVRC308	324440	6583940	387	-60	220	48	
23BVRC309	324449	6583966	387	-56	228	66	
23BVRC310	324452	6583998	387	-58	228	78	23BVRC310 - 1m @ 0.74g/t from 61m for (GxM 1)
2201/00244	224207	6500000	200		220	20	23BVRC310 - 1m @ 0.9g/t from 70m for (GxM 1)
23BVRC311	324397	6583939	388	-60	220	30	
23BVRC312	324406	6583970	388		220	48	
23BVRC313	324413	6583998	387	-60	216	66	23BVRC313 - 2m @ 0.66g/t from 51m for (GxM 1)
23BVRC314	324343	6583971	389	-60	220	30	
23BVRC315	324385	6584008	388	-60	220	66	
23BVRC316	324305	6583978	389	-60	220	30	
23BVRC317	324340	6584005	389	-60	220	48	
23BVRC318	324353	6584022	388	-55	250	66	
23BVRC319	324310	6584010	389	-60	220	48	
							23BVRC320 - 1m @ 0.55g/t from 46m for (GxM 1)
23BVRC320	324240	6584086	390	-60	220	78	23BVRC320 - 1m @ 1.66g/t from 62m for (GxM 2)
							23BVRC320 - 4m @ 0.53g/t from 66m for (GxM 2)
			_	Ш			23BVRC320 - 3m @ 0.73g/t from 72m for (GxM 2)
23BVRC321	324240	6584029	390	-75	250	60	23BVRC321 - 1m @ 1.52g/t from 42m for (GxM 2)
23BVRC322	324302	6584045	389	-60	220	66	
23BVRC323	324340	6584064	388	-58	204	84	
23BVRC324	324308	6584089	390	-50	220	96	23BVRC324 - 2m @ 2.99g/t from 94m for (GxM 6)
23BVRC325	324427	6583889	388	-70	340	24	
							23BVRD007 - 6.00m @ 0.58g/t from 123m for (GxM 3)
							23BVRD007 - 1.00m @ 0.53g/t from 133m for (GxM 1)
23BVRD007	324394	6584285	385	-73	182	306	23BVRD007 - 1.00m @ 0.83g/t from 145m for (GxM 1)
							23BVRD007 - 0.53m @ 0.82g/t from 286.7m for (GxM 0)
	ı		ı			l	23BVRD007 - 0.60m @ 1.12g/t from 290m for (GxM 1)

Hole ID	Easting	Northing	RL	Din	Azimuth	ЕОН	Intersection
TIOIC ID			l	Э.р			microcciion
В	•	A 94 Zone 5			(MGA94)	(m)	at 0 Fa /s Av. and aff and make 2m intermed dilution
В	onnie vai	e KC Signifi	cant	inters	sections ca	cuiated	at 0.5g/t Au cut off and up to 3m internal dilution
							23BVRD008 - 1.00m @ 1.24g/t from 154m for (GxM 1) 23BVRD008 - 0.40m @ 1.04g/t from 206m for (GxM 0)
23BVRD008	324391	6584285	385	-79	194	312.2	23BVRD008 - 0.38m @ 1.42g/t from 213.62m for (GxM 1)
							23BVRD008 - 7.37m @ 1.99g/t from 290.63m for (GxM 15)
							23BVRD009 - 2.00m @ 0.98g/t from 111m for (GxM 2)
							23BVRD009 - 1.15m @ 2.14g/t from 127.85m for (GxM 2)
							23BVRD009 - 1.53m @ 0.9g/t from 159m for (GxM 1)
23BVRD009	324389	6584286	385	-69	200	273.3	23BVRD009 - 0.43m @ 1.22g/t from 192.57m for (GxM 1)
							23BVRD009 - 0.52m @ 0.54g/t from 202.62m for (GxM 0)
							23BVRD009 - 2.32m @ 6.77g/t from 251.44m for (GxM 16)
							23BVRD010 - 1.00m @ 0.62g/t from 0m for (GxM 1)
23BVRD010	324473	6584257	384	-65	203	288	23BVRD010 - 6.00m @ 8.98g/t from 271m for (GxM 54)
							23BVRD010 - 0.96m @ 0.68g/t from 282m for (GxM 1)
23BVRD011	324471	6584260	384	-71	202	11	
23BVRD012	324471	6584260	384	-72	199	306.2	23BVRD012 - 2.00m @ 1.39g/t from 93m for (GxM 3)
							23BVRD013 - 1.10m @ 0.57g/t from 119m for (GxM 1)
							23BVRD013 - 0.68m @ 0.72g/t from 151m for (GxM 0)
23BVRD013	324467	6584258	384	-64	214	276	23BVRD013 - 0.61m @ 0.64g/t from 221.64m for (GxM 0)
							23BVRD013 - 4.00m @ 0.58g/t from 236m for (GxM 2)
							23BVRD013 - 2.00m @ 2.76g/t from 257m for (GxM 6)
23BVRD021	324373	6584266	385	-59	212	237	23BVRD021 - 1.00m @ 2.56g/t from 87m for (GxM 3)
23BVRD022	324372	6584267	385	-59	223	120	23BVRD022 - 4.00m @ 0.95g/t from 96m for (GxM 4)
23BVRD023	324371	6584268	385	-66	203	6	
							23BVRD024 - 0.88m @ 0.59g/t from 163.62m for (GxM 1)
23BVRD024	324371	6584269	385	-66	203	249.1	23BVRD024 - 0.90m @ 3.98g/t from 218.4m for (GxM 4)
							23BVRD024 - 2.53m @ 6.17g/t from 220.07m for (GxM 16)
23BVRD025	324246	6584327	387	-73	211	253	23BVRD025 - 1.34m @ 13.59g/t from 212m for (GxM 18)
							23BVRD026 - 12.00m @ 1.26g/t from 29m for (GxM 15)
23BVRD026	324245	6584328	387	-77	171	285.9	23BVRD026 - 1.00m @ 0.71g/t from 48m for (GxM 1)
							23BVRD026 - 1.45m @ 5.33g/t from 282.28m for (GxM 8)
23BVRD027	324244	6584328	387	-81	218	282.8	23BVRD027 - 4.00m @ 5.24g/t from 235m for (GxM 21)
							23BVRD027 - 1.00m @ 0.66g/t from 252m for (GxM 1)
23BVRD028	324247	6584352	386	-78	232	282.9	23BVRD028 - 7.10m @ 21.56g/t from 244.9m for (GxM 153)
							23BVRD028 - 1.98m @ 0.97g/t from 277.02m for (GxM 2)
							23BVRD030 - 1.00m @ 0.75g/t from 117m for (GxM 1)
23BVRD030	324405	6584223	385	-68	208	234.1	23BVRD030 - 0.54m @ 0.93g/t from 190.46m for (GxM 1)
							23BVRD030 - 2.00m @ 0.89g/t from 195m for (GxM 2) 23BVRD030 - 3.00m @ 2.61g/t from 207m for (GxM 8)
							23BVRD030 - 3.00m @ 2.01g/t from 0m for (GxM 1)
							23BVRD033 - 1.00m @ 0.52g/t from 11m for (GxM 1)
							23BVRD033 - 1.00m @ 1.87g/t from 52m for (GxM 2)
23BVRD033	324285	6584302	390	-71	211	240.1	23BVRD033 - 1.00m @ 0.63g/t from 60m for (GxM 1)
							23BVRD033 - 9.00m @ 3.19g/t from 71m for (GxM 29)
							23BVRD033 - 0.73m @ 6.31g/t from 219.67m for (GxM 5)
							23BVRD035 - 1.00m @ 1.55g/t from 77m for (GxM 2)
							23BVRD035 - 1.00m @ 0.63g/t from 95m for (GxM 1)
							23BVRD035 - 0.34m @ 0.58g/t from 142.66m for (GxM 0)
23BVRD035	324332	6584293	385	-71	208	258.8	23BVRD035 - 0.32m @ 12.44g/t from 148.85m for (GxM 4)
							23BVRD035 - 5.00m @ 0.69g/t from 224m for (GxM 3)
							23BVRD035 - 1.08m @ 0.58g/t from 231.92m for (GxM 1)
							23BVRD035 - 0.95m @ 0.5g/t from 236m for (GxM 0)
							23BVRD037 - 5.00m @ 0.72g/t from 34m for (GxM 4)
							23BVRD037 - 5.00m @ 0.81g/t from 60m for (GxM 4)
							23BVRD037 - 1.00m @ 2.75g/t from 76m for (GxM 3)
23BVRD037	324331	6584294	385	-70	213	294.8	23BVRD037 - 1.00m @ 0.54g/t from 86m for (GxM 1)
235V ND03/	227331	0504234	303	'	213	2,74.0	23BVRD037 - 1.00m @ 0.97g/t from 90m for (GxM 1)
							23BVRD037 - 1.00m @ 0.78g/t from 99m for (GxM 1)
							23BVRD037 - 1.00m @ 0.94g/t from 147m for (GxM 1)
		l	i	i i		i	23BVRD037 - 0.47m @ 0.68g/t from 250.6m for (GxM 0)

Criteria	Commer	ntary						
	Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
		(MGA	A 94 Zone 5	1 (1)		(MGA94)	(m)	
	В	onnie Val	e RC signifi	icant	Inters	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
				390				23BVRD041 - 1.00m @ 0.53g/t from 0m for (GxM 1)
								23BVRD041 - 3.00m @ 2.14g/t from 51m for (GxM 6)
	23BVRD041	324280	6584249		-74	238	204.9	23BVRD041 - 1.00m @ 0.64g/t from 157m for (GxM 1)
								23BVRD041 - 1.00m @ 4.69g/t from 179m for (GxM 5)
								23BVRD041 - 0.30m @ 1.36g/t from 184m for (GxM 0)
						180		23BVRD065 - 1.00m @ 0.5g/t from 4m for (GxM 1)
								23BVRD065 - 1.00m @ 1.44g/t from 57m for (GxM 1)
	220/00000	224200	CE0420E	200	60		240.4	23BVRD065 - 1.00m @ 1.32g/t from 104m for (GxM 1)
	23BVRD065	324288	6584305	390	-60		240.4	23BVRD065 - 1.00m @ 0.56g/t from 109m for (GxM 1)
								23BVRD065 - 3.00m @ 13.92g/t from 118m for (GxM 42)
								23BVRD065 - 3.62m @ 3.03g/t from 218m for (GxM 11)
								23BVRD074 - 5.00m @ 7.17g/t from 133m for (GxM 36)
	23BVRD074	324470	6584082	386	-87	179	204.6	23BVRD074 - 8.00m @ 1.23g/t from 149m for (GxM 10)
								23BVRD074 - 10.00m @ 6.38g/t from 164m for (GxM 64)
Data aggregation methods Relationship between mineralisation widths and intercept lengths	width avera Holes exact	of 1m i ge grad were d	for RC h des. drilled or	oles	an gona	d 0.2m t	or dia	a 0.5g/t Au cut-off with a minimum reporting mond holes, reported as length-weighted ation as much as possible, however the and true width cannot be estimated exactly
Diagrams	■ Refer	to Figu	ıres and	Tal	bles	in body	of the	release.
Balanced reporting			of histo vs releas		irill a	assay re	sults ı	used in this estimation are published in
Other substantive exploration data	■ There	is no d	other ma	ateria	al ex	kploratio	n data	a to report at this time.
Further work			_			-		part of FML's Life of Mine plan. Ore Reserve sources is currently underway

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Commentary
Database integrity	 Data was geologically logged electronically; collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields Data extracted from the database were validated visually in Datamine Studio software and ARANZ Geo Leapfrog software. Also, when loading the data any errors regarding missing values and overlaps are highlighted.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager of Exploration and Geology, conducts regular site visits. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and has conducted site visits in the past.
Geological interpretation	 All available drill hole and historic mining data was used to guide the geological interpretation of the mineralisation. An approximate cut-off grade of 0.5g/t was implemented. Some internal dilution was included for consistency. The mineralised geological interpretation was constructed in Seequent Leapfrog Geo software. A re-model of the Quarry Lode has been undertaken from the previous 2020 release following the increased drilling density, new structural data and improved geological understanding of the deposit. Mineralisation at Bonnie Vale is hosted in discrete quartz lodes within brittle-ductile shear zones cross cutting the Bonnie Vale granodiorite intrusive. Geological continuity between drill holes of both quartz veins, shears and lithology is considered good and is further improved by a network of oriented diamond core drilled since 2021. The quartz veins are typically weakly laminated and contain mostly massive, milky quartz. Individual mineralised veins range form 5cm to more than 3m width. Gold mineralisation is considered to be entirely within the quartz veins and occurs as microscopic to nugget size free gold. Acknowledging that gold mineralisation is restricted to Quartz veining meant that logged geology, specifically the presence of quartz veining, was used to guide the mineralisation interpretation. During 2022 FML drilled 12 oriented diamond core holes targeting the Quarry lode. This provided additional structural data which aligned with lithological logging further guided the geological interpretation specifically regarding vein orientation.

Criteria	Commentary
	 The location and orientation of historic underground stopes and workings provided evidence to support the modelled orientations in areas with less diamond drill core. A number of separate and distinct mineralised zones have been identified striking ENE and dipping moderately ~ 40° - 50° NNE to NE. In total 56 individual lodes were modelled at the Quarry lode and NW towards and within the historic Bonnie Vale Mining Centre. Within 5 of these larger lodes smaller internal high-grade shoots were identified and modelled as separate domains. Minor deviation only of the lode geometry was noticed between drill holes along strike and down-dip. In 2023 FML drilled a further 73 RC holes and 23 oriented diamond core holes to infill and extend the mineralisation model. These holes were successfully incorporated into the geological interpretation and resulted in a further 14 individual lodes and 1 internal high-grade shoot being modelled. The tails stockpiles were interpreted in Leapfrog Geo software with solids constructed within the surveyed tails around zones of consistently thicker mineralisation. Cut off for the previously milled quartz vein tails is estimated at 0.4 g/t and mineable/recoverable volumes have been built that exceed this cut off. Furthermore, where consistently higher metal content areas were delineated, these were sub domained and estimated separately.
Dimensions	 The upper part of the Quarry Lode and adjacent hangingwall lodes was infilled predominantly with RC at 20m x 30m spacing between 315mRL (75m below surface) to surface. Limited mainly lower grade mineralisation was intersected in this region. Furthermore the drilling was extended to the ENE at 40m x 80m spacing in the vicinity of the Bonnie Vale Reef as a first pass to gauge potential for shallow mineralisation amenable to open pit extraction. The majority of the shallow mineralisation ranged in width between 1m and 2m thickness. Strike of shallow mineralisation has been extended beyond 400m The main high grade part of the Quarry Lode extends ENE over a strike length of about 500m and from about a depth of about 75m below surface (315mRL) to approximately 480m below surface (-100mRL). The thickness of the main Quarry Lode varies from 2m to approximately 16m, with an average thickness of 7-8m between 315m RL and 135mRL (250m vertical depth range). Below about 135mRL the quarry lode becomes slightly steeper and narrows to 1-2m width. The historic Bonnie Vale tails stockpiles averaged 2.5 ~ 3.5m thick with variable extents. The largest extending over 200m x 90m wide, smaller tails around 70m x 60m. Within each stockpile the recoverable volumes varied from 880m³ to 18,738m³.
Estimation and modelling techniques	 An Ordinary Kriging (OK) estimate was run on the Insitu Bonnie Vale resource using Datamine software, following the process below: Drill hole data was selected within mineralised lodes and then within the internal HG core. All domain boundaries were considered "hard" boundaries and no drill hole information was used by another lode in the estimation. This includes the HG core lodes. Where lodes intersected, priority was assigned to one of the lodes and samples/blocks assigned to that particular lode and removed from the lower priority one. All drill hole data was composited to 1m downhole intervals – 1m is the dominant raw sampling interval. The composited assay values of each lode were imported into Snowden Supervisor for geostatistical analysis. A review of histograms, probability plots and mean/variance plots for each lode revealed some outlier sample values. Top capping of higher Au values within each lode was carried out with Au values above the cut-off grade reset to the cut-off grade. Not all lodes were top cut. The different lodes have different top-cuts as required, a maximum top-cap of 70ppm was used for one of the HG core lodes with an average of 4ppm Au used in the surround lodes.

Criteria Commentary Variography was carried out in Datamine Supervisor software, given the negatively skewed nature of the gold grades the data was transformed to normal scores distribution before being back transformed to original units before exporting. Variography was performed on the individual lodes with larger sample numbers, in total 6 variograms were modelled. These models were shared with the other lodes of similar orientation and proximity. The back-transformed variogram models had moderate to high nugget effects (20% to 55% of total sill), with a range from 35m to 142m. No "unfolding" of the mineralised wireframes was required. Estimation (via Ordinary Kriging) was into a non-rotated block model in MGA94 grid, with a parent block size of 10 mE x 10 mN x 5 mRL – this is about the average drill spacing in the deposit. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block. The ellipsoid search parameters used the variogram ranges, with a minimum of 8 and maximum of 18 samples per block estimate was used. After the first pass 53% of blocks had estimated. For un-estimated blocks after this first pass, the search distance was expanded by a factor of two and the minimum number of samples dropped to 4. In the second pass 45% of blocks estimated. A third pass was then run with an increased search distance by a factor of four and the minimum number of samples remaining at 4. Only 2% of blocks were estimated in the third search pass. After an initial validation it was determined a few lodes had over-estimated, the highgrade core within Lodes 1, 2 and 7 as well as three other lodes, 15, 16 and 44. A grade restricted search method was implemented to reduce the higher sample grades overinfluencing block grades where lower samples exist. For Lode 1 HG core samples greater than 20ppm Au were restricted to within a 20m search ellipse orientation distance. For four of the other lodes samples greater than 8ppm Au were restricted to a 20m search ellipse orientation distance. At Lode 15 a 2ppm Au restriction was implemented. The estimate was validated by visually stepping through the estimated blocks and sample data in Datamine. Comparing the estimated block statistics with composited sample data and generate trend (Swath) plots to ensure the estimate was honouring the trends of the data. Also, a review of the output parameters from the estimation process like kriging variance, negative weights, search distances and sample numbers. The tails stockpiles were estimated in Datamine software by Inverse Distance (ID2) into a separate unrotated block model in MGA 94 grid, with a parent block size of 5 mE x 5 $mN \times 1 \ mRL - \frac{1}{2}$ the average drill spacing. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block. The sample spacing was all 1m and no compositing was required. A top cap of 3ppm Au was applied to only 2 samples. An isotropic search distance of 50m x 50m x 5m was run with a minimum of 4 samples and a maximum of 8 samples to estimate a parent block. After the initial first pass only a small handful of blocks had not estimated and were assigned the average grade of the surrounding estimated blocks. Tonnages are estimated on a dry basis. Moisture The Mineral Resource for Bonnie Vale have been reported above a 0.5q/t Au cut-off for Cut-off parameters open pit Mineral Resource above the 315mRL and a 1.5g/t Au cut-off for the Mineral Resource below the 315mRL. This is based on a gold price of AUD \$2,200. The tails stockpiles have only been reported within mineable/recoverable volumes that exceed 0.4ppm Au cut-off. Operating costs considered include underground mining, transport to and processing at FML's Three Mile Hill processing plant (10km away) and administration. Following on from the 2020 PFS update, a Life of Mine (LOM) plan was released on Mining factors or 24th October 2022 outlining the underground LOM mine plan for Bonnie Vale. assumptions The Three Mile Hill Processing Plant (TMH Plant) has achieved practical completion

Criteria	Comme	entary												
	■ Futu at TN veins	 and is currently being commissioned (ASX 21/07/2023). Future reclamation of the tails stockpiles is anticipated with haulage to, and processing at TMH Plant 9km to the south. Given the material represent previously milled quartz veins it is likely that this material can be blended for processing without displacing primary material considered by the life of mine plan. 												
Metallurgical factors or	Bonnie Vale Quarry Lode Primary Mineral Resource Metallurgical test work One RC sample from Bonnie Vale Quarry Lode was tested for gold recovery by ALS in													
assumptions	2015 rep	2015 report A167726 GRAVITY/CYANIDE LEACH TESTWORK: SUMMARY OF RESULTS An Extraction (%)												
	Test ID (g/t) (BK-)			Au Extraction (%) @ hours						Grade (kg		nt Cons. g/t)		
	7952	Assay 9.45	9.09	8,000		1 98.		99.4	99.5		0.05	0.26	0.24	
		Three representative composite RC samples of were tested from Bonnie Vale Quarry Lode for gold recovery by ALS in 2017 report A17943												
		GRAVITY/CYANIDE LEACH TESTWORK SUMMARY: MASTER							TER	1 - 1				
	Comp ID	Test No. (BK-)	Grind Size P ₈₀ (µm)		A Commence of the Commence of	Grav		hours		18	Au Tai Grade (g/t)	- 41	(g/t)	
	Master	9980	212	10.1/	9.47	59.2	95.8	8 98	3.1 9	8.6	0.14	0.41	0.16	
	Comp	9981	150	10.1/ 8.32	9.54	58.8	97.8			8.9	0.11	0.38	0.16	
	ALS	A24706 - Focus Mineral Limited												
		GRAVITY LEACH TESTWORK SUMMARY												
	Sample ID	Source		Gri est# Size (μι	P80	d Grade (g/ Au	t) Grav			tractio 6-hr		Au Tail Grade (g/t)	Reagent Consumption (kg/t) NaCN Lime	
	FC235966 HG FC235967 LG	BVL HG Tails BVL General			0.86	(1.37 1.21 0.62 0.55	36.3	35 65.59	78.18	78.18 72.8 0	78.18 78	.18 0.27 .80 0.15	0.62 0.92 0.59 0.76	
Environmental factors or assumptions Bulk density	grou. The gene	nd distu PFS En erated as densitie	rbance: vironme s mine i	s includ ental as fill. assigne	ing was sumption	ste dum ons incl ed on w	ps ar uded eathe	nd mill the m	ing res	idue n ut	es/tailing ilising a rock typ	e. A der	nsity of	
·	are b was (FGL UM=	ased or used for	n test w r these /m³; trai and Fre	ork cari determi nsitiona esh UM=	ried out inations I FGD= =2.9/m³	on ½ a c. Oxide 2.4/m³	liamo Ultra and F	and col amafic Fresh	re. The (UM) FGD=2	wa: and 2.66/	ter imm Felsic (/m³; tra	Granodio nsitional	echnique orite	

Criteria	Commentary
Classification	 Resources have been classified as either Indicated or Inferred based mainly on geological confidence in the geometry/continuity of the lodes and drill density. In addition, various estimation output parameters such as number of samples, search pass, kriging variance, and slope of regression have been used to assist in classification. The SE portion of the main Quarry Lode has been infill drilled on an irregular grid but averages 20m x 30m and a large proportion of the lodes filled in the first pass. A shape was created to code blocks within as Indicated. Lodes outside this shape were also classed as Indicated if they filled in the first search pass and had sufficient drill coverage. Remaining blocks that filled in predominantly the second search pass were classified as Inferred, with drill spacing averaging 50m x 50m. Lodes that had been extended based on 1 or 2 holes were classified as Sub-Inferred, below reportable classification and are future exploration targets. The tail's stockpiles have been classified as Indicated with 10m x 10m spaced drilling.
Audits or reviews	No external audits of the mineral resource have been conducted.
Discussion of relative accuracy/confidence	 This is addressed in the relevant paragraph on Classification above. The Mineral Resource relates to global tonnage and grade estimates. Bonnie Vale has historic production from 1894 to 1911 with recorded production figures of 176,883oz at an average grade of 16.2 g/t, the grade matches well with this Mineral Resource estimate of the high-grade core.

Section 4 Estimation and Reporting of Bonnie Vale Underground Ore Reserve is outlined below.

Criteria	Commentary
Mineral Resource estimate for conversion to Ore Reserves	 The Ore Reserve estimate is based on the June 2023 Resource Model (BONNIEVALE260623M.dm) The Mineral Resource is reported inclusive of the Ore Reserve.
Site visits	 The Competent Person is a full time Focus Minerals employee and makes regular visits to the site.
Study status	 A Pre-Feasibility study was completed by Mining One mining consultants in September 2020. The current mine design and economic evaluation is based on further studies completed inhouse by Focus Minerals personnel.
Cut-Off grade parameters	 Break-even Cut-Off grades (C.O.G) have been calculated using latest cost inputs from Contractor Mining budget Rates, relevant suppliers' quotations and estimates benchmarked with similar mining operations in the region. A Gold price of A\$2,500/oz has been used. A Processing recovery of 95.8% has been applied. The mining method planned to be utilised is mechanised jumbo development and longhole stoping with a combination of backfilled and open stopes. For the first pass design of economic stopes, a Stope Incremental Cut-Off grade which does not include capital and operating development costs but includes all other operating costs including stoping, processing and mine general and administration (G&A) overhead costs has been used in the Deswik Stope Optimizer inputs. Stope dilution parameters discussed under 'Mining factors or assumption' have been incorporated. Stopes have been re-evaluated after inclusion of dilution to take out any stopes that fall below the relevant Cut-Off grades. Then, the economics of mining each individual level has been evaluated based on all capital and

all operating costs required to mine the level. These costs are a combination of level direct costs and shared costs which have been apportioned based on total mined material. Two of the fourteen planned levels have been evaluated to be uneconomic at the \$2,500/oz gold price used in the evaluation. Those two levels have not been included in the estimated Ore Reserve. There is potential for the two becoming economic with grade control drilling.

- Various Cut-Off grades have been used in estimating the reported Ore Reserve
 - A Fully Costed Stope C.O.G of 3.05g/t which covers for all costs (mining, processing and mine G&A.
 - A Level Costed Stope C.O.G of 2.47g/t which excludes capital costs but includes ore drive development costs and all other operating costs including processing and mine G&A.
 - An Incremental Stope C.O.G of 2.10g/t which excludes all development costs but includes all other operating costs including processing and mine G&A.
 - An Incremental Stope C.O.G of 1.87g/t similar to the one above but is for stopes planned to have no backfill.
 - A development Ore C.O.G of 0.50g/t has been used for determining whether development material is hauled to ore or to waste. This C.O.G covers for surface haulage and processing costs only.
- 93% of the estimated Ore Reserve is comprised of stopes and development ore that meets the fully costed stope C.O.G of 3.05g/t.

Mining factors or assumptions

- The mining method planned to be utilised is mechanised jumbo development and longhole stoping with a combination of backfilled and open stopes. The planned backfill is a combination of cemented rockfill (CRF) and loose rockfill.
- The stoping sequence is planned to be a bottom-up mining sequence in blocks of three to four levels.
- This mining method has been and is being utilised successfully in comparable and similar orebody size, configuration, and ground conditions in Western Australia and elsewhere.
- Geotechnical studies have been completed by external Geotechnical consultants to determine stable stope sizes and geometries.
- The orebody is generally flat with the dip ranging from 40 to 55 degrees.
- Level intervals are planned to be 15m floor to floor in shallow dipping areas of the orebody and increased to 18m in areas with steeper dip. The objective is to minimise stope spans, stope ore dilution and support the efficient mining of the stopes.
- Ore drives are planned to be a minimum of 4.0m wide.
- A conservative stope strike length of 25m has been planned before the placement of backfill to maintain geotechnical stability. Where there is no top access for the placement of backfill, rib pillars are planned to be left in-situ to maintain geotechnical stability. The recommendations from the completed geotechnical study have longer stope strike lengths.
- Mineable stope shapes were created using the Deswik Software, Stope Optimiser (SO).
- A minimum stope mining width of 1.8m was applied to the stope design process. The orebody true thickness ranges from about 1m to 10m wide.
- An additional planned stope dilution of 0.5m hangingwall and 0.5m footwall was applied in the SO input parameters in line with the expected Equivalent Linear Overbreak Slough (ELOS) from the stope stability curve derived in the Geotechnical studies.
- An additional stope dilution of 10 % was applied in the Deswik production scheduling software (Deswik.Sched).
- No additional dilution was applied to the ore drives.
- All dilution has been applied with a grade of (zero) 0g/t.
- Stope shapes were created using gold grade as the SO optimisation field with the Incremental Stope Cut-Off grade applied.
- Stopes were re-evaluated after the application of the additional 10% mining dilution to take out of the Ore Reserve the stopes with grades lower than relevant Cut-Off grades.
- Mining recoveries were applied in the Deswik. Sched as follows:
 - Mining recovery for backfilled stopes 98%
 - Mining recovery for open stopes 83%
 - Mining recovery for development ore 100%
- Any Inferred Mineral Resources that could not be selectively excluded from the stope design shapes were assigned (zero) 0g/t. Any such stopes were re-evaluated to check if they still met

	the relevant Cut-Off grades.
	the followant out-on grades.
Metallurgical factors or assumptions	 The Bonnie Vale underground mine ore is planned to be processed at the existing refurbished Three Mile Hill processing plant owned and operated by Focus Minerals. The processing plant utilises a conventional carbon-in-pulp (CIP) circuit, which is appropriate for the type of mineralisation. The CIP process is a conventional gold processing method commonly used in similar operations
	 worldwide and is well tested and proven. The Bonnie Vale underground mine ore will be blended with other Focus Mineral ore sources. A metallurgical recovery of 95.8% has been applied in line with the 3% discounted recovery determined by the Metallurgical studies completed in the 2020 Pre-Feasibility studies. There are no known deleterious elements expected in the Bonnie Vale underground mine ore.
Environment	The Bonnie Vale underground mine is located wholly within granted Mining Leases.
al	 Heritage surveys have been completed for the underground mine area. No Aboriginal sites were identified and liaison with Native Title Applicants is in progress. Various Environmental studies have been completed. The preparations for the documentation required for the applications for all required Environmental Approvals are in the final stages and all submissions are expected to be lodged before mid-December 2023. There are no known potential issues that are expected that may preclude or delay the granting of the approvals.
	There are no significant environmental factors that are expected to be encountered regarding the
Infrastructure	 disposal of waste material. The project will need all the relevant supporting surface and underground infrastructure. The purchase and installation costs for all the required infrastructure has been included in the
	 economic evaluation of the project. Power will be provided by diesel Gensets. Raw water will be supplied from existing bores and from pumping any water intercepted in the new underground excavations.
	The site is serviced by an existing haul road which is capable of handling 125t road trains.
Costs	 The costs used to derive this Ore Reserve estimate are based on Contractor Mining budget rates, relevant suppliers' quotations and estimates benchmarked with similar mining operations in the region. Ore haulage costs are based on the currently engaged haulage contractor's rates. Freight for mining consumables is included in the mining contractor schedule of rates. Ore processing costs are based on the Focus Minerals' Three Mile Hill Processing plant processing costs. There are No penalties or specifications. Allowance has been made for royalties as follows: 2.5% for State Government royalty and, an allowance for Native Title royalty pending commercial agreement. There are no known deleterious elements, as such no allowance has been made. All costs have been estimated in Australian dollars.
Revenue	Economic evaluation is based on a gold price of A\$2,500/oz. The coefficient has been modelled in real terms and no price or coefficient were applied.
factors	The cashflow has been modelled in real terms and no price or cost escalations were applied.
Market assessment	 Gold is planned to be sold to Perth Mint at spot price. There are no hedging arrangements currently in place.
Economic	 Inputs to economic analysis are based on costs, processing parameters and gold price assumptions discussed in the sections above. Discounted cashflows were carried out to determine relative NPV using a 7% annual discount rate. The project shows a strong positive NPV based on the inputs and assumptions used in the evaluation.
Social	 The Bonnie Vale Underground mine project is located on granted mining leases. A Social Impact Assessment was completed by 360 Environmental for the Bonnie Vale Project to assist with identifying and managing the key stakeholders. Focus Minerals is in the process of securing all relevant agreements with local stakeholders and

	government agencies and these are planned to be in place before the start of operations.
Other	No identifiable naturally occurring risks have been identified to impact the Ore Reserves.
Classification	 Mineral Resources have been converted to Ore Reserve as per JORC 2012 guidelines, i.e., Measured to Proven, Indicated to Probable. The Ore Reserve includes 1% of the total ore tonnes which are in the Inferred resource category. These ore tonnes have been assigned a grade of zero (0)g/t. This Inferred resource material could not be selectively excluded from the stope design shapes. The estimated Ore Reserve is classified as Probable as there are no Measured ore resources.
Audits or reviews	 The Ore Reserve has been estimated by Focus Minerals personnel. The cost and mining parameters were reviewed internally and benchmarked against operations with similar orebodies and operating structures. No external audits were carried out.
Discussion of relative accuracy/ confidence	 In the opinion of the Competent Person, the modifying factors and cost assumptions used in generating this Ore Reserve estimate are reasonable. No statistical procedures were carried out to quantify accuracy of the Ore Reserve estimate.