

ASX RELEASE

10 April 2024

Tiris drilling continues to grow existing Mineral Resources

KEY POINTS:

The Tiris Uranium Project, Mauritania, is a near-term, low-cost, long-life future uranium mine producing 2Mlbs pa U_3O_8 over the currently defined 17-year mine life with production expected to commence in 2026. The recent Front End Engineering Design ("FEED") study clearly demonstrated the Project's excellent economics (NPV₈ US\$ 366M and IRR 34%)¹.

The current ~15,500m drill programme is designed to demonstrate the excellent Mineral Resource growth potential in the Tiris area and to further enhance the Project value through either extending mine life and/or expanding production capacity in the future.

Drilling to date has defined two new areas² of extensive shallow and high-grade mineralisation at both Hippolyte South and Sadi and numerous extensions to known mineralisation over the other Mineral Resource areas that should materially add to the existing Minerals Resources of 58.9Mlbs $U_3O_8^3$.

- Hippolyte South High-grade shallow mineralisation now defined over an 8km strike length
- Sadi Mineralisation extended over 1.2km south from the existing 9km mineralised trend

This release details the results from the second batch of drill results (3,304m) received from the drilling programme.

The drill programme has now been completed and final results from the remaining ~3,000m will be released once received.

An update of the Mineral Resources at Tiris has commenced and will be released during this quarter.

Highlights from the latest drilling results include:

Hippolyte South: Drilling results further define mineralisation over a strike length of over 8km and add to the excellent results from the Phase 1 drilling⁴, Figure 1. Significant intercepts include:

٠	3.9m grading 310ppm U₃O ₈ from 0.9m	(23FEAC001633)
٠	3.0m grading 395ppm U₃O ₈ from 0.9m	(23FEAC001744)
٠	3.1m grading 325ppm U₃O ₈ from 0.5m	(23FEAC001729)
٠	3.6m grading 263ppm U₃O ₈ from 1.6m	(23FEAC001737)

Lazare North and South: New mineralisation defined on margins of existing Mineral Resource areas at both Lazare North and Lazare South, Figure 2. Significant intercepts include:

•	4.1m grading 338ppm U ₃ O ₈ from 0.3m	(23ASAC002260)
•	3.5m grading 345ppm U₃O ₈ from 0.2m	(23ASAC002262)
•	4.3m grading 207ppm U₃O ₈ from 0.4m	(23ASAC002228)
•	3.3m grading 266ppm U₃O ₈ from 0.5m	(23ASAC002314)
•	3.4m grading 252ppm U₃O ₈ from 0.5m	(23ASAC002345)

² ASX and AIM Release: 28 Feb 2024 - Aura's Tiris FEED Study Returns Excellent Economics

² ASX Release: 11 March 2024 – Tiris drilling defines extensive new uranium mineralisation

³ ASX Release: 17 Oct 2023 – New Uranium Exploration Target identified at Tiris Project

⁴ ASX Release: 11 March 2024 – Tiris drilling defines extensive new uranium mineralisation

Aura Energy's Managing Director and CEO Andrew Grove said:

"Drilling results at Tiris continue to demonstrate the significant potential to grow the Project's Mineral Resources beyond the current 58.9 Mlbs $U_3O_8^5$. These results has now defined mineralisation over at least 8km strike at Hippolyte South. Additionally, further drilling has been undertaken at Sadi, with those results pending. Both areas are expected to significantly add to the Mineral Resources at Tiris.

"Drilling has now been completed and final results will be released once received and work to update the Mineral Resources at Tiris has commenced."

"The shallow, free dig open pit mining and outstanding beneficiation properties at Tiris has demonstrated very robust economics. Additional Mineral Resources are likely to allow for future expansion opportunities beyond the currently proposed 2Mlbs per annum production rate."

⁵ ASX and AIM Release: 14 Feb 2023 - Major Resource Upgrade at Aura Energy's Tiris Project

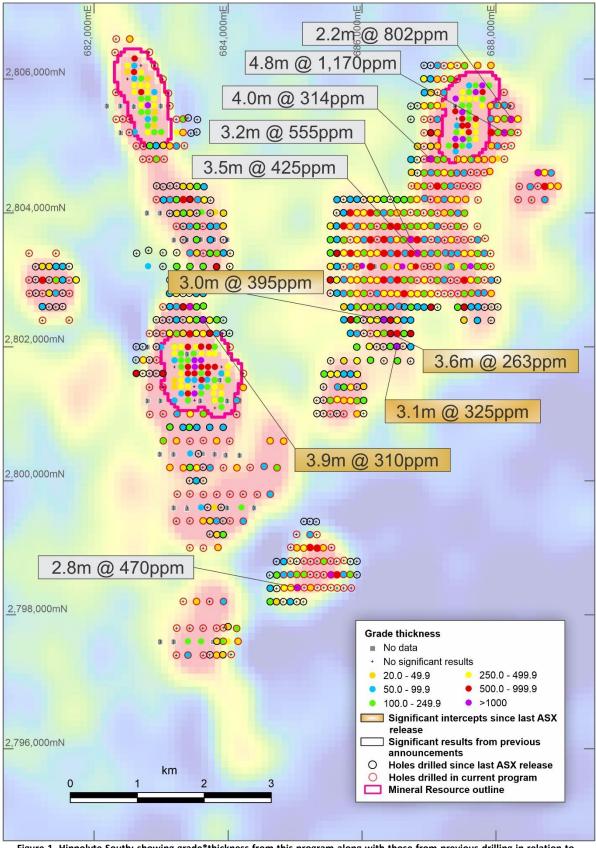


Figure 1. Hippolyte South: showing grade*thickness from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines. Drilling has confirmed significant new mineralisation over at least an 8km strike length.

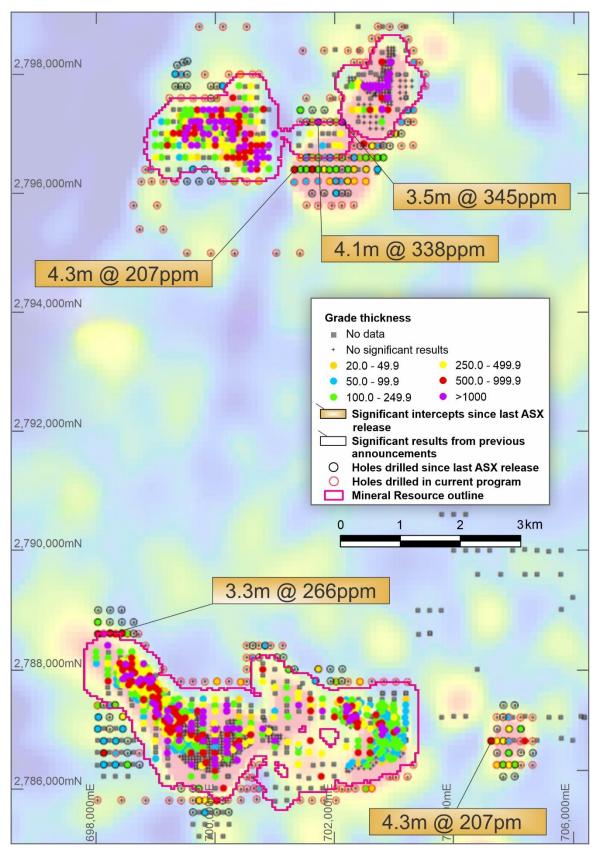


Figure 2. Lazare North and Lazare South: showing grade*thickness from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines. Drilling has confirmed significant mineralisation outside the resource outlines. Significant intercepts occur on low strength radiometric anomalies, highlighting the opportunity to further extend mineralisation.

Aura Energy Limited (ASX: AEE, AIM: AURA) ("Aura" or "the Company") is pleased to provide an update on drilling results from the Tiris Uranium Project ("Tiris" or "the Project") in Mauritania.

This includes the radiometric results from the second batch of drilling, comprising 793 air core drill holes (3,304 m of drilling, average depth 4.2m) of the 15,500m exploration drilling program that commenced late in December 2023 (Figure 3). A total of 12,543m of drilling has been completed and reported to date.

The drill program aims to expand Tiris' Mineral Resources by targeting extensions to known mineralisation and testing previously undrilled radiometric anomalies around Tiris East, and includes testing of the previously announced **8Mlbs and 32Mlbs U₃O₈ Exploration Target⁶**.

Drilling was planned in several phases, with phase one providing wide spaced drill holes to assess - target viability, before proceeding to phase two follow-up, infill and step-out drilling.

The significant intercepts obtained from the drill holes are presented in Table 1, Appendix 1; drill hole locations tabled in Table 2, Appendix 2; and Figures showing the spatial distribution of grade and grade times thickness for each targeted prospect are presented in Appendix 3.

Discussion of material issues relevant to the JORC Code are limited to the current drilling program, JORC Table 1, Appendix 4.

A summary of drilling by prospect area is as follows:

Prospect	Number of holes	Drilled metres
Hippolyte South	282	1,062
Hippolyte North	161	614
Hippolyte West C	57	286
Lazare North	61	304
Lazare South	67	317
Marie E-H	114	551
Marie F-G	51	170
TOTAL	793	3,304

⁶ ASX Release: 17 Oct 2023 – New Uranium Exploration Target identified at Tiris Project

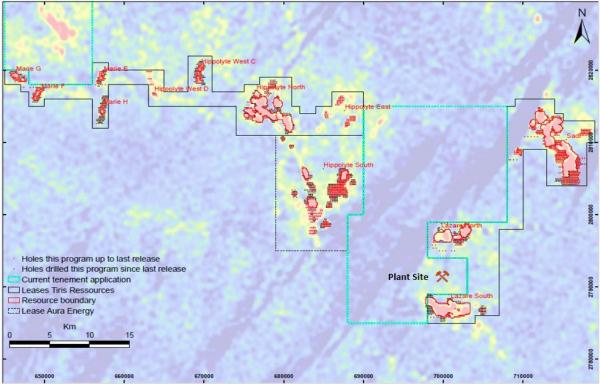


Figure 3. Tiris East drill hole locations reported in this release (black), drill hole locations from previous releases (red), resource areas, prospects, U-radiometric anomalies and granted tenements, tenement applications and plant site.

Tiris Uranium Project summary

The Tiris Uranium Project is in north-eastern Mauritania, approximately 1,200km northeast of the capital Nouakchott.

Calcrete-type uranium mineralisation was first identified by Aura from targeting high strength airborne radiometric anomalies. Mineralisation generally lies either within weathered, partially decomposed red granite or in colluvial gravels, within unconsolidated near-surface material and is typically less than five metres in depth. The uranium mineralisation occurs principally as carnotite.

The current uranium Mineral Resource totals 58.9 Mlbs $U_3O_8^7$ and is based on 21,990m of drilling in 5,619 holes. The total cost of delivering the Mineral Resource is only US\$0.20/lb U_3O_8 . The current drill results provide management with further confidence it can continue to grow the Project's resources, whilst maintaining a very low exploration cost.

The recently released Front End Engineering Design study ("FEED")⁸ defined a near-term low-cost 2Mlbs U_3O_8 pa uranium project with a 17-year mine life and very strong economics; NPV₈ US\$ 366M, IRR 43% and 2.5 year pay-back at a US\$ 80/lb U_3O_8 price. The Project has significant optionality in the design, allowing expansion to accommodate growth in Mineral Resources.

Aura Energy plans to develop Tiris via shallow free dig open pit mining and exceptional beneficiation delivering low-cost, high-grade leach feed averaging 1,743ppm U_3O_8 from an average ore feed grade of just 255ppm U_3O_8 .

⁷ ASX Release: 17 Oct 2023 – New Uranium Exploration Target identified at Tiris Project

² ASX and AIM Release: 28 Feb 2024 – Aura's Tiris FEED Study Returns Excellent Economics

Discussion of exploration results

A very large number of significant intercepts were returned from the drilling and are presented in Table 1.

Historically, Aura has targeted only very high strength radiometric anomalies during exploration programs. This program sought to identify potential resources that may exist adjacent to the currently identified resources. Several conceptual targets were assessed, on low and extremely low strength anomalies. The large number of significant intercepts identified on such anomalies confirms that there is significant potential to identify further resources associated with lower strength radiometric targets. This is a major change from previous exploration in the area.

Hippolyte South

Hippolyte South drilling has returned excellent results, supporting and expanding the extensive new mineralisation over an area of approximately 3km x 2km in size, as defined in the Phase 1 drilling release⁹. Mineralised intercepts were returned to the south of the new mineralised area and adjacent to the mineral resource areas, Figure 1 and 4.

Further follow-up drilling is required in this area.

Significant intercepts include:

•	3.9m grading 310ppm U₃O ₈ from 0.9m	(23FEAC001633)
٠	3.0m grading 395ppm U₃O₅ from 0.9m	(23FEAC001744)
٠	3.1m grading 325ppm U₃O ₈ from 0.5m	(23FEAC001729)
٠	3.6m grading 263ppm U₃O₅ from 1.6m	(23FEAC001737)

A full list of the significant intercepts from Hippolyte South can be found in Table 1.

Lazare North and Lazare South

Follow-up drilling from the Phase 1 results returned significant intercepts coincident with both highstrength and low-strength radiometric anomalies outside the margins of the existing mineral resource boundaries, Figure 2 and 5. Further drilling results for Lazare North are outstanding.

Shallow significant intercepts include:

•	4.1m grading 338ppm U₃O ₈ from 0.3m	(23ASAC002260)
•	3.5m grading 345ppm U₃O ₈ from 0.2m	(23ASAC002262)
•	4.3m grading 207ppm U₃O ₈ from 0.4m	(23ASAC002228)
•	3.3m grading 266ppm U₃O ₈ from 0.5m	(23ASAC002314)
•	3.4m grading 252ppm U₃O ₈ from 0.5m	(23ASAC002345)

A full list of the significant intercepts from Lazare North and Lazare South can be found in Table 1.

A general discussion of each of the targeted resource areas and prospects is presents below:

Target	Discussion on Results
Sadi	No drilling undertaken since last exploration update. Further drilling has been completed to follow-up excellent results from Phase 1, and will be presented when data processing is finalised.
Hippolyte South	Follow-up drilling to close off the eastern resource zone has returned positive results that require further follow-up. In the western resource zone, follow up

⁹ ASX Release: 11 March 2024 – Tiris drilling defines extensive new uranium mineralisation

Target	Discussion on Results
Figures: 1 and 4	drilling has returned good results to the south of the mineral resources, and between the two currently identified resource shapes. Further drilling has been completed to follow-up excellent results from Phase 1 and data will be presented when data processing is finalised.
Hippolyte North Figures: 5	Follow-up drilling over small anomalies on the northern edge of Hippolyte North returned a number of positive results. A small program to test around the resource boundary for continued mineralisation and to identify potential linkages between separate resource shapes did identify a low-grade halo in several areas. There is a potential linkage between the Northeastern resource shape and the main resource. Further drilling has been completed to follow- up results from Phase 1 and data will be presented when data processing is finalised.
Hippolyte East	Although several significant intercepts were returned in Phase 1 within the mineralised zone, this area was not targeted during Phase 2 drilling, due to the abundance of priority targets to be completed during this program.
Hippolyte West C Figure: 6	Phase 1 drilling results suggest that the mineralisation continues between the three previously defined separate resource areas, along with possible width extensions. Phase 2 follow up drilling was aimed at providing width and strike extensions to the mineralisation. Results did identify a wider zone in the central area and show that mineralisation may extend to the southeast.
Hippolyte West D	Phase 2 drilling was not undertaken on this Target.
Lazare North Figure: 7	Drilling showed various significant intercepts that follow-up Phase 1 in the area coincident with a high-strength radiometric anomaly. Further follow-up drilling has been undertaken and the results are pending. Significant results were returned on the northern edge of the resource area. Further drilling has been completed and data will be presented when data processing is finalised.
Lazare South Figure: 7	Several significant intercepts were returned on the northwestern edge of the resource area, in an area of low tenor radiometric anomaly. Further drilling has been completed and data will be presented when data processing is finalised.
Marie E-H Figure: 8	Drilling has identified a zone of positive results that is three times as long as the current resource in the southern area, and this is still open to the north. Drilling in the northern area closed-off the drill zone. Most of these results are on a low-tenor radiometric anomaly.
Marie F-G Figure: 9	A small amount of Phase 2 drilling was undertaken to close-off significant intercepts from Phase 1.

Further work drilling

The total ~15,500m drilling program was completed on the 4th April 2024.

A full update of the Tiris Mineral Resource estimate incorporating the new drilling data has commenced and will be published this quarter.

ENDS

The Board of Aura Energy Ltd has approved this announcement.

This Announcement contains inside information for the purposes of the UK version of the market abuse regulation (EU No. 596/2014) as it forms part of United Kingdom domestic law by virtue of the European Union (Withdrawal) Act 2018 ("UK MAR").

For further information, please contact:

Andrew Grove	Paul Ryan	SP
Managing Director and CEO	Morrow Sodali	No
Aura Energy Limited	Investor & Media Relations	Da
agrove@auraee.com	p.ryan@morrowsodali.com	Ка
+61 414 011 383	+61 409 296 511	Gr

SP Angel Corporate Finance LLP Nominated Advisor and Broker David Hignell Kasia Brzozowska Grant Baker +44 203 470 0470

About Aura Energy (ASX: AEE, AIM: AURA)

Aura Energy is an Australian-based mineral company with major uranium and polymetallic projects in Africa and Europe.

The Company is focused on developing a uranium mine at the Tiris Uranium Project, a major greenfield uranium discovery in Mauritania. The February 2024 FEED study demonstrated Tiris to be a near-term low-cost 2Mlbs U3O8 pa near term uranium mine with a 17-year mine life with excellent economics and optionality to expand to accommodate resource growth.

Aura plans to transition from a uranium explorer to a uranium producer to capitalise on the rapidly growing demand for nuclear power as the world shifts towards a decarbonised energy sector.

Beyond the Tiris Project, Aura owns 100% of the Häggån Project in Sweden. Häggån contains a global-scale 2.5Bt vanadium, sulphate of potash ("SOP") and uranium resource. Utilising only 3% of the resource, a 2023 Scoping Study outlined a 27-year mine life based on mining 3.5Mtpa.

Disclaimer Regarding Forward-Looking Statements

This ASX announcement (Announcement) contains various forward-looking statements. All statements other than statements of historical fact are forward-looking statements. Forward-looking statements are inherently subject to uncertainties in that they may be affected by a variety of known and unknown risks, variables and factors which could cause actual values or results, performance or achievements to differ materially from the expectations described in such forward-looking statements. The Company does not give any assurance or guarantee that the anticipated results, performance or achievements expressed or implied in those forward-looking statements will be achieved.

Competent Persons Statement

The Competent Person for the calculation of significant intercepts is Mr Arnold van der Heyden of H&S Consulting Pty Ltd. The information in the report to which this statement is attached that relates to the 2023 Mineral Resource Estimate is based on information compiled by Mr van der Heyden. Mr van der Heyden has sufficient experience that is relevant to the resource estimation to qualify Mr van der Heyden as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr van der Heyden is an employee of H&S Consultants Pty Ltd, a Sydney based geological consulting firm. Mr van der Heyden is a Member and Chartered Professional of The Australasian Institute of Mining and Metallurgy (AusIMM) and consents to the inclusion in the report of the matters based on his information.

The Competent Person for drill hole data is Dr Michael Fletcher. The information in the report to which this statement is attached that relates to compiling resource estimates and to drill hole data is based on information

compiled by Dr Michael Fletcher. Dr Fletcher has sufficient relevant experience in the preparation and compilation of exploration data across a broad range of deposits to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Fletcher is a consultant to Aura Energy and a full-time employee of GeoEndeavours Pty Ltd. Dr Fletcher is a Member of the Australasian Institute of Geoscientists and consents to the inclusion in the report of this information.

The Competent Person for interpreting downhole gamma information, disequilibrium analysis and assay results is Mr David Wilson. Mr Wilson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Wilson is a consultant to Aura Energy and is a full-time employee of 3D Exploration. Mr Wilson is a Member of the Australasian Institute of Geoscientists and consents to the inclusion in the report of the matters based on his information.

The Tiris Uranium Resource Estimate was reported in 2023 under the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". The Mineral Resource Estimate was detailed in ASX announcement: "Major Resource Upgrade at Aura Energy's Tiris Project" 14th February 2023. Aura confirms that it is not aware of any new information or data that materially affects the information included in this announcement regarding the mineral resources and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

Prospect	Hole ID	FROM	то	Thicknes s	Grade	Grade x
Frospect	Hole ID	m	m	m	ppm U₃O ₈	Thickness
Hippolyte North	23FEAC001309	1.4	2.3	0.9	186	165
Hippolyte North	23FEAC001316	2.5	3.0	0.5	146	73
Hippolyte North	23FEAC001317	1.7	4.0	2.3	183	421
Hippolyte North	23FEAC001319	1.7	2.5	0.8	101	84
Hippolyte North	23FEAC001320	0.5	2.5	2.0	188	366
Hippolyte North	23FEAC001321	0.1	3.6	3.5	136	473
Hippolyte North	23FEAC001322	0.4	2.9	2.6	146	374
Hippolyte North	23FEAC001323	0.3	2.2	1.9	166	315
Hippolyte North	23FEAC001324	0.5	1.7	1.2	119	144
Hippolyte North	23FEAC001325	1.8	2.7	0.9	154	142
Hippolyte North	23FEAC001325	3.4	4.6	1.3	130	166
Hippolyte North	23FEAC001326	0.6	1.1	0.5	108	54
Hippolyte North	23FEAC001332	0.5	4.4	3.9	194	749
Hippolyte North	23FEAC001340	0.5	1.0	0.5	137	69
Hippolyte North	23FEAC001344	0.3	0.8	0.5	122	61
Hippolyte North	23FEAC001344	1.6	3.7	2.0	124	254
Hippolyte North	23FEAC001351	1.0	1.9	0.8	109	92
Hippolyte North	23FEAC001363	1.1	1.6	0.5	108	54
Hippolyte North	23FEAC001364	0.9	2.5	1.6	127	206
Hippolyte North	23FEAC001364	3.0	3.9	0.8	145	120
Hippolyte North	23FEAC001405	3.5	4.5	1.1	122	129
Hippolyte North	23FEAC001406	2.3	3.2	0.8	113	95
Hippolyte North	23FEAC001456	2.2	3.2	1.0	173	168
Hippolyte South	23FEAC001534	1.0	1.5	0.5	177	88
Hippolyte South	23FEAC001558	1.7	3.4	1.7	126	211
Hippolyte South	23FEAC001560	0.6	1.1	0.5	114	57
Hippolyte South	23FEAC001562	1.0	4.1	3.1	169	528
Hippolyte South	23FEAC001563	1.3	2.9	1.6	234	375
Hippolyte South	23FEAC001577	5.3	6.6	1.2	183	224
Hippolyte South	23FEAC001578	0.2	0.7	0.5	108	54
Hippolyte South	23FEAC001596	1.1	1.6	0.5	101	50
Hippolyte South	23FEAC001597	0.7	2.6	2.0	180	353
Hippolyte South	23FEAC001606	1.8	2.3	0.5	232	125
Hippolyte South	23FEAC001609	1.2	4.1	2.9	224	657
Hippolyte South	23FEAC001614	2.2	2.7	0.5	143	72
Hippolyte South	23FEAC001615	1.3	2.3	1.1	101	108
Hippolyte South	23FEAC001615	5.9	6.8	0.9	134	122
Hippolyte South	23FEAC001616	1.2	1.9	0.7	103	70

Appendix 1 – Table 1: Significant intercepts reported in this release.

Durant		FROM	то	Thicknes s	Grade	Grade x
Prospect	Hole ID	m	m	m	ppm U₃O ₈	Thickness
Hippolyte South	23FEAC001617	0.9	3.3	2.4	199	474
Hippolyte South	23FEAC001622	2.0	2.5	0.6	128	72
Hippolyte South	23FEAC001623	0.2	2.0	1.8	344	602
Hippolyte South	23FEAC001625	2.0	2.8	0.8	136	108
Hippolyte South	23FEAC001629	0.8	1.3	0.5	102	51
Hippolyte South	23FEAC001631	0.9	2.0	1.0	277	285
Hippolyte South	23FEAC001632	1.0	1.7	0.8	177	134
Hippolyte South	23FEAC001633	0.9	4.8	3.9	310	1210
Hippolyte South	23FEAC001634	1.3	3.7	2.4	130	306
Hippolyte South	23FEAC001638	0.1	2.3	2.2	225	497
Hippolyte South	23FEAC001640	0.2	1.4	1.2	306	379
Hippolyte South	23FEAC001641	0.9	4.6	3.7	172	643
Hippolyte South	23FEAC001649	1.4	4.9	3.5	178	625
Hippolyte South	23FEAC001653	0.1	2.7	2.6	210	536
Hippolyte South	23FEAC001654	3.0	3.9	0.9	115	102
Hippolyte South	23FEAC001655	1.8	2.3	0.5	109	54
Hippolyte South	23FEAC001656	0.9	2.1	1.2	145	167
Hippolyte South	23FEAC001658	0.9	1.4	0.5	105	53
Hippolyte South	23FEAC001661	3.1	4.5	1.4	108	147
Hippolyte South	23FEAC001664	1.6	2.1	0.5	102	51
Hippolyte South	23FEAC001672	0.4	1.1	0.8	183	137
Hippolyte South	23FEAC001677	0.8	1.8	1.0	134	131
Hippolyte South	23FEAC001683	1.0	1.6	0.6	127	76
Hippolyte South	23FEAC001711	0.3	0.9	0.6	180	106
Hippolyte South	23FEAC001712	0.9	4.6	3.7	117	433
Hippolyte South	23FEAC001713	0.6	2.6	2.0	157	307
Hippolyte South	23FEAC001713	3.2	4.0	0.8	142	120
Hippolyte South	23FEAC001714	0.8	1.3	0.5	106	53
Hippolyte South	23FEAC001715	1.5	2.0	0.5	125	63
Hippolyte South	23FEAC001719	1.3	3.1	1.8	143	257
Hippolyte South	23FEAC001722	0.3	1.1	0.8	142	118
Hippolyte South	23FEAC001722	2.2	3.1	0.9	104	90
Hippolyte South	23FEAC001724	2.6	4.0	1.4	147	200
Hippolyte South	23FEAC001725	1.3	4.2	2.9	121	344
Hippolyte South	23FEAC001729	0.5	3.6	3.1	325	1014
Hippolyte South	23FEAC001731	1.9	2.4	0.5	126	63
Hippolyte South	23FEAC001734	3.0	5.0	2.1	231	473
Hippolyte South	23FEAC001735	0.4	4.2	3.8	182	690
Hippolyte South	23FEAC001736	0.3	1.0	0.8	141	109

Durant		FROM	то	Thicknes s	Grade	Grade x
Prospect	Hole ID	m	m	m	ppm U₃O ₈	Thickness
Hippolyte South	23FEAC001736	1.6	2.3	0.6	153	96
Hippolyte South	23FEAC001737	1.6	5.3	3.6	263	953
Hippolyte South	23FEAC001738	3.8	4.5	0.7	114	75
Hippolyte South	23FEAC001739	0.7	3.7	3.0	217	659
Hippolyte South	23FEAC001740	1.5	2.5	1.0	195	197
Hippolyte South	23FEAC001742	1.3	3.6	2.3	183	423
Hippolyte South	23FEAC001743	0.8	2.2	1.5	211	305
Hippolyte South	23FEAC001744	0.9	3.8	3.0	395	1164
Hippolyte South	23FEAC001745	1.2	4.1	2.9	208	602
Hippolyte South	23FEAC001746	0.2	2.4	2.2	226	495
Hippolyte South	23FEAC001748	1.9	2.4	0.5	119	60
Hippolyte South	23FEAC001753	1.8	2.4	0.6	127	74
Hippolyte South	23FEAC001754	2.5	4.7	2.2	117	261
Hippolyte South	23FEAC001755	1.2	2.8	1.6	116	187
Hippolyte South	23FEAC001757	0.5	1.1	0.6	104	63
Hippolyte South	23FEAC001757	3.3	3.8	0.5	112	56
Hippolyte South	23FEAC001758	2.3	3.8	1.5	103	155
Hippolyte South	23FEAC001758	6.1	6.6	0.5	104	52
Hippolyte South	23FEAC001759	2.9	3.6	0.6	143	92
Hippolyte South	23FEAC001761	0.9	4.1	3.3	181	592
Hippolyte South	23FEAC001761	5.0	5.7	0.6	120	77
Hippolyte South	23FEAC001763	2.3	3.4	1.1	110	124
Hippolyte South	23FEAC001763	4.4	5.0	0.6	175	110
Hippolyte South	23FEAC001764	0.7	2.7	2.0	354	702
Hippolyte South	23FEAC001773	1.8	2.3	0.5	110	55
Hippolyte South	23FEAC001773	4.2	4.8	0.6	144	91
Hippolyte South	23FEAC001774	1.8	4.8	3.0	232	705
Hippolyte South	23FEAC001775	1.5	3.7	2.2	224	498
Hippolyte South	23FEAC001776	1.5	3.4	1.9	152	284
Hippolyte South	23FEAC001779	1.6	5.3	3.7	186	682
Hippolyte South	23FEAC001780	2.8	4.2	1.5	131	190
Hippolyte South	23FEAC001781	4.5	5.2	0.8	102	76
Hippolyte South	23FEAC001782	3.0	5.3	2.3	147	342
Hippolyte South	23FEAC001783	4.1	4.8	0.7	109	76
Hippolyte South	23FEAC001785	4.1	5.1	0.9	103	95
Hippolyte South	23FEAC001786	2.0	2.6	0.6	110	71
Hippolyte South	23FEAC001786	3.5	4.0	0.5	100	50
Hippolyte South	23FEAC001788	1.7	2.4	0.8	110	87
Hippolyte South	23FEAC001791	0.6	3.3	2.7	130	349

Prospect	Hole ID	FROM	то	Thicknes s	Grade	Grade x
riospeet		m	m	m	ppm U₃O ₈	Thickness
Hippolyte South	23FEAC001796	0.3	1.7	1.4	161	225
Hippolyte South	23FEAC001799	3.5	4.1	0.7	131	85
Hippolyte South	23FEAC001803	0.1	4.0	3.9	158	621
Hippolyte South	23FEAC001809	2.1	3.4	1.3	200	254
Hippolyte South	23FEAC001810	2.9	3.5	0.6	141	81
Hippolyte South	23FEAC001810	4.5	5.0	0.5	124	62
Hippolyte West C	23FEAC001261	1.6	2.1	0.5	161	81
Hippolyte West C	23FEAC001270	4.0	4.5	0.5	160	80
Hippolyte West C	23FEAC001281	2.2	2.7	0.5	174	87
Hippolyte West C	23FEAC001293	1.3	2.0	0.8	148	111
Hippolyte West C	23FEAC001304	0.7	3.9	3.1	193	607
Hippolyte West C	23FEAC001305	1.6	2.2	0.6	116	73
Hippolyte West C	23FEAC001305	2.9	3.4	0.5	102	51
Hippolyte West C	23FEAC001520	2.4	3.1	0.8	144	113
Hippolyte West C	23FEAC001523	1.0	1.7	0.6	138	89
Lazare North	23ASAC002219	2.2	2.7	0.5	103	52
Lazare North	23ASAC002225	0.4	2.2	1.8	364	651
Lazare North	23ASAC002228	0.4	4.7	4.3	207	889
Lazare North	23ASAC002229	2.0	3.2	1.2	179	216
Lazare North	23ASAC002230	0.2	1.7	1.5	236	363
Lazare North	23ASAC002231	1.4	2.1	0.7	171	113
Lazare North	23ASAC002234	0.5	1.4	1.0	136	131
Lazare North	23ASAC002237	1.5	2.0	0.5	114	57
Lazare North	23ASAC002241	0.4	0.9	0.5	129	65
Lazare North	23ASAC002242	0.3	1.5	1.2	177	218
Lazare North	23ASAC002244	1.9	3.0	1.2	130	149
Lazare North	23ASAC002248	1.0	2.6	1.6	137	225
Lazare North	23ASAC002252	1.4	3.4	2.0	187	366
Lazare North	23ASAC002252	5.4	6.8	1.4	299	412
Lazare North	23ASAC002260	0.3	4.4	4.1	338	1387
Lazare North	23ASAC002262	0.2	3.7	3.5	345	1210
Lazare North	23ASAC002265	2.0	3.5	1.5	140	203
Lazare North	23ASAC002268	2.5	3.0	0.5	107	54
Lazare North	23ASAC002276	2.6	3.1	0.5	145	72
Lazare North	23ASAC002282	2.8	3.3	0.5	129	64
Lazare North	23ASAC002290	0.9	1.7	0.8	150	117
Lazare North	23ASAC002292	4.0	4.6	0.5	135	73
Lazare North	23ASAC002293	4.5	6.0	1.5	131	193
Lazare North	23ASAC002295	0.7	3.6	2.9	282	813

Prospect	Hole ID	FROM m	TO m	Thicknes s m	Grade ppm U₃O ₈	Grade x Thickness
Lazare North	23ASAC002302	0.9	1.4	0.5	118	59
Lazare North	23ASAC002304	2.6	3.5	0.9	106	98
Lazare North	23ASAC002306	2.2	4.3	2.1	139	298
Lazare North	23ASAC002310	1.6	2.7	1.2	136	158
Lazare North	23ASAC002313	2.5	3.0	0.5	104	52
Lazare North	23ASAC002313	3.7	6.5	2.8	185	516
Lazare North	23ASAC002314	0.5	3.9	3.3	266	883
Lazare North	23ASAC002315	0.9	3.9	3.0	209	623
Lazare North	23ASAC002318	4.1	5.8	1.7	114	190
Lazare South	23ASAC002343	1.3	3.7	2.4	140	335
Lazare South	23ASAC002344	3.3	4.0	0.7	168	116
Lazare South	23ASAC002345	0.5	3.9	3.4	252	861
Lazare South	23ASAC002345	5.6	7.2	1.6	123	200
Lazare South	23ASAC002346	1.2	3.0	1.8	144	258

Note: Holes without significant intercepts not reported in Table 1

Note: Highlighted holes called out in the body of the release

Note: All holes drilled vertical, intervals are down hole depths and thicknesses represent true thicknesses due to the flat nature of the mineralisation

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte North	23FEAC001306	1.0	678,330	2,818,601	420	Hippolyte South	23FEAC001766	2.3	687,732	2,802,594	397
Hippolyte North	23FEAC001307	7.2	678,529	2,818,600	419	Hippolyte South	23FEAC001767	3.4	687,834	2,802,591	397
Hippolyte North	23FEAC001308	7.2	678,727	2,818,598	418	Hippolyte South	23FEAC001768	1.9	687,935	2,802,593	396
Hippolyte North	23FEAC001309	7.4	678,928	2,818,598	417	Hippolyte South	23FEAC001769	2.2	688,031	2,802,593	396
Hippolyte North	23FEAC001310	3.9	679,128	2,818,399	415	Hippolyte South	23FEAC001771	2.1	688,026	2,802,998	397
Hippolyte North	23FEAC001311	7.0	678,127	2,818,198	419	Hippolyte South	23FEAC001772	7.3	685,528	2,802,798	399
Hippolyte North	23FEAC001312	5.6	678,328	2,818,197	418	Hippolyte South	23FEAC001773	7.4	685,629	2,802,800	399
Hippolyte North	23FEAC001313	7.0	678,528	2,818,198	418	Hippolyte South	23FEAC001774	7.0	685,527	2,802,995	399
Hippolyte North	23FEAC001314	6.0	678,728	2,818,198	417	Hippolyte South	23FEAC001775	6.7	685,623	2,802,999	399
Hippolyte North	23FEAC001315	3.7	678,931	2,818,201	416	Hippolyte South	23FEAC001776	7.3	685,527	2,803,198	400
Hippolyte North	23FEAC001316	3.2	679,126	2,818,200	415	Hippolyte South	23FEAC001777	5.4	685,627	2,803,199	400
Hippolyte North	23FEAC001317	7.4	678,129	2,818,001	417	Hippolyte South	23FEAC001778	7.2	685,528	2,803,399	400
Hippolyte North	23FEAC001318	5.5	678,428	2,817,998	418	Hippolyte South	23FEAC001779	7.1	685,627	2,803,397	400
Hippolyte North	23FEAC001319	7.4	678,627	2,817,998	417	Hippolyte South	23FEAC001780	6.8	685,527	2,803,598	400
Hippolyte North	23FEAC001320	7.4	678,826	2,817,997	416	Hippolyte South	23FEAC001781	7.2	685,628	2,803,600	400
Hippolyte North	23FEAC001321	7.3	678,995	2,817,991	415	Hippolyte South	23FEAC001782	7.0	685,528	2,803,802	400
Hippolyte North	23FEAC001322	7.5	678,140	2,817,800	416	Hippolyte South	23FEAC001783	6.8	685,618	2,803,803	400
Hippolyte North	23FEAC001323	4.6	678,332	2,817,798	416	Hippolyte South	23FEAC001784	5.0	685,625	2,803,998	400
Hippolyte North	23FEAC001324	6.3	678,530	2,817,795	416	Hippolyte South	23FEAC001785	7.2	685,726	2,804,000	401
Hippolyte North	23FEAC001325	5.3	678,729	2,817,796	416	Hippolyte South	23FEAC001786	7.3	685,626	2,804,197	401
Hippolyte North	23FEAC001326	6.8	678,928	2,817,797	415	Hippolyte South	23FEAC001787	4.4	685,725	2,804,201	401
Hippolyte North	23FEAC001328	7.4	678,134	2,817,594	414	Hippolyte South	23FEAC001788	5.0	685,824	2,804,199	401
Hippolyte North	23FEAC001329	7.3	678,234	2,817,596	414	Hippolyte South	23FEAC001789	4.1	685,929	2,804,198	401
Hippolyte North	23FEAC001330	7.2	678,434	2,817,598	414	Hippolyte South	23FEAC001790	0.9	686,027	2,804,198	401
Hippolyte North	23FEAC001331	3.7	678,632	2,817,598	415	Hippolyte South	23FEAC001791	7.1	686,127	2,804,201	353
Hippolyte North	23FEAC001332	7.4	678,837	2,817,597	415	Hippolyte South	23FEAC001792	7.2	686,231	2,804,200	355
Hippolyte North	23FEAC001333	7.3	679,027	2,817,597	415	Hippolyte South	23FEAC001793	3.7	686,327	2,804,200	356
Hippolyte North	23FEAC001334	2.0	677,930	2,817,394	412	Hippolyte South	23FEAC001794	2.0	686,421	2,804,197	367
Hippolyte North	23FEAC001335	2.9	678,132	2,817,394	413	Hippolyte South	23FEAC001795	2.2	686,523	2,804,197	364
Hippolyte North	23FEAC001336	2.1	678,325	2,817,410	413	Hippolyte South	23FEAC001796	2.0	686,623	2,804,195	363
Hippolyte North	23FEAC001337	3.5	678,531	2,817,397	413	Hippolyte South	23FEAC001797	3.3	686,741	2,804,603	360
Hippolyte North	23FEAC001340	5.7	679,094	2,817,386	413	Hippolyte South	23FEAC001798	7.3	686,831	2,804,594	357
Hippolyte North	23FEAC001341	2.0	676,431	2,817,194	417	Hippolyte South	23FEAC001799	7.2	686,735	2,804,797	361
Hippolyte North	23FEAC001342	2.0	676,634	2,817,195	416	Hippolyte South	23FEAC001800	4.5	686,833	2,804,793	366
Hippolyte North	23FEAC001344	6.2	678,132	2,817,196	412	Hippolyte South	23FEAC001801	6.4	686,833	2,804,992	367
Hippolyte North	23FEAC001345	1.4	677,636	2,816,986	414	Hippolyte South	23FEAC001802	3.9	687,030	2,804,990	363
Hippolyte North	23FEAC001346	0.8	677,845	2,816,996	414	Hippolyte South	23FEAC001803	7.4	687,030	2,805,194	365
Hippolyte North	23FEAC001347	6.9	678,034	2,816,999	412	Hippolyte South	23FEAC001804	2.1	686,736	2,805,395	366

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte North	23FEAC001348	1.1	676,129	2,816,800	417	Hippolyte South	23FEAC001805	5.4	686,736	2,805,592	371
Hippolyte North	23FEAC001349	7.2	676,233	2,816,793	417	Hippolyte South	23FEAC001806	4.2	686,831	2,805,592	368
Hippolyte North	23FEAC001350	1.2	677,631	2,816,794	413	Hippolyte South	23FEAC001807	5.3	686,938	2,805,794	367
Hippolyte North	23FEAC001351	2.0	678,025	2,816,800	413	Hippolyte South	23FEAC001808	5.3	687,034	2,805,792	368
Hippolyte North	23FEAC001352	2.1	678,437	2,816,769	412	Hippolyte South	23FEAC001809	6.0	686,928	2,805,997	368
Hippolyte North	23FEAC001353	5.0	677,133	2,816,596	415	Hippolyte South	23FEAC001810	5.2	687,026	2,805,999	372
Hippolyte North	23FEAC001354	2.5	677,233	2,816,594	414	Hippolyte South	23FEAC001811	5.1	686,929	2,806,198	373
Hippolyte North	23FEAC001356	0.6	678,034	2,816,595	414	Hippolyte South	23FEAC001812	3.3	687,030	2,806,200	368
Hippolyte North	23FEAC001357	1.0	678,232	2,816,596	413	Hippolyte West C	23FEAC001258	7.3	669,431	2,821,197	412
Hippolyte North	23FEAC001358	1.6	676,024	2,816,395	415	Hippolyte West C	23FEAC001259	3.0	669,531	2,821,194	413
Hippolyte North	23FEAC001359	2.0	676,129	2,816,395	415	Hippolyte West C	23FEAC001260	7.2	669,627	2,821,195	413
Hippolyte North	23FEAC001360	1.4	677,029	2,816,396	415	Hippolyte West C	23FEAC001261	7.2	669,735	2,821,196	414
Hippolyte North	23FEAC001361	2.2	677,229	2,816,394	415	Hippolyte West C	23FEAC001262	5.5	669,436	2,820,997	413
Hippolyte North	23FEAC001362	3.3	679,131	2,816,395	411	Hippolyte West C	23FEAC001263	7.4	669,632	2,820,996	414
Hippolyte North	23FEAC001363	7.3	679,229	2,816,395	411	Hippolyte West C	23FEAC001264	7.2	669,835	2,820,996	415
Hippolyte North	23FEAC001364	4.0	679,328	2,816,396	411	Hippolyte West C	23FEAC001265	7.4	669,936	2,820,995	416
Hippolyte North	23FEAC001365	7.3	675,932	2,816,197	414	Hippolyte West C	23FEAC001266	4.5	669,120	2,820,793	412
Hippolyte North	23FEAC001366	7.1	676,028	2,816,193	414	Hippolyte West C	23FEAC001267	1.3	669,230	2,820,794	413
Hippolyte North	23FEAC001367	0.7	676,129	2,816,191	414	Hippolyte West C	23FEAC001268	7.3	670,133	2,820,594	416
Hippolyte North	23FEAC001368	1.9	676,328	2,816,194	414	Hippolyte West C	23FEAC001269	2.1	669,125	2,820,395	412
Hippolyte North	23FEAC001369	7.3	679,127	2,816,193	411	Hippolyte West C	23FEAC001270	6.1	670,125	2,820,398	416
Hippolyte North	23FEAC001370	4.3	679,328	2,816,193	411	Hippolyte West C	23FEAC001271	3.5	668,930	2,820,195	411
Hippolyte North	23FEAC001371	2.3	675,799	2,815,983	413	Hippolyte West C	23FEAC001272	1.3	669,048	2,820,188	412
Hippolyte North	23FEAC001372	3.5	675,909	2,815,995	413	Hippolyte West C	23FEAC001273	7.3	668,932	2,819,998	411
Hippolyte North	23FEAC001373	6.3	675,933	2,815,391	411	Hippolyte West C	23FEAC001274	3.2	669,029	2,819,998	412
Hippolyte North	23FEAC001374	3.8	676,032	2,815,389	411	Hippolyte West C	23FEAC001275	3.3	669,133	2,819,998	412
Hippolyte North	23FEAC001375	7.1	676,130	2,815,389	411	Hippolyte West C	23FEAC001276	3.5	669,332	2,819,996	413
Hippolyte North	23FEAC001376	2.0	676,329	2,815,391	411	Hippolyte West C	23FEAC001277	5.0	668,825	2,819,799	412
Hippolyte	23FEAC001377	6.9	676,430	2,815,393	411	Hippolyte West C	23FEAC001278	5.0	668,924	2,819,798	412
Hippolyte	23FEAC001378	7.1	676,330	2,815,202	410	Hippolyte West C	23FEAC001280	7.3	668,832	2,819,600	412
Hippolyte North	23FEAC001379	1.4	676,431	2,815,197	410	Hippolyte West C	23FEAC001281	6.8	668,827	2,819,400	412
Hippolyte	23FEAC001380	6.2	676,533	2,815,193	410	Hippolyte West C	23FEAC001282	7.5	668,932	2,819,396	413
Hippolyte North	23FEAC001381	0.9	676,428	2,814,998	410	Hippolyte West C	23FEAC001283	6.3	669,511	2,819,396	414
Hippolyte North	23FEAC001382	7.0	677,528	2,814,994	411	Hippolyte West C	23FEAC001284	3.9	669,628	2,819,399	414
Hippolyte	23FEAC001383	1.0	677,743	2,814,992	412	Hippolyte West C	23FEAC001285	5.0	669,731	2,819,398	415
Hippolyte	23FEAC001384	3.8	677,929	2,814,998	412	Hippolyte West C	23FEAC001286	1.0	668,794	2,819,201	412
Hippolyte	23FEAC001385	6.6	675,134	2,814,793	411	Hippolyte West C	23FEAC001287	2.2	668,928	2,819,198	413
Hippolyte	23FEAC001386	2.3	675,233	2,814,793	411	Hippolyte West C	23FEAC001288	7.5	669,532	2,819,198	414
Hippolyte North	23FEAC001387	2.1	675,433	2,814,793	411	Hippolyte West C	23FEAC001289	7.4	669,829	2,819,198	415

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte North	23FEAC001388	0.9	677,533	2,814,792	410	Hippolyte West C	23FEAC001290	5.0	669,926	2,819,197	415
Hippolyte North	23FEAC001389	2.5	677,730	2,814,794	410	Hippolyte West C	23FEAC001291	6.2	668,732	2,818,995	411
Hippolyte North	23FEAC001390	1.6	677,837	2,814,794	411	Hippolyte West C	23FEAC001292	7.0	668,828	2,819,001	411
Hippolyte North	23FEAC001391	2.2	679,026	2,814,794	410	Hippolyte West C	23FEAC001293	3.4	669,825	2,819,001	415
Hippolyte North	23FEAC001392	5.1	679,138	2,814,786	410	Hippolyte West C	23FEAC001294	7.1	669,830	2,818,799	415
Hippolyte North	23FEAC001393	1.5	679,231	2,814,788	409	Hippolyte West C	23FEAC001295	7.1	669,828	2,818,600	414
Hippolyte North	23FEAC001394	4.8	679,335	2,814,788	409	Hippolyte West C	23FEAC001296	6.9	669,927	2,818,600	414
Hippolyte North	23FEAC001395	32.0	679,438	2,814,789	410	Hippolyte West C	23FEAC001297	4.9	668,831	2,818,400	409
Hippolyte North	23FEAC001397	3.1	678,234	2,814,587	410	Hippolyte West C	23FEAC001298	3.0	668,930	2,818,399	410
Hippolyte North	23FEAC001398	3.4	678,432	2,814,591	410	Hippolyte West C	23FEAC001299	6.2	669,930	2,818,401	413
Hippolyte North	23FEAC001399	1.7	678,525	2,814,591	410	Hippolyte West C	23FEAC001300	7.2	669,130	2,818,199	409
Hippolyte North	23FEAC001401	0.6	678,838	2,814,587	410	Hippolyte West C	23FEAC001301	5.2	669,327	2,818,198	410
Hippolyte North	23FEAC001402	1.9	679,033	2,814,591	410	Hippolyte West C	23FEAC001302	2.1	669,526	2,818,199	411
Hippolyte North	23FEAC001403	3.4	679,127	2,814,598	410	Hippolyte West C	23FEAC001303	2.3	669,726	2,818,199	412
Hippolyte North	23FEAC001404	1.5	679,226	2,814,598	410	Hippolyte West C	23FEAC001304	4.1	669,829	2,818,199	412
Hippolyte North	23FEAC001405	4.8	679,320	2,814,598	409	Hippolyte West C	23FEAC001305	6.6	669,930	2,818,200	413
Hippolyte North	23FEAC001406	3.4	679,427	2,814,598	409	Hippolyte West C	23FEAC001516	5.0	669,932	2,818,993	415
Hippolyte North	23FEAC001407	1.1	679,529	2,814,598	409	Hippolyte West C	23FEAC001517	7.2	670,029	2,818,991	415
Hippolyte North	23FEAC001408	4.8	679,629	2,814,596	409	Hippolyte West C	23FEAC001518	6.9	670,133	2,818,991	415
Hippolyte North	23FEAC001409	1.6	674,931	2,814,401	412	Hippolyte West C	23FEAC001519	2.5	670,030	2,818,190	414
Hippolyte North	23FEAC001410	1.9	675,027	2,814,401	412	Hippolyte West C	23FEAC001520	3.3	670,129	2,818,189	414
Hippolyte North	23FEAC001411	7.3	676,527	2,814,399	410	Hippolyte West C	23FEAC001521	0.8	669,730	2,817,994	411
Hippolyte North	23FEAC001413	2.6	678,228	2,814,398	409	Hippolyte West C	23FEAC001522	0.8	669,830	2,817,992	411
Hippolyte North	23FEAC001414	2.6	678,429	2,814,414	409	Hippolyte West C	23FEAC001523	7.3	669,927	2,817,993	412
Hippolyte North	23FEAC001415	7.0	678,628	2,814,400	410	Hippolyte West C	23FEAC001524	3.7	670,031	2,817,993	412
Hippolyte North	23FEAC001416	5.1	679,228	2,814,400	409	Hippolyte West C	23FEAC001525	4.8	670,131	2,817,993	413
Hippolyte North	23FEAC001417	3.0	679,330	2,814,398	409	Lazare North	23ASAC002211	5.0	701,628	2,795,997	397
Hippolyte North	23FEAC001418	2.0	679,530	2,814,397	409	Lazare North	23ASAC002212	6.0	701,830	2,795,999	396
Hippolyte North	23FEAC001419	7.4	679,630	2,814,398	408	Lazare North	23ASAC002213	5.0	702,032	2,795,998	396
Hippolyte	23FEAC001420	1.7	675,227	2,814,200	411	Lazare North	23ASAC002214	7.0	702,131	2,795,998	396
Hippolyte North	23FEAC001421	1.4	678,342	2,814,204	410	Lazare North	23ASAC002215	6.0	702,227	2,795,998	396
Hippolyte	23FEAC001422	0.7	678,538	2,814,193	409	Lazare North	23ASAC002216	1.0	699,528	2,796,199	405
Hippolyte	23FEAC001423	5.2	678,735	2,814,191	409	Lazare North	23ASAC002217	1.0	699,731	2,796,199	405
Hippolyte	23FEAC001424	2.1	678,945	2,814,199	410	Lazare North	23ASAC002218	1.0	699,926	2,796,200	405
Hippolyte	23FEAC001425	2.0	679,132	2,814,201	410	Lazare North	23ASAC002219	4.0	702,027	2,796,200	397
Hippolyte North	23FEAC001426	7.3	675,029	2,814,000	411	Lazare North	23ASAC002220	3.0	702,226	2,796,200	397
Hippolyte	23FEAC001427	6.1	675,125	2,813,998	411	Lazare North	23ASAC002221	5.0	699,630	2,796,398	405
Hippolyte	23FEAC001428	3.5	675,227	2,813,998	411	Lazare North	23ASAC002222	6.0	699,826	2,796,401	405
Hippolyte North	23FEAC001429	4.3	675,429	2,813,998	411	Lazare North	23ASAC002225	2.0	701,332	2,796,396	399

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte North	23FEAC001430	0.8	675,529	2,813,999	411	Lazare North	23ASAC002226	4.0	701,433	2,796,399	398
Hippolyte North	23FEAC001431	7.2	679,732	2,813,995	408	Lazare North	23ASAC002227	3.0	701,530	2,796,399	398
Hippolyte North	23FEAC001432	3.8	679,935	2,813,997	409	Lazare North	23ASAC002228	5.0	701,631	2,796,399	398
Hippolyte North	23FEAC001433	5.0	680,135	2,813,995	410	Lazare North	23ASAC002229	7.0	701,732	2,796,399	398
Hippolyte North	23FEAC001434	6.9	680,322	2,814,000	411	Lazare North	23ASAC002230	5.0	701,831	2,796,399	398
Hippolyte North	23FEAC001435	4.2	680,530	2,814,000	412	Lazare North	23ASAC002231	4.0	701,917	2,796,394	398
Hippolyte North	23FEAC001436	7.1	680,730	2,813,999	413	Lazare North	23ASAC002232	5.0	702,031	2,796,398	398
Hippolyte North	23FEAC001437	4.2	676,325	2,813,800	411	Lazare North	23ASAC002233	2.0	702,132	2,796,399	398
Hippolyte North	23FEAC001438	3.6	680,027	2,813,800	409	Lazare North	23ASAC002234	7.0	702,229	2,796,398	398
Hippolyte North	23FEAC001439	1.3	680,427	2,813,799	411	Lazare North	23ASAC002235	4.0	702,331	2,796,398	399
Hippolyte North	23FEAC001440	2.4	680,727	2,813,800	412	Lazare North	23ASAC002236	3.0	702,532	2,796,398	398
Hippolyte North	23FEAC001441	3.6	680,830	2,813,800	413	Lazare North	23ASAC002237	3.0	702,726	2,796,397	397
Hippolyte North	23FEAC001442	3.0	680,929	2,813,800	414	Lazare North	23ASAC002241	4.0	701,531	2,796,596	400
Hippolyte North	23FEAC001443	1.2	676,429	2,813,596	411	Lazare North	23ASAC002242	7.0	701,729	2,796,596	400
Hippolyte North	23FEAC001444	1.1	677,925	2,813,599	409	Lazare North	23ASAC002243	6.0	701,930	2,796,598	400
Hippolyte North	23FEAC001445	1.6	675,520	2,813,391	411	Lazare North	23ASAC002244	7.0	702,130	2,796,597	400
Hippolyte North	23FEAC001446	1.6	678,229	2,813,397	409	Lazare North	23ASAC002245	4.0	702,331	2,796,598	399
Hippolyte North	23FEAC001447	2.0	675,231	2,813,199	412	Lazare North	23ASAC002246	6.0	702,531	2,796,597	398
Hippolyte North	23FEAC001448	5.1	675,430	2,813,198	411	Lazare North	23ASAC002247	6.0	702,728	2,796,597	397
Hippolyte North	23FEAC001449	6.4	675,630	2,813,197	411	Lazare North	23ASAC002248	5.0	702,827	2,796,596	397
Hippolyte North	23FEAC001450	1.4	675,825	2,813,196	411	Lazare North	23ASAC002251	2.0	702,440	2,796,793	400
Hippolyte North	23FEAC001451	1.8	676,028	2,813,196	411	Lazare North	23ASAC002252	7.0	702,638	2,796,795	398
Hippolyte North	23FEAC001452	0.7	678,328	2,813,197	409	Lazare North	23ASAC002253	4.0	702,820	2,796,797	398
Hippolyte North	23FEAC001453	0.7	678,431	2,813,197	409	Lazare North	23ASAC002254	2.0	702,935	2,796,792	396
Hippolyte North	23FEAC001454	3.0	678,531	2,812,998	408	Lazare North	23ASAC002255	1.0	702,947	2,796,996	397
Hippolyte North	23FEAC001455	2.3	678,733	2,812,998	408	Lazare North	23ASAC002256	7.0	703,026	2,796,998	396
Hippolyte North	23FEAC001456	3.4	678,932	2,812,999	408	Lazare North	23ASAC002257	2.0	703,127	2,797,002	396
Hippolyte North	23FEAC001457	0.8	678,529	2,812,798	409	Lazare North	23ASAC002259	6.0	701,535	2,797,198	406
Hippolyte North	23FEAC001458	1.9	678,630	2,812,798	408	Lazare North	23ASAC002260	7.0	701,731	2,797,195	405
Hippolyte North	23FEAC001459	2.5	678,730	2,812,797	408	Lazare North	23ASAC002261	5.0	701,934	2,797,196	404
Hippolyte North	23FEAC001460	1.5	678,822	2,812,797	408	Lazare North	23ASAC002262	7.0	702,132	2,797,192	403
Hippolyte North	23FEAC001461	2.2	681,232	2,812,393	411	Lazare North	23ASAC002263	2.0	703,232	2,797,195	396
Hippolyte North	23FEAC001462	2.2	681,328	2,812,395	412	Lazare North	23ASAC002265	7.0	701,429	2,797,392	407
Hippolyte North	23FEAC001463	0.8	680,231	2,811,615	403	Lazare North	23ASAC002266	7.0	701,634	2,797,395	407
Hippolyte North	23FEAC001464	2.3	680,327	2,811,593	402	Lazare North	23ASAC002267	7.0	701,833	2,797,395	406
Hippolyte North	23FEAC001465	2.2	680,442	2,811,598	404	Lazare North	23ASAC002268	5.0	703,232	2,797,393	397
Hippolyte North	23FEAC001466	1.8	680,526	2,811,601	404	Lazare North	23ASAC002269	7.0	699,929	2,797,593	408
Hippolyte North	23FEAC001467	1.7	680,243	2,811,402	402	Lazare North	23ASAC002270	7.0	699,330	2,797,793	410
Hippolyte North	23FEAC001469	1.6	680,542	2,811,384	403	Lazare North	23ASAC002271	7.0	699,424	2,797,797	409

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte North	23FEAC001470	1.2	680,732	2,811,392	404	Lazare North	23ASAC002272	6.0	699,527	2,797,797	409
Hippolyte North	23FEAC001471	1.1	680,927	2,811,395	406	Lazare North	23ASAC002273	7.0	699,928	2,797,796	409
Hippolyte North	23FEAC001472	3.8	680,228	2,811,198	402	Lazare North	23ASAC002274	7.0	700,026	2,797,797	409
Hippolyte North	23FEAC001473	1.4	680,331	2,811,194	402	Lazare North	23ASAC002275	7.0	700,126	2,797,797	409
Hippolyte North	23FEAC001474	1.9	680,469	2,811,198	401	Lazare North	23ASAC002276	7.0	699,330	2,798,000	410
Hippolyte North	23FEAC001475	0.9	680,533	2,811,197	402	Lazare North	23ASAC002277	2.0	699,528	2,797,997	410
Hippolyte South	23FEAC001526	4.4	679,730	2,810,795	402	Lazare North	23ASAC002278	7.0	699,363	2,798,150	410
Hippolyte South	23FEAC001527	3.8	679,835	2,810,793	402	Lazare North	23ASAC002279	6.0	699,468	2,798,197	411
Hippolyte South	23FEAC001528	0.9	679,936	2,810,792	402	Lazare North	23ASAC002280	7.0	699,534	2,798,215	410
Hippolyte South	23FEAC001529	1.1	680,035	2,810,792	401	Lazare South	23ASAC002281	2.0	699,629	2,785,600	385
Hippolyte South	23FEAC001530	0.8	679,642	2,810,602	402	Lazare South	23ASAC002282	4.0	699,829	2,785,598	384
Hippolyte South	23FEAC001531	0.6	679,733	2,810,594	402	Lazare South	23ASAC002283	1.0	700,026	2,785,598	383
Hippolyte South	23FEAC001532	2.1	680,033	2,810,583	401	Lazare South	23ASAC002284	1.0	700,230	2,785,599	383
Hippolyte South	23FEAC001533	1.7	680,156	2,810,606	401	Lazare South	23ASAC002285	2.0	699,731	2,785,798	385
Hippolyte South	23FEAC001534	1.7	679,840	2,810,392	401	Lazare South	23ASAC002286	4.0	699,930	2,785,798	384
Hippolyte South	23FEAC001535	2.2	680,041	2,810,389	400	Lazare South	23ASAC002287	1.0	700,127	2,785,797	383
Hippolyte South	23FEAC001536	3.4	680,137	2,810,388	400	Lazare South	23ASAC002288	7.0	699,429	2,785,998	387
Hippolyte South	23FEAC001537	2.1	680,736	2,809,590	398	Lazare South	23ASAC002289	2.0	699,630	2,785,997	386
Hippolyte South	23FEAC001538	2.2	680,936	2,809,589	399	Lazare South	23ASAC002290	7.0	699,728	2,785,997	385
Hippolyte South	23FEAC001539	1.3	681,136	2,809,589	400	Lazare South	23ASAC002291	7.0	698,130	2,786,398	392
Hippolyte South	23FEAC001540	1.2	681,236	2,809,590	400	Lazare South	23ASAC002292	7.0	698,328	2,786,398	391
Hippolyte South	23FEAC001541	2.2	680,726	2,809,395	397	Lazare South	23ASAC002293	7.0	698,529	2,786,397	391
Hippolyte South	23FEAC001542	2.0	680,822	2,809,395	398	Lazare South	23ASAC002294	4.0	698,730	2,786,397	390
Hippolyte South	23FEAC001543	4.3	681,131	2,809,395	399	Lazare South	23ASAC002295	7.0	698,129	2,786,596	392
Hippolyte South	23FEAC001544	2.1	681,238	2,809,394	400	Lazare South	23ASAC002296	2.0	698,531	2,786,597	391
Hippolyte South	23FEAC001545	1.0	683,406	2,805,417	397	Lazare South	23ASAC002297	2.0	698,132	2,786,796	391
Hippolyte South	23FEAC001546	1.2	683,541	2,805,391	398	Lazare South	23ASAC002298	5.0	698,331	2,786,796	391
Hippolyte South	23FEAC001547	2.7	683,446	2,805,190	396	Lazare South	23ASAC002299	2.0	698,533	2,786,796	390
Hippolyte South	23FEAC001548	0.8	683,535	2,805,206	397	Lazare South	23ASAC002300	5.0	698,031	2,787,001	391
Hippolyte South	23FEAC001549	2.0	682,830	2,805,003	393	Lazare South	23ASAC002301	4.0	698,234	2,786,998	391
Hippolyte South	23FEAC001550	1.8	682,925	2,805,001	393	Lazare South	23ASAC002302	2.0	698,448	2,787,001	391
Hippolyte South	23FEAC001551	3.7	683,032	2,805,004	393	Lazare South	23ASAC002304	5.0	698,043	2,787,197	391
Hippolyte South	23FEAC001552	2.0	682,935	2,804,401	391	Lazare South	23ASAC002305	1.0	698,230	2,787,197	391
Hippolyte South	23FEAC001553	0.8	683,031	2,804,390	391	Lazare South	23ASAC002306	7.0	698,452	2,787,206	391
Hippolyte South	23FEAC001554	1.0	683,134	2,804,402	391	Lazare South	23ASAC002309	7.0	698,126	2,787,401	391
Hippolyte South	23FEAC001555	1.3	683,232	2,804,399	392	Lazare South	23ASAC002310	5.0	698,323	2,787,403	391
Hippolyte South	23FEAC001556	1.3	683,328	2,804,394	392	Lazare South	23ASAC002313	6.0	698,034	2,788,594	394
Hippolyte South	23FEAC001557	1.6	683,432	2,804,395	393	Lazare South	23ASAC002314	7.0	698,236	2,788,605	394
Hippolyte South	23FEAC001558	3.9	683,538	2,804,391	394	Lazare South	23ASAC002315	7.0	698,434	2,788,606	395

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte South	23FEAC001559	2.1	683,642	2,804,389	394	Lazare South	23ASAC002316	7.0	698,631	2,788,602	396
Hippolyte South	23FEAC001560	2.3	683,037	2,804,193	391	Lazare South	23ASAC002318	7.0	698,029	2,788,795	394
Hippolyte South	23FEAC001561	6.9	683,231	2,804,197	392	Lazare South	23ASAC002319	5.0	698,232	2,788,795	395
Hippolyte South	23FEAC001562	7.1	683,431	2,804,200	393	Lazare South	23ASAC002320	5.0	698,434	2,788,791	396
Hippolyte South	23FEAC001563	3.1	683,644	2,804,192	394	Lazare South	23ASAC002321	5.0	698,634	2,788,792	397
Hippolyte South	23FEAC001564	7.0	683,739	2,804,188	394	Lazare South	23ASAC002323	5.0	698,037	2,788,993	395
Hippolyte South	23FEAC001565	3.0	683,129	2,803,992	391	Lazare South	23ASAC002324	7.0	698,237	2,788,993	396
Hippolyte South	23FEAC001566	1.7	683,232	2,803,992	391	Lazare South	23ASAC002325	7.0	698,432	2,788,998	397
Hippolyte South	23FEAC001567	4.4	683,332	2,803,993	392	Lazare South	23ASAC002326	4.0	700,633	2,788,401	397
Hippolyte South	23FEAC001568	1.7	683,430	2,803,995	392	Lazare South	23ASAC002327	7.0	700,840	2,788,401	397
Hippolyte South	23FEAC001569	1.1	683,533	2,803,995	393	Lazare South	23ASAC002328	3.0	700,741	2,788,202	396
Hippolyte South	23FEAC001570	0.6	683,736	2,803,994	394	Lazare South	23ASAC002329	2.0	701,035	2,788,201	396
Hippolyte South	23FEAC001571	7.3	683,931	2,803,993	395	Lazare South	23ASAC002330	7.0	701,146	2,788,203	396
Hippolyte South	23FEAC001572	3.8	683,334	2,803,797	391	Lazare South	23ASAC002331	7.0	701,232	2,787,998	394
Hippolyte South	23FEAC001573	7.4	683,534	2,803,796	392	Lazare South	23ASAC002332	7.0	701,331	2,787,999	394
Hippolyte South	23FEAC001574	2.3	683,735	2,803,796	393	Lazare South	23ASAC002333	7.0	701,733	2,788,003	394
Hippolyte South	23FEAC001575	1.2	683,930	2,803,801	394	Lazare South	23ASAC002334	1.0	701,932	2,788,002	394
Hippolyte South	23FEAC001576	1.3	683,334	2,803,598	391	Lazare South	23ASAC002335	7.0	702,134	2,788,002	394
Hippolyte South	23FEAC001577	6.8	683,531	2,803,596	392	Lazare South	23ASAC002336	2.0	701,688	2,787,806	392
Hippolyte South	23FEAC001578	1.4	683,734	2,803,595	392	Lazare South	23ASAC002337	1.0	701,940	2,787,800	392
Hippolyte South	23FEAC001579	4.5	683,930	2,803,596	393	Lazare South	23ASAC002338	7.0	702,126	2,787,801	391
Hippolyte South	23FEAC001580	2.1	682,633	2,803,395	388	Lazare South	23ASAC002339	3.0	704,842	2,787,397	385
Hippolyte South	23FEAC001581	1.7	682,813	2,803,440	388	Lazare South	23ASAC002340	3.0	705,029	2,787,397	385
Hippolyte South	23FEAC001582	6.7	683,031	2,803,404	389	Lazare South	23ASAC002341	3.0	704,833	2,787,198	385
Hippolyte South	23FEAC001583	3.1	683,234	2,803,402	390	Lazare South	23ASAC002342	4.0	704,730	2,786,999	385
Hippolyte South	23FEAC001584	5.2	683,534	2,803,398	391	Lazare South	23ASAC002343	4.0	704,931	2,787,000	385
Hippolyte South	23FEAC001585	7.0	683,731	2,803,395	392	Lazare South	23ASAC002344	4.0	705,131	2,786,999	386
Hippolyte South	23FEAC001586	2.3	683,932	2,803,398	393	Lazare South	23ASAC002345	7.0	704,632	2,786,796	385
Hippolyte South	23FEAC001587	0.8	684,033	2,803,396	393	Lazare South	23ASAC002346	5.0	704,833	2,786,798	386
Hippolyte South	23FEAC001588	7.6	681,127	2,803,196	381	Lazare South	23ASAC002347	2.0	704,733	2,786,598	386
Hippolyte South	23FEAC001589	1.2	681,226	2,803,198	382	Lazare South	23ASAC002348	7.0	704,929	2,786,597	386
Hippolyte South	23FEAC001590	1.4	681,330	2,803,199	382	Lazare South	23ASAC002349	6.0	705,132	2,786,598	387
Hippolyte South	23FEAC001591	1.5	681,430	2,803,198	382	Lazare South	23ASAC002350	5.0	705,331	2,786,598	387
Hippolyte South	23FEAC001592	2.0	681,531	2,803,199	383	Lazare South	23ASAC002351	6.0	704,832	2,786,398	386
Hippolyte South	23FEAC001593	1.9	681,629	2,803,199	383	Lazare South	23ASAC002352	7.0	705,031	2,786,399	387
Hippolyte South	23FEAC001594	6.3	681,129	2,802,999	381	Lazare South	23ASAC002353	7.0	704,833	2,786,197	386
Hippolyte South	23FEAC001595	1.5	681,329	2,802,997	382	Lazare South	23ASAC002354	4.0	705,028	2,786,202	353
Hippolyte South	23FEAC001596	2.6	681,529	2,802,996	383	Marie E H	23FEAC001174	2.0	656,536	2,812,597	400
Hippolyte South	23FEAC001597	3.5	681,731	2,802,998	383	Marie E H	23FEAC001175	4.0	656,737	2,812,590	401

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte South	23FEAC001598	1.3	681,130	2,802,799	380	Marie E H	23FEAC001176	5.0	656,930	2,812,596	401
Hippolyte South	23FEAC001599	7.1	681,330	2,802,799	381	Marie E H	23FEAC001177	4.0	657,128	2,812,594	401
Hippolyte South	23FEAC001600	1.3	681,530	2,802,799	382	Marie E H	23FEAC001178	2.0	657,332	2,812,595	401
Hippolyte South	23FEAC001601	7.4	681,227	2,802,597	381	Marie E H	23FEAC001179	5.0	656,532	2,812,998	400
Hippolyte South	23FEAC001602	2.6	681,330	2,802,596	381	Marie E H	23FEAC001180	3.0	656,733	2,812,998	400
Hippolyte South	23FEAC001603	7.1	681,431	2,802,596	381	Marie E H	23FEAC001181	5.0	656,924	2,812,997	400
Hippolyte South	23FEAC001604	5.2	681,532	2,802,599	381	Marie E H	23FEAC001182	4.0	657,127	2,812,995	401
Hippolyte South	23FEAC001605	6.7	683,030	2,803,197	388	Marie E H	23FEAC001183	3.0	657,332	2,812,996	401
Hippolyte South	23FEAC001606	2.5	683,232	2,803,197	389	Marie E H	23FEAC001184	7.0	656,728	2,813,192	400
Hippolyte South	23FEAC001607	7.5	683,430	2,803,196	390	Marie E H	23FEAC001185	5.0	657,132	2,813,192	401
Hippolyte South	23FEAC001608	7.1	683,628	2,803,196	391	Marie E H	23FEAC001186	5.0	657,235	2,813,196	401
Hippolyte South	23FEAC001609	4.3	683,829	2,803,195	392	Marie E H	23FEAC001187	4.0	657,536	2,813,189	401
Hippolyte South	23FEAC001610	1.8	684,027	2,803,196	392	Marie E H	23FEAC001188	7.0	656,833	2,813,390	400
Hippolyte South	23FEAC001611	1.0	683,132	2,802,999	388	Marie E H	23FEAC001189	6.0	657,034	2,813,391	400
Hippolyte South	23FEAC001612	6.8	683,334	2,802,996	389	Marie E H	23FEAC001190	5.0	657,233	2,813,391	401
Hippolyte South	23FEAC001613	7.1	683,530	2,802,997	390	Marie E H	23FEAC001191	5.0	657,433	2,813,392	401
Hippolyte South	23FEAC001614	3.4	683,728	2,802,997	391	Marie E H	23FEAC001192	5.0	657,131	2,813,590	401
Hippolyte South	23FEAC001615	7.3	683,928	2,802,998	391	Marie E H	23FEAC001193	5.0	657,336	2,813,590	401
Hippolyte South	23FEAC001616	2.6	683,127	2,802,796	388	Marie E H	23FEAC001194	4.0	657,531	2,813,590	401
Hippolyte South	23FEAC001617	3.5	683,227	2,802,796	388	Marie E H	23FEAC001195	5.0	657,432	2,813,792	401
Hippolyte South	23FEAC001618	2.0	683,327	2,802,795	388	Marie E H	23FEAC001196	5.0	656,833	2,814,192	400
Hippolyte South	23FEAC001619	2.1	683,424	2,802,798	389	Marie E H	23FEAC001197	2.0	656,832	2,814,392	401
Hippolyte South	23FEAC001620	4.5	683,527	2,802,797	389	Marie E H	23FEAC001198	5.0	657,635	2,814,392	401
Hippolyte South	23FEAC001621	3.8	683,628	2,802,796	389	Marie E H	23FEAC001199	3.0	656,830	2,814,594	401
Hippolyte South	23FEAC001622	4.9	683,130	2,802,597	387	Marie E H	23FEAC001200	6.0	656,931	2,814,594	401
Hippolyte South	23FEAC001623	2.2	683,329	2,802,596	388	Marie E H	23FEAC001201	5.0	656,831	2,814,792	401
Hippolyte South	23FEAC001624	2.7	683,529	2,802,596	389	Marie E H	23FEAC001202	2.0	656,933	2,814,794	401
Hippolyte South	23FEAC001625	3.0	683,632	2,802,608	389	Marie E H	23FEAC001203	5.0	657,630	2,814,795	402
Hippolyte South	23FEAC001626	0.8	682,928	2,802,400	386	Marie E H	23FEAC001204	7.0	657,733	2,814,795	402
Hippolyte South	23FEAC001627	7.0	683,026	2,802,399	386	Marie E H	23FEAC001205	7.0	657,630	2,814,997	402
Hippolyte South	23FEAC001628	3.3	683,128	2,802,400	386	Marie E H	23FEAC001206	7.0	657,728	2,814,997	402
Hippolyte South	23FEAC001629	4.9	683,228	2,802,401	387	Marie E H	23FEAC001207	5.0	657,130	2,815,199	402
Hippolyte South	23FEAC001630	1.8	683,329	2,802,401	387	Marie E H	23FEAC001208	5.0	657,225	2,815,199	402
Hippolyte South	23FEAC001631	2.2	683,427	2,802,400	388	Marie E H	23FEAC001209	5.0	657,727	2,815,197	402
Hippolyte South	23FEAC001632	2.0	683,529	2,802,401	388	Marie E H	23FEAC001210	6.0	657,824	2,815,195	402
Hippolyte South	23FEAC001633	5.1	683,627	2,802,400	388	Marie E H	23FEAC001211	7.0	657,227	2,815,397	402
Hippolyte South	23FEAC001634	7.3	683,728	2,802,399	388	Marie E H	23FEAC001212	6.0	657,325	2,815,397	402
Hippolyte South	23FEAC001635	2.7	683,831	2,802,401	388	Marie E H	23FEAC001213	3.0	657,426	2,815,396	402
Hippolyte South	23FEAC001636	4.9	683,932	2,802,399	389	Marie E H	23FEAC001214	3.0	657,527	2,815,396	402

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte South	23FEAC001637	1.4	682,929	2,802,201	386	Marie E H	23FEAC001215	3.0	657,629	2,815,395	402
Hippolyte South	23FEAC001638	2.4	683,128	2,802,199	386	Marie E H	23FEAC001216	6.0	657,729	2,815,395	402
Hippolyte South	23FEAC001639	2.0	683,326	2,802,199	387	Marie E H	23FEAC001217	5.0	657,228	2,815,599	402
Hippolyte South	23FEAC001640	1.7	683,527	2,802,199	387	Marie E H	23FEAC001218	7.0	657,426	2,815,600	402
Hippolyte South	23FEAC001641	4.9	683,725	2,802,200	388	Marie E H	23FEAC001219	5.0	657,626	2,815,600	402
Hippolyte South	23FEAC001642	1.3	683,929	2,802,199	388	Marie E H	23FEAC001220	4.0	657,208	2,815,999	402
Hippolyte South	23FEAC001643	1.8	684,023	2,802,200	389	Marie E H	23FEAC001221	5.0	657,428	2,815,997	402
Hippolyte South	23FEAC001644	1.0	682,629	2,801,999	385	Marie E H	23FEAC001231	7.0	656,729	2,817,798	402
Hippolyte South	23FEAC001645	3.1	682,729	2,801,998	385	Marie E H	23FEAC001232	2.0	656,882	2,817,782	402
Hippolyte South	23FEAC001646	5.9	682,932	2,801,998	385	Marie E H	23FEAC001234	3.0	656,625	2,818,200	404
Hippolyte South	23FEAC001647	3.4	682,627	2,801,800	385	Marie E H	23FEAC001235	5.0	656,726	2,818,199	404
Hippolyte South	23FEAC001648	2.8	682,828	2,801,802	385	Marie E H	23FEAC001236	3.0	656,829	2,818,199	404
Hippolyte South	23FEAC001649	5.3	682,629	2,801,600	385	Marie E H	23FEAC001237	5.0	656,928	2,818,198	404
Hippolyte South	23FEAC001650	4.0	682,728	2,801,600	385	Marie E H	23FEAC001238	3.0	657,027	2,818,198	404
Hippolyte South	23FEAC001651	3.4	682,829	2,801,600	384	Marie E H	23FEAC001239	3.0	657,126	2,818,197	404
Hippolyte South	23FEAC001652	7.4	682,929	2,801,600	384	Marie E H	23FEAC001240	4.4	657,027	2,818,396	404
Hippolyte South	23FEAC001653	3.0	683,027	2,801,599	384	Marie E H	23FEAC001241	2.2	657,130	2,818,398	404
Hippolyte South	23FEAC001654	4.1	683,130	2,800,800	383	Marie E H	23FEAC001242	4.4	657,127	2,818,597	404
Hippolyte South	23FEAC001655	5.2	683,327	2,800,797	384	Marie E H	23FEAC001243	0.8	657,344	2,818,607	404
Hippolyte South	23FEAC001656	7.4	683,421	2,800,798	384	Marie E H	23FEAC001244	0.8	657,454	2,818,604	404
Hippolyte South	23FEAC001657	2.1	683,532	2,800,798	384	Marie E H	23FEAC001245	4.5	657,530	2,818,798	404
Hippolyte South	23FEAC001658	4.2	683,727	2,800,798	385	Marie E H	23FEAC001246	2.3	657,625	2,818,801	404
Hippolyte South	23FEAC001659	4.4	683,926	2,800,798	385	Marie E H	23FEAC001247	7.3	657,527	2,819,199	404
Hippolyte South	23FEAC001660	2.2	683,558	2,800,401	384	Marie E H	23FEAC001248	2.4	657,727	2,819,395	404
Hippolyte South	23FEAC001661	5.0	683,430	2,800,198	383	Marie E H	23FEAC001249	6.0	657,628	2,819,598	404
Hippolyte South	23FEAC001662	5.2	683,628	2,800,199	383	Marie E H	23FEAC001250	4.1	657,231	2,819,795	405
Hippolyte South	23FEAC001663	1.2	683,427	2,799,997	383	Marie E H	23FEAC001251	1.2	657,636	2,819,793	404
Hippolyte South	23FEAC001664	3.2	683,525	2,800,000	383	Marie E H	23FEAC001252	7.4	657,733	2,819,794	404
Hippolyte South	23FEAC001665	2.7	683,631	2,800,001	383	Marie E H	23FEAC001253	1.6	657,333	2,819,998	405
Hippolyte South	23FEAC001666	1.1	683,697	2,799,599	383	Marie E H	23FEAC001254	2.1	657,433	2,819,996	405
Hippolyte South	23FEAC001667	0.9	683,897	2,799,600	384	Marie E H	23FEAC001255	3.2	657,528	2,819,995	405
Hippolyte South	23FEAC001668	1.6	683,730	2,799,400	383	Marie E H	23FEAC001256	6.6	657,627	2,819,993	404
Hippolyte South	23FEAC001669	0.9	683,928	2,799,400	384	Marie E H	23FEAC001257	6.6	657,728	2,819,991	404
Hippolyte South	23FEAC001670	0.7	683,729	2,799,202	383	Marie E H	23FEAC001476	7.2	656,731	2,812,794	400
Hippolyte South	23FEAC001671	0.8	683,832	2,799,196	384	Marie E H	23FEAC001477	5.7	656,834	2,812,795	400
Hippolyte South	23FEAC001672	1.3	683,930	2,799,194	384	Marie E H	23FEAC001478	7.0	656,938	2,812,794	401
Hippolyte South	23FEAC001673	2.2	683,730	2,797,399	382	Marie E H	23FEAC001479	7.1	657,035	2,812,794	401
Hippolyte South	23FEAC001674	0.9	683,925	2,797,401	382	Marie E H	23FEAC001480	7.2	657,126	2,812,793	401
Hippolyte South	23FEAC001675	1.2	683,835	2,797,599	382	Marie E H	23FEAC001481	7.1	657,225	2,812,793	401

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte South	23FEAC001676	1.2	683,998	2,797,819	384	Marie E H	23FEAC001482	7.0	656,632	2,812,998	400
Hippolyte South	23FEAC001677	2.7	684,629	2,798,193	386	Marie E H	23FEAC001483	4.7	656,822	2,812,996	400
Hippolyte South	23FEAC001678	7.2	684,726	2,798,193	387	Marie E H	23FEAC001484	4.8	657,028	2,812,996	401
Hippolyte South	23FEAC001679	1.0	684,827	2,798,193	387	Marie E H	23FEAC001485	7.0	657,228	2,812,996	401
Hippolyte South	23FEAC001680	7.0	684,929	2,798,192	388	Marie E H	23FEAC001486	2.6	657,434	2,812,992	401
Hippolyte South	23FEAC001681	7.2	685,028	2,798,192	388	Marie E H	23FEAC001487	7.3	656,826	2,813,197	400
Hippolyte South	23FEAC001682	2.0	685,126	2,798,191	388	Marie E H	23FEAC001488	4.9	657,028	2,813,197	401
Hippolyte South	23FEAC001683	7.2	684,628	2,798,392	386	Marie E H	23FEAC001489	5.9	657,426	2,813,197	401
Hippolyte South	23FEAC001684	7.3	684,729	2,798,390	386	Marie E H	23FEAC001490	5.0	656,933	2,813,395	400
Hippolyte South	23FEAC001685	7.2	684,626	2,798,589	386	Marie E H	23FEAC001491	4.4	657,131	2,813,398	401
Hippolyte South	23FEAC001686	7.2	684,729	2,798,590	386	Marie E H	23FEAC001492	4.8	657,327	2,813,398	401
Hippolyte South	23FEAC001687	7.2	685,927	2,798,596	391	Marie E H	23FEAC001493	5.1	657,524	2,813,393	401
Hippolyte South	23FEAC001688	7.5	684,726	2,798,790	386	Marie E H	23FEAC001494	5.3	656,924	2,813,594	400
Hippolyte South	23FEAC001689	4.1	684,831	2,798,790	387	Marie E H	23FEAC001495	6.7	657,035	2,813,591	400
Hippolyte South	23FEAC001690	0.9	685,027	2,798,794	387	Marie E H	23FEAC001496	7.4	657,232	2,813,592	401
Hippolyte South	23FEAC001691	7.4	685,829	2,798,793	390	Marie E H	23FEAC001497	7.2	657,436	2,813,593	401
Hippolyte South	23FEAC001692	5.3	685,926	2,798,795	390	Marie E H	23FEAC001498	7.3	657,537	2,813,792	401
Hippolyte South	23FEAC001695	1.4	685,133	2,799,393	388	Marie E H	23FEAC001499	4.8	657,037	2,815,393	401
Hippolyte South	23FEAC001696	0.9	685,226	2,799,391	387	Marie E H	23FEAC001500	3.3	657,134	2,815,395	402
Hippolyte South	23FEAC001697	0.7	685,321	2,799,389	388	Marie E H	23FEAC001501	5.2	657,333	2,815,592	402
Hippolyte South	23FEAC001698	0.6	685,328	2,801,002	391	Marie E H	23FEAC001502	1.9	657,530	2,815,595	402
Hippolyte South	23FEAC001699	2.8	685,425	2,801,002	391	Marie E H	23FEAC001503	2.4	657,732	2,815,593	402
Hippolyte South	23FEAC001700	2.5	685,627	2,801,000	391	Marie E H	23FEAC001504	4.8	657,334	2,815,799	402
Hippolyte South	23FEAC001702	0.8	686,027	2,801,001	391	Marie E H	23FEAC001505	2.7	657,433	2,815,797	402
Hippolyte South	23FEAC001703	2.0	685,327	2,801,198	392	Marie E H	23FEAC001506	5.2	657,530	2,815,795	402
Hippolyte South	23FEAC001704	3.3	685,429	2,801,201	391	Marie E H	23FEAC001507	5.0	657,630	2,815,795	402
Hippolyte South	23FEAC001705	4.4	686,025	2,801,198	392	Marie E H	23FEAC001508	7.1	657,732	2,815,795	403
Hippolyte South	23FEAC001706	2.4	685,425	2,801,401	393	Marie E H	23FEAC001509	5.9	657,319	2,815,997	402
Hippolyte South	23FEAC001708	3.1	685,729	2,801,397	393	Marie E H	23FEAC001510	5.2	657,530	2,815,997	402
Hippolyte South	23FEAC001709	1.0	685,927	2,801,401	393	Marie E H	23FEAC001511	7.3	657,760	2,815,996	403
Hippolyte South	23FEAC001710	1.5	686,024	2,801,408	393	Marie E H	23FEAC001512	4.0	657,337	2,816,192	402
Hippolyte South	23FEAC001711	1.5	685,435	2,801,590	394	Marie E H	23FEAC001513	5.9	657,435	2,816,394	403
Hippolyte South	23FEAC001712	4.9	685,535	2,801,589	394	Marie E H	23FEAC001514	7.0	657,635	2,816,398	403
Hippolyte South	23FEAC001713	5.0	685,633	2,801,591	394	Marie E H	23FEAC001515	7.0	657,831	2,816,395	403
Hippolyte South	23FEAC001714	1.9	685,730	2,801,593	394	Marie F G	23FEAC001126	2.0	645,724	2,819,801	399
Hippolyte South	23FEAC001715	4.7	685,829	2,801,592	394	Marie F G	23FEAC001127	2.0	645,853	2,819,797	399
Hippolyte South	23FEAC001716	3.9	685,931	2,801,590	393	Marie F G	23FEAC001128	4.0	646,033	2,819,799	399
Hippolyte South	23FEAC001717	1.0	685,532	2,801,788	394	Marie F G	23FEAC001129	1.0	646,236	2,819,798	399
Hippolyte South	23FEAC001718	1.2	685,732	2,801,787	394	Marie F G	23FEAC001130	6.0	646,528	2,819,798	398

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte South	23FEAC001719	3.8	685,927	2,801,788	394	Marie F G	23FEAC001131	4.0	645,612	2,819,605	399
Hippolyte South	23FEAC001720	3.6	686,128	2,801,799	394	Marie F G	23FEAC001132	2.0	645,732	2,819,596	399
Hippolyte South	23FEAC001721	1.0	686,331	2,801,788	395	Marie F G	23FEAC001133	3.0	646,935	2,819,401	397
Hippolyte South	23FEAC001722	4.2	686,531	2,801,789	394	Marie F G	23FEAC001134	4.0	647,036	2,819,398	397
Hippolyte South	23FEAC001723	4.2	686,729	2,801,787	394	Marie F G	23FEAC001135	3.0	647,132	2,819,394	397
Hippolyte South	23FEAC001724	4.2	685,923	2,801,996	395	Marie F G	23FEAC001136	2.0	646,922	2,819,198	398
Hippolyte South	23FEAC001725	5.0	686,109	2,802,004	396	Marie F G	23FEAC001137	2.0	646,033	2,818,993	399
Hippolyte South	23FEAC001726	0.7	686,221	2,802,001	396	Marie F G	23FEAC001139	1.0	646,886	2,819,000	398
Hippolyte South	23FEAC001727	0.7	686,322	2,801,999	396	Marie F G	23FEAC001141	1.0	647,082	2,818,999	397
Hippolyte South	23FEAC001728	4.7	686,423	2,802,003	396	Marie F G	23FEAC001142	2.0	647,244	2,818,997	397
Hippolyte South	23FEAC001729	6.7	686,524	2,802,001	395	Marie F G	23FEAC001143	3.0	647,331	2,818,992	397
Hippolyte South	23FEAC001730	0.8	686,618	2,802,007	395	Marie F G	23FEAC001144	6.0	647,432	2,818,966	397
Hippolyte South	23FEAC001731	6.2	686,727	2,802,000	395	Marie F G	23FEAC001145	1.0	646,135	2,818,797	399
Hippolyte South	23FEAC001732	7.1	685,829	2,802,200	396	Marie F G	23FEAC001147	1.0	647,743	2,818,796	397
Hippolyte South	23FEAC001733	1.0	686,032	2,802,199	396	Marie F G	23FEAC001149	1.0	648,933	2,817,598	395
Hippolyte South	23FEAC001734	6.9	686,229	2,802,198	396	Marie F G	23FEAC001150	2.0	649,130	2,817,597	395
Hippolyte South	23FEAC001735	4.8	686,430	2,802,198	397	Marie F G	23FEAC001151	1.0	649,332	2,817,596	395
Hippolyte South	23FEAC001736	5.0	686,631	2,802,198	396	Marie F G	23FEAC001152	1.0	649,531	2,817,597	395
Hippolyte South	23FEAC001737	7.3	686,729	2,802,198	396	Marie F G	23FEAC001154	1.0	649,833	2,817,595	394
Hippolyte South	23FEAC001738	5.1	685,729	2,802,401	397	Marie F G	23FEAC001155	1.0	650,041	2,817,593	394
Hippolyte South	23FEAC001739	4.2	685,832	2,802,400	397	Marie F G	23FEAC001156	2.0	650,233	2,817,594	394
Hippolyte South	23FEAC001740	2.9	685,927	2,802,400	397	Marie F G	23FEAC001158	1.0	649,835	2,817,395	394
Hippolyte South	23FEAC001741	6.9	686,028	2,802,398	397	Marie F G	23FEAC001159	5.0	649,937	2,817,395	394
Hippolyte South	23FEAC001742	5.1	686,128	2,802,399	397	Marie F G	23FEAC001160	4.0	648,535	2,816,594	397
Hippolyte South	23FEAC001743	5.2	686,227	2,802,400	397	Marie F G	23FEAC001161	5.0	648,636	2,816,597	397
Hippolyte South	23FEAC001744	4.0	686,327	2,802,399	397	Marie F G	23FEAC001162	2.0	648,435	2,816,197	398
Hippolyte South	23FEAC001745	5.1	686,427	2,802,398	397	Marie F G	23FEAC001163	5.0	649,433	2,816,195	397
Hippolyte South	23FEAC001746	5.3	686,525	2,802,398	397	Marie F G	23FEAC001164	4.0	649,533	2,816,193	397
Hippolyte South	23FEAC001747	4.8	686,628	2,802,398	397	Marie F G	23FEAC001165	5.0	648,517	2,815,999	398
Hippolyte South	23FEAC001748	4.2	686,726	2,802,398	397	Marie F G	23FEAC001166	5.0	649,287	2,815,998	398
Hippolyte South	23FEAC001749	3.6	687,526	2,802,397	396	Marie F G	23FEAC001167	5.0	649,398	2,815,998	398
Hippolyte South	23FEAC001750	2.7	687,727	2,802,395	396	Marie F G	23FEAC001168	5.0	649,130	2,815,799	398
Hippolyte South	23FEAC001751	1.1	687,930	2,802,393	395	Marie F G	23FEAC001169	4.0	649,231	2,815,799	398
Hippolyte South	23FEAC001752	7.1	685,733	2,802,593	398	Marie F G	23FEAC001170	3.0	648,533	2,815,596	399
Hippolyte South	23FEAC001753	6.9	685,832	2,802,591	398	Marie F G	23FEAC001171	3.0	648,731	2,815,598	399
Hippolyte South	23FEAC001754	7.2	686,033	2,802,591	398	Marie F G	23FEAC001172	2.0	648,928	2,815,596	399
Hippolyte South	23FEAC001755	5.0	686,234	2,802,590	398	Marie F G	23FEAC001173	2.0	649,129	2,815,600	399
Hippolyte South	23FEAC001756	2.2	686,434	2,802,592	398	Marie F G	23FEAC001222	5.0	657,648	2,815,997	403
Hippolyte South	23FEAC001757	6.8	686,632	2,802,593	398	Marie F G	23FEAC001223	7.0	657,865	2,815,999	403

Prospect	Hole ID	Total Depth m	Easting	Northing	RL	Prospect	Hole ID	Total Depth m	Easting	Northing	RL
Hippolyte South	23FEAC001758	7.3	686,730	2,802,591	397	Marie F G	23FEAC001224	6.0	657,525	2,816,198	403
Hippolyte South	23FEAC001759	3.6	686,830	2,802,593	398	Marie F G	23FEAC001225	4.0	657,728	2,816,199	403
Hippolyte South	23FEAC001760	7.0	686,931	2,802,592	398	Marie F G	23FEAC001226	5.0	657,927	2,816,198	403
Hippolyte South	23FEAC001761	7.0	687,033	2,802,591	398	Marie F G	23FEAC001227	7.0	657,328	2,816,400	403
Hippolyte South	23FEAC001762	1.4	687,129	2,802,591	398	Marie F G	23FEAC001228	7.0	657,528	2,816,399	403
Hippolyte South	23FEAC001763	7.3	687,431	2,802,590	397	Marie F G	23FEAC001229	5.0	657,729	2,816,399	403
Hippolyte South	23FEAC001764	4.2	687,530	2,802,591	397	Marie F G	23FEAC001230	5.0	657,930	2,816,397	404
Hippolyte South	23FEAC001765	2.6	687,631	2,802,594	397						

Note: All holes drilled vertical, Grid: WGS84_29N

Appendix 3 – Figures for each Prospect

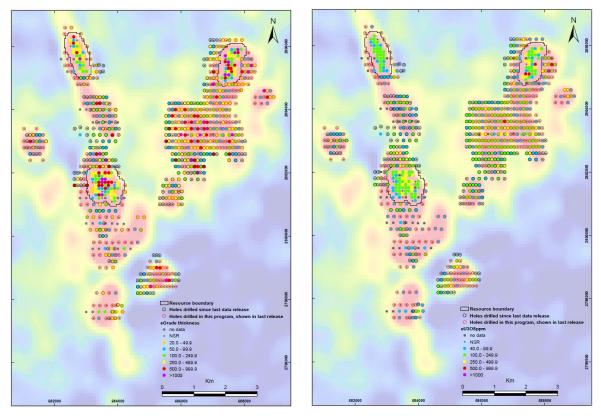


Figure 4. Hippolyte South: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

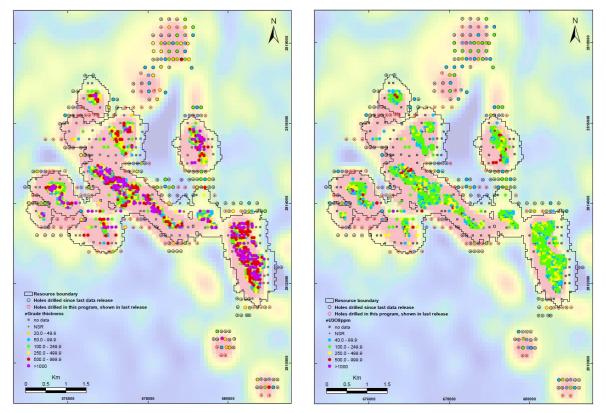


Figure 5. Hippolyte North: showing grade *thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

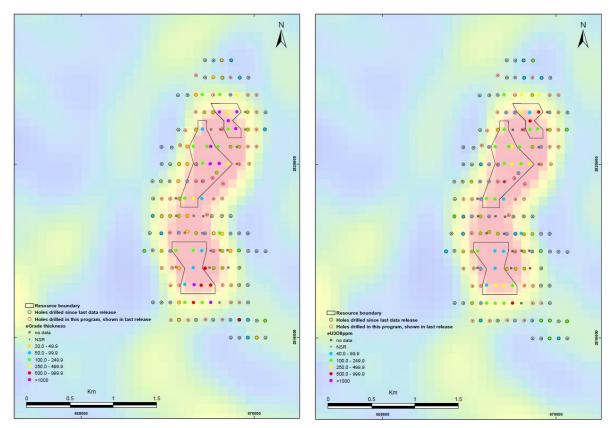


Figure 6. Hippolyte West C: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

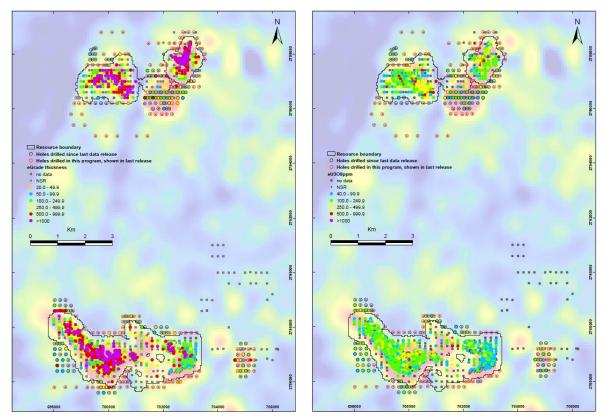


Figure 7. Lazare North and Lazare South: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

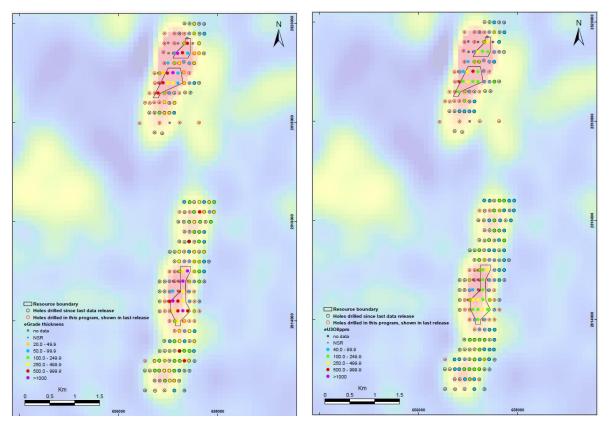


Figure 8. Marie E-H: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

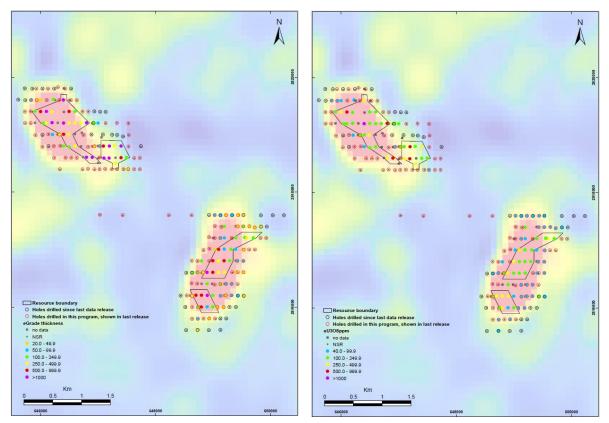


Figure 9. Marie F-G: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

Appendix 4: JORC report

JORC Code 2012 Table 1 Appendix 5A ASX Listing Rules 2024 Tiris Uranium Exploration Results

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 While several drilling programs have been completed from 2010 to the present, the significant intercepts data presented here is from the current ongoing drilling program. In total, 6649 holes have been drilled on the leases, compiled of 6221 AC holes, 303 RC holes and 124 PQ core holes. From the current program, 437 holes with significant intercepts (100 ppm cutoff) are presented here, out of 1612 holes drilled. Results from previous drilling programs are not presented in the report but are shown in the figures, with the difference between the two datasets clearly marked. Historical holes are also shown in the drill collar table. The drilling programs listed in sequential order were as follows: An air-core (AC) drilling program in 2010/11 wit grade determined by chemical analysis of drill samples. An AC drilling program at Lazare in 2012 with grade estimation by chemical analysis of drill samples. An AC drilling program in 2017 with grade estimation by chemical analysis of drill samples An AC drilling program in 2017 with grade estimation by downhole gamma logging An AC drilling program in 2022 with grade estimation by downhole gamma logging Diamond drilling (DD) programs in 2017 and 2022 with grade estimation by downhole gamma logging. Down hole gamma logging in the current program is by 2 Auslog down-hole gamma sondes operated by Poseidon Geophysics (Pty) Ltd based in Gaborone Botswana using geophysicists employed by Poseidon geophysics The 2 sondes (serial numbers T093 and T272) were sent to the Department of Environment, Water & Natural Resources, Adelaide South Australia for calibration prior to the surveys in both 2017, 2022 and the current program.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core 	 The 2024 AC drilling program is being conducted by Sahara Natural Resources using their purpose- built SNR SAC15 multi-wheel drive rig.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• Sample recovery is irrelevant in the current program because downhole gamma logging is being used to determine grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Last sample from each hole retained in chip tray.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sample techniques and sample preparation are irrelevant in the current program because downhole gamma logging is being used to determine grade.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Downhole gamma logging was performed by 2 down-hole Auslog gamma sondes comprising: DLS5 Winch Controller W600-1 12V Portable Winch A075 Natural Gamma Tool Logging procedures involved: Drill holes were gamma logged as soon as possible after drilling to avoid radon build-up. Each borehole logged in both directions to verify consistency. Logging speed: 2 metres per minute Sampling interval: 1 cm At least one hole was re-logged after each 20 holes as a repeatability check. A reference hole was established and relogged every 2 days as a check on consistency.

Criteria	JORC Code explanation	Commentary
Verification of	• The verification of significant	 Gamma logging procedures & interpretation were supervised by consultant David Wilson who qualifies as a Competent Person in these matters. Including prior drilling programs, 6396 holes
sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Including pilor drining programs, 6396 noises were drilled in total. Of these, 5968 (93%) grade was determined by downhole gamma logging. 303 (5%) holes were RC and 125 (2%) holes were PQ diamond core, with U grade determined by chemical assay. Diamond drillholes were both gamma logged and chemically assayed for validation purposes. The holes drilled in 2015 were excluded from all resource estimates and this report. Database management was undertaken by Reflex Hub in Perth prior to July 2019, and by Earth SQL in Melbourne after that date. Downhole gamma data is automatically recorded during the survey process undertaken by Poseidon Geophysics. David Wilson from 3D Exploration then undertook analysis and quality control of downhole gamma information. In 2022, David Wilson from 3D Exploration completed a comparison of gamma logs against assay information in PQ coreholes. To test for radioactive disequilibrium, 343 samples were sent to Australian Nuclear Science and Technology Organisation (ANSTO). in Australia, with results compiled and interpreted by D Wilson of 3D Exploration Disequilibrium factors were produced in two different ways. The first was based on laboratory measurements made at ANSTO, which suggested a disequilibrium factor of 1.29. The second was comparison of drill core assay results against downhole garma logging which suggested a conversion factor of 1.16. When the apparent under estimation of grade by ICP analysis (in comparison to the more accurate DNA analysis) by 7% is taken into consideration the drill hole assay data imply a conversion factor of 1.25 has been applied to the results presented in this report. Significant intercepts were determined by Arnold van der Heyden from H&S Consultants, the Competent Person for the most recent Mineral Resource reporting. All drillhole data recorded was uploaded to Aura's online database managed by Reflex Hub during the programs prior to July 2019 and managed by Earth SQL afte

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drillhole collars from the current program were initially surveyed by handheld GPS with reported accuracy of +/- 15 metres. All holes from the program presented in this release were surveyed by differential surveying conducted by IRC-Magma (ISO 9001-2015) to an accuracy of +/- 20 cm in all dimensions. The grid projection used is UTM WGS84 Zone 29N.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 For the current program, most of the drilling is at 200 by 100 m spacing, but some areas were covered by initial wide-spaced lines, then any positive results were followed up progressively to a detail of 200 by 100m if results warranted the detail. Resource modelling has not yet been undertaken on the 2024 results. Significant intercepts were composited to a minimum length of 0.5m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The surficial mineralisation is flat lying so vertical holes were drilled, intersecting the mineralisation at a high angle. The collars are spaced in a grid pattern so provide adequate coverage of the mineralisation, demonstrating a broad NW-SE linearity to the mineralisation, with some internal areas running NE-SW.
Sample security	• The measures taken to ensure sample security.	 All holes in the 2024 program were geophysically surveyed by downhole gamma logging. Approximately 93% of all drillholes in Tiris East were surveyed by downhole gamma logging and for these, sample security is not relevant.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 A site inspection was conducted by Oliver Mapeto of Coffey Mining in 2012. A resource report from 2012 was independently reviewed and confirmed by Wardell Armstrong International in 2016. A Resource Estimate at Sadi was done in 2021 by Oliver Mapeto acting then as an independent consultant. The 2018 and 2023 Mineral Resource Estimates have been carried out by independent consulting group H&S Consultants Pty Ltd. All of these consulting groups have reviewed and endorsed the sampling, grade estimation and QAQC procedures. The table of significant intercepts for the 2024 program was prepared by Arnold van der Heyden from H&S Consultants, who also undertook a field inspection in January 2024.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

	(Criteria listed in the preceding section also apply to this section)					
Criteria	JORC Code explanation	Commentary				
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drilling was conducted on 1 mineral exploration permit held 100% by Aura Energy: 2365B4 Oued EL Foule Sud, and on 2 Exploitation permits: 2492C4 Oued El Foule, 2491C4 Ain Sder held by Tiris Ressources SA. Tiris Ressources SA is owned 85% by Aura Energy subsidiary, Aura Energy Mauritania and 15% by ANARPAM, a Mauritanian Government entity. Aura has completed an Environmental and Social Impact Assessment which concluded there are no known issues arising from native title, historical sites, environmental or third-party matters which are likely to materially affect exploitation. 				
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Aura is unaware of any prior exploration on these areas, other than governmental data gathering projects such as the PRISM-II Mauritania Minerals Project (USGS) 				
Geology	 Deposit type, geological setting and style of mineralisation. 	• The mineralisation is of the surficial uranium style. It occurs within Proterozoic rocks of the Reguibat Craton. The mineralisation is developed within near surface altered and weathered granites, and within shallow colluvium lying on granite or adjacent metasediments.				
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Reported in the body of this release. All drill holes were drilled vertically. 				
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be 	 Parameters to calculate significant intercepts were: Minimum length 0.5m, Maximum internal waste 0.5m, Attempt to dilute narrow ore samples with adjacent waste, No grade cutting was applied, Composites were length weighted, Cut-off grades of 100, 80 and 40 ppm U₃O₈ were applied. Short lengths of high-grade results were diluted 				

Criteria	JORC Code explanation	Commentary
	 shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 with low grade results to achieve minimum length, providing the average grade of the total interval exceeded the cut-off grade. No metal equivalents are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All drillholes were drilled vertically and approximately perpendicular to the thickness of the sub horizontal mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to the ASX announcement which this table accompanies.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All recent results received and compiled to date are reported in this release. In addition to the significant results (>100 ppm), lower grade mineralisation (40-99 ppm) is presented, along with holes showing no significant results. Drilling is on-going with further results expected.
		 Two datasets using different cutoff grades are combined for the figures and results table. The lower grade mineralisation (40 to 99 ppm) was determined using a 40ppm cutoff and the results higher than 100 ppm were determined using a 100 ppm cutoff. For the figures showing significant intercepts; if more than one intercept occurs in a hole, the upper intercept is shown.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Metallurgical testwork is ongoing. Information on processing has been reported in ASX announcement: 29 July 2019 "Tiris Uranium Definitive Feasibility Study Completed" and ASX announcement: 29 March 2023 "Tiris Enhanced Definitive Feasibility Study". ASX Release 23rd June 2022 confirms average 550% upgrading of uranium with simple screening in test-work.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The drilling program was completed on the 4th of April 2024. This interim release presents significant results from drilling after the previous release dated 12th March 2024, up to and including the date of 13th March 2024 (ending at hole 23FEAC001616). The broad drilling plan was presented in Target Announcement: 17 October 2023 "New Uranium Exploration Target identified at Tiris Project".