

21 November 2024

UNDERGROUND EXPLORATION TARGET ESTABLISHED AT BEN HUR

Regis Resources Limited **(ASX: RRL, Regis** or **the Company)** is pleased to advise the establishment of an underground Exploration Target (**Exploration Target** or **Target**) at Ben Hur. This deposit is estimated to contain between 4.0Mt and 6.0Mt at a grade ranging between 2.2 g/t Au and 2.8 g/t Au for a possible range of between 300koz and 550koz (Table 1) across the identified zone and includes potential down plunge extensions of the current open pit mineralisation with a 500m vertical extent from 400m RL to -100m RL.

The potential quantity and grade of the Exploration Target, as set out in Table 1 and presented in Figure 1, is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate a Mineral Resource, and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared and reported in accordance with JORC Code 2012.

Table 1: Ben Hur	Underground	Exploration	Target
------------------	-------------	-------------	--------

Exploration Target	Tonnage (Mt)	Au (g/t)	Au (koz)
Ben Hur	4.0 - 6.0	2.2 - 2.8	300 - 550

This initial Exploration Target area, illustrated in long-section by Figure 1, has been reasonably defined based on a review of the Ben Hur deposit drill hole databases, geology, geophysical data sets and the 2023 Mineral Resource Estimate (MRE) data.

Figure 1: Exploration Target area, including Mining Stope Optimiser (MSO) shapes and potential, interpreted mineralised envelopes (pink) beneath the Ben Hur open pits (long section)

Managing Director and Chief Executive Officer of Regis Resources, Mr Jim Beyer said: "The establishment of an underground Exploration Target at Ben Hur is the culmination of a body of work undertaken by the team and further boosts our confidence in our ability to deliver a fourth underground mine at Duketon.

While there is still a significant amount of work to be completed (with no guarantees or certainty of an outcome) before we can delineate underground Ore Reserves at Ben Hur, our team has a proven track record of identifying underground exploration targets and converting those targets into underground operations.

Should the upcoming drilling activities prove successful and subsequent study work confirm that Ben Hur underground mineralisation is economic and mineable, Regis would be on the cusp of delivering on its Duketon underground growth strategy of operating at least four underground mines.

While these underground mines form a vital part of our value growth, through our life extension strategy, we also continue exploring for additional high value, large scale open pits across our dominant holding across the Duketon Greenstone Belt."

Ben Hur Background

The Ben Hur deposit is defined by mineralisation over a strike length of nearly 2km located 40km south of Rosemont (Figure 2) and characterised by the same sub-vertical east dipping quartz dolerite. Commercial open pit production commenced in 2023 with ore trucked to the 5.0Mtpa Garden Well process plant.

Figure 2: Ben Hur location within the Duketon Greenstone Belt

Drilling beneath the open pits has demonstrated the potential for mineralisation to continue down plunge which, if economic, could support the establishment of a fourth underground production source.

Ben Hur Mineral Resource

As of 31 December 2023, Ben Hur underground Mineral Resources were estimated at 1Mt @ 2.3 g/t for 46koz, and the Ben Hur open pit Mineral Resources were estimated at 5Mt @ 1.6 g/t for 242koz (Table 2). These Mineral Resources were included as part of Group Mineral Resources as announced in the 2024 Annual Mineral Resource and Ore Reserve update and released to the ASX on 17 June 2024. Within this, the Ben Hur Mineral Resources, were considered to be non-material as they comprised a small proportion of Regis' Group Mineral Resource base, thus the JORC Table 1 specifically relating to Ben Hur (Appendix 1) was not previously included.

Details of Ben Hur Mineral Resource Estimation, classification and reporting process and parameters are included in the JORC Appendix 1, Table 1 of this release.

					Measured			Indicated			Inferred		Tota	l Mineral Re	source
Project	Equity	Туре	Cut-Off (g/t)	Tonnes (Mt)	Gold Grade (g/t)	Gold Metal (koz)									
Ben Hur	100%	Underground	1.5	-	-	-	0.3	2.7	23	0.3	2.1	23	1	2.3	46
Ben Hur	100%	Open Pit	0.4	-	-	-	4.5	1.6	230	0.2	1.5	12	5	1.6	242
Duketon Total	100%	Total	-	14	0.8	360	32	1.4	1,430	14	1.5	680	59	1.3	2,480
Regis Total		Grand Total	-	25	1.0	820	106	1.3	4,360	36	1.5	1,750	167	1.3	6,930

Table 2: Ben Hur Mineral Resource as of 31 December 2023.

The above data has been rounded to the nearest 1,000,000 tonnes, 0.1 g/t gold grade and 10,000 ounces. Errors of summation may occur due to rounding.

The Ben Hur Mineral Resource was estimated using lithological, structural, weathering and geostatistical wireframes interpreted in Leapfrog Geo[™], variography completed in Snowden Supervisor[™] and an Ordinary Kriged estimate completed in Surpac[™] software. Domains were based on interpreted lodes within the quartz dolerite, with a background quartz dolerite estimate also completed.

The Ordinary Kriged estimate was into 5mE x 10mN x 2.5mRL blocks, with sub-blocking to 5mE x 5mN x 2.5mRL, this was selected based on the drilling density for the majority of the deposit and predominantly open pit mining style. Given the underground mining method conceptually proposed, and experience at similar deposits, this block size is sufficient for a Reasonable Prospects of Eventual Economic Extraction (RPEEE) evaluation for an underground resource.

The underground Mineral Resource was reported using Deswik[™] Mining Stope Optimiser (MSO) shapes utilising the same parameters as the geologically similar Rosemont deposit. Reporting was restricted to fresh rock below the open pit resource optimisations.

Ben Hur Exploration Target

The Exploration Target (Table 1) is estimated to contain between 4.0Mt and 6.0Mt at a grade ranging between 2.2 g/t Au and 2.8 g/t Au across the deposit and includes potential down plunge extensions of the current open pit mineralisation with a 500m vertical extent from 400m RL to -100m RL.

The potential quantity and grade of the Exploration Target, as set out in Table 1 and presented in Figure 1, is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate an extension of the current Mineral Resource into the Exploration Target area, and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared and reported in accordance with JORC Code 2012.

The Exploration Target area (Figure 1) was defined by the extension of high-grade mineralisation within the Ben Hur open pits and considering Regis' experience at similar deposits within the Duketon operation (namely Rosemont). This Target has been reasonably defined based on a review of the deposit drill hole data, geology, geophysical data sets and block models for the existing Ben Hur Mineral Resource. Conditional Simulation, in Snowden Supervisor™ software, was utilised to assist in understanding the potential range of tonnage and grade, and combined with the geological interpretation of the deposit, informed the Exploration Target as presented in Table 1.

The drill hole data set used to support the definition of Exploration Target comprises 781 drill holes and 93,573 assays. The Exploration Target mineralised zones are constructed to form a volume for block model estimation

with the same parameters as the Ben Hur underground Mineral Resource. Tonnage estimates are generated by applying bulk densities from the Ben Hur deposit and underground mining shapes assume the same mining methods and cost structure as for the Rosemont underground operation.

To mitigate the risk and further evaluate the Exploration Target, a first pass drill program has commenced. The proposed drilling schedule has been designed with Stage 1 testing of the initial target area (Figure 3) and is expected to be completed by April 2025. Further stages of drill testing will be planned based on the results of Stage 1.

Drilling beneath Ben Hur has identified high-grade mineralisation with visible gold consistently seen on a sheared contact of the quartz-dolerite. Figure 3 shows recent drilling intersections and the follow-up drill plan to test the down-dip and down-plunge continuity of high-grade mineralisation.

Better intersections of recent drilling include:

- 1.6m @ 26.5 g/t Au from 294m RRLBENDD004
- 0.3m @ 21.1 g/t Au from 294.4m RRLBENDD005
- 0.5m @ 55.8 g/t Au from 304m RRLBENDD009

Figure 3: Ben Hur long section showing potential and interpreted mineralised envelopes (pink), drill intersections down-plunge and planned follow-up drilling pierce points.

Competent Persons Statement

The information in this announcement that relates to the Ben Hur Exploration Target and the Ben Hur Mineral Resource Estimate is based on information compiled by Mr Robert Barr who is a full-time employee of Regis Resources. Mr Barr is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists, and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Barr consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The Exploration Results set out in Appendix 2 are based on, and fairly represents, information and supporting documentation that has been compiled by Mr Rohan Hine. Mr Hine is a Member of the Australasian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of

deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hine is a full-time employee of Regis Resources Ltd and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements:

This ASX announcement may contain forward-looking statements subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable. Still, they may be affected by a variety of variables and changes in underlying assumptions, which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, Reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates. Forward-looking statements, including projections, forecasts and estimates, are provided as a general guide only and should not be relied upon as an indication or guarantee of future performance and involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Regis Resources Limited. Past performance is not necessarily a guide to future performance. No representation or warranty is made regarding the likelihood of achievement or reasonableness of any forward-looking statements or other forecast.

For further information please contact:

Investor Relations Enquiries: Jeff Sansom Regis Resources Limited T: +61 473 089 856 E: jsansom@regisresources.com Media Enquiries: Shane Murphy FTI Consulting T: +61 420 945 291 E: <u>shane.murphy@fticonsulting.com</u>

This announcement is authorised for release by Managing Director and CEO of Regis Resources, Jim Beyer

APPENDIX 1 BEN HUR JORC Code 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The Ben Hur gold deposit was sampled using Reverse Circulation (RC) and Diamond drill holes on a nominal 25m x 25m or 50m x 50m grid spacings. Holes were angled at -56° to -62° towards 242° - 261° azimuth to drill perpendicular to the strike of mineralisation. The mineralised quartz dolerite strikes 340° and dips \approx 70° to the east. PQ, HQ and NQ Diamond drill (DD) core samples were collected to confirm vein orientations and geotechnical data to refine pit design parameters.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Regis drill hole collar locations were picked up by an independent registered consulting surveyor or site-based authorised surveyors using Trimble RTK GPS. Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool where magnetic host rock would affect azimuth readings. The surveys were completed every 30m down each drill hole.
		For historical drilling, drill hole collars were surveyed by the Cork Tree Well mine site surveyors. RL's were reduced to AHD with an accuracy of 0.01 metres. In 2014 the drilling from the 2011- 2013 drilling programmes was surveyed with all drill collars being set into a surveyed grid and levels recorded. Downhole camera surveys were carried out on all diamond holes. An Eastman single shot camera was used with shots taken at 25-30 metre intervals downhole.
		Diamond drill core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice.
		Regis drill hole sampling had certified standards and blanks inserted at every 20th and 25th sample (DD only) or every 25th sample (RC and AC) to assess the accuracy and methodology of the external laboratories. Field duplicates (RC and AC only) were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Results of the QAQC sampling were considered acceptable.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	For the Regis' RC drilling 1m samples were obtained by cone splitter (2.5kg – 3.0kg) and were utilised for lithology logging and assaying. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge.
		Diamond drilling completed to industry standard using varying sample lengths (0.23 to 1.22m through the gold mineralized zones) based on geological intervals, which are then dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas). Outside mineralized areas 1m samples to 2.6m composite samples were collected.
		RC drilling by Ashton (DC & CWD) was undertaken by Drillex using a 6 ½ inch RC face-hammer with 4 ½ inch rods. Sample quality was considered good (Ashton,

Criteria	JORC Code explanation	Commentary
		1990) despite high water flows. For the DC and CW series of holes an 8:1 wet/dry riffle splitter was used, and all RC holes were sampled at one-metre intervals.
		All diamond holes were drilled by Sanderson Drilling, using PQ triple tube. All core was lithologically and geotechnically logged. Prior to the core being split, it was photographed both wet and dry. All diamond core was diamond sawn, and ore zones sampled in detail, according to lithological changes with no interval greater than 1 metre. Zones not expected to assay, or only low-grade, a quarter core sample was submitted for fire assay. Zones expected to be high grade, half core was cut and then submitted for analysis.
		Holes completed by Roehampton were sampled by 4-metre composites and single metre splits over selected intervals. All samples were sent to Leonora and Laverton Assay Labs for the analysis; the composites were assayed by aqua regia digest and the single metre splits by fire assay.
		Aircore drilling completed by Bronzewing utilized 450 Schramm air core drill rig. Samples were split through a 3-tier splitter, and all holes were capped on completion. The drilling produced high-quality samples and concentrated on one- metre samples through the mineralised zone with 4-metre composites from the hanging wall.
		RC drilling completed by Bronzewing were sampled with 4-metre composites where necessary in the top half of the hole and 1-metre samples nearer and over the mineralised zones. Every sample was split through a 3-tier splitter
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC drilling completed with a 139 or 143mm diameter face sampling hammer.
		Surface diamond drilling carried out by using PQ or PQ3, HQ3 or HQ2, NQ, or NQ2 (standard tube) techniques.
		Core is routinely orientated by REFLEX ACT III tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC and AC recovery was visually assessed, with recovery being excellent except in some wet intervals which are recorded on logs. Wet RC samples within the mineralised zones (>1 g/t) were recorded as follows: 1.1% of samples at the Ben Hur Gold Project.
		DD core was measured and compared to the drilled intervals and recorded as a percentage recovery. 100% recovery was recorded through the mineralised zones (>1 g/t) at Ben Hur DD.
		No information is available relating to historical drilling recovery.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cyclone and splitter to provide uniform sample size, and these were cleaned routinely (cleaned at the end of each rod and more frequently in wet conditions). A booster was also used in conjunction with the RC drill rig to ensure dry samples are achieved.
		For DD the target mineralised zones are in competent fresh rock, where the DD method provided high recovery.

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Sample recoveries for diamond and RC holes are high, especially within the mineralised zones. No significant bias is expected although no recovery and grade correlation study was completed.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Lithology, alteration, veining, mineralisation, magnetic susceptibility, recovery, RQD, density and geotechnical information were all logged for the DD and saved in the database. Core photographs were taken, and all half core is retained in a core yard for future reference.
		Lithology, alteration, veining, mineralisation and on some holes magnetic susceptibility were logged from the RC chips and saved in the database. Chips from every interval are also placed in chip trays and stored in a designated building at site for future reference.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All logging is qualitative except for density and magnetic susceptibility. Both wet and dry core photography was completed prior to sampling.
	The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	Core was half cut with an Almonte diamond core saw with the same half always sampled and the surplus retained in core trays.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The RC drilling utilised a cyclone and cone splitter to consistently produce 2.5kg to 3.0kg dry samples
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed to 10mm, and then pulverised to 85% passing 75µm. This is considered acceptable.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field duplicates (AC and RC) were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed roughly every 15th sample to assess the repeatability and variability of the gold mineralisation.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Field RC duplicates (RC, AC) were taken at the rig from a second chute on the cone splitter allowing for the duplicate and main sample to be the same size and sampling technique. Field duplicates are taken every 20th sample. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample. Field duplicates on core, i.e. other half of cut core, have not been routinely assayed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (1.0kg to 3kg) at Ben Hur are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style (hypogene associated with shearing and supergene enrichment), the width and continuity of the intersections, the sampling methodology, the coarse gold variability and the assay ranges for the gold.
		Field duplicates have routinely been collected to ensure monitoring of the sub- sampling quality. Acceptable precision and accuracy are noted in the field

Criteria	JORC Code explanation	Commentary
		duplicates albeit the precision is marginally acceptable and consistent with a coarse gold deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All gold assaying was completed by external commercial laboratories (Bureau Veritas for resource drilling and Aurum for grade control drilling), crushed and pulverised to 85% passing 75µm and assayed using either a 30g, 40g or 50g charge for fire assay analysis with AAS or ICP-OES finish. These techniques are industry standard for gold and considered appropriate.
		Ashton drilling (RC and DD) samples were submitted to SGS of Kalgoorlie for fire assay gold to a lower detection limit of 0.01 ppm.
		Holes completed by Roehampton were sent to Leonora and Laverton Assay Labs for the analysis; the composites were assayed by aqua regia digest and the single metre splits by fire assay.
		The aircore holes drilled by Bronzewing in 2001, were fire assayed using Kalgoorlie Assay Laboratory.
		RC drilling completed by Bronzewing were fire assayed using Leonora and Laverton Assay Laboratory.
		With the Ashton drilling, check sampling was carried out on selected intervals from the RC drilling. This was done by re-splitting approximately a 3kg sample from the residue samples on site and submitting them to Minlab for fire assay with a lower detection limit of 0.01 ppm. Correlation between the two laboratories was deemed satisfactory.
		With the Stone drilling, a 50g charge for the fire assaying was employed. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75 microns was achieved. Laboratory quality control involved the use of certified reference material, blanks, splits, and replicates as part of the in-house procedures. These results were used along with Stone's quality control data to illustrate that there was no systematic bias and that results had an acceptable level of precision and accuracy.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld magnetic susceptibility meter (KT-10) was used to measure magnetic susceptibility for some RC and diamond samples and is recorded in the logging spread sheets.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Certified Reference Material (CRM or standards) and blanks were inserted every 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.
		Evaluation of both the Regis submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM

Criteria	JORC Code explanation	Commentary
		assaying report shows no consistent positive or negative overall mean bias. Duplicate assaying shows high levels of correlation and no apparent bias between the duplicate pairs. Field duplicate samples show marginally acceptable levels of correlation and no relative bias.
		Results of the QAQC sampling were considered acceptable for the GDW deposit. Substantial focus has been given to ensuring sampling procedures met industry best practise to ensure acceptable levels of accuracy and precision were achieved in a coarse gold environment.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have visually inspected the significant intersections in RC chips. Numerous highly qualified and experienced company personnel from exploration and production positions have visually inspected the significant intersections in RC chips and core.
	The use of twinned holes.	Areas of close spaced drilling supports the location (width) and grade of the mineralised zone.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All geological and field data is entered into LogChief TM or excel spreadsheets with lookup tables and fixed formatting (and protected from modification) thus only allowing data to be entered using the Regis geological code system and sample protocol. Logchief data is validated and uploaded directly to the Datashed database.
	Discuss any adjustment to assay data.	Any samples not assayed (i.e. destroyed in processing, listed not received) have had the assay value converted to a -9 in the database. Any samples assayed below detection limit (0.01ppm Au) have been converted to 0.005ppm (half detection limit) in the database.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Ben Hur drill hole collar locations were picked up by site-based authorized surveyors, or using Trimble RTK GPS, calibrated to a base station (expected accuracy of 20mm).
		Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool where magnetic host rock would affect azimuth readings.
		The surveys were completed every 30m down each drill hole.
	Specification of the grid system used.	The grid system is AMG Zone 51 (AGD 84) for surveying pickups, as well as any modelling.
	Quality and adequacy of topographic control.	The topographic surface has been derived from a combination of the primary drill hole pickups, pit pickups and photogrammetric contouring completed by Regis surveyors.
	Data spacing for reporting of Exploration Results.	The Ben Hur gold deposit was sampled on a nominal 25m, 50m or 100m north by 25m or 50m east grid spacing.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral Resources under the 2012 JORC code once all other modifying factors have been addressed.
	Whether sample compositing has been applied.	No sample compositing has been applied in the field within the mineralised zones.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling is orientated to best suit the mineralisation to be closely perpendicular to both the strike and dip of the mineralisation. Intercepts are close to true width in most cases. At Ben Hur the orientation of mineralisation is sub vertical, as such the current drilling is designed to assist in refining ore geometry and therefore a more accurate estimate of true thickness.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling orientation has not introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Perth via contract freight Transport, who then deliver the samples directly to the laboratory. Sample submission forms are sent with the samples as well as emailed to the laboratory and are used to keep track of the sample batches.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits on sampling techniques and data have been completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Ben Hur gold deposit is located on M38/339. Normal Western Australian state royalties apply and a further 1% royalty up to \$5m to Brightstar Resources Limited after 100koz production, and a royalty to Parkerville Enterprises for \$1/t of ore processed > 1g/t Au. There are no registered Native Title Claims.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration drilling was conducted in the 1990s to early 2000s by Ashton, Roehampton, Bronzewing, and West Australian Metals. Resource drilling was completed by Stone Resources in 2010s who estimated a Mineral Resource compliant with JORC Code 2012 of 5.8Mt @ 1.6g/t Au for 290koz.
Geology	Deposit type, geological setting and style of mineralisation.	Gold is hosted in a steeply east dipping 345° trending quartz-dolerite unit intruding an ultramafic sequence. Gold mineralisation is associated with quartz-albite- sericite-carbonate-sulphide alteration and is restricted to the quartz dolerite unit which is generally \approx 80m wide but does boudinage along strike and widths vary from a few metres to 120m. Weathering depths vary from 20m to 80m vertical depth.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Relevant drill hole information can be found in Section 1 – "Sampling techniques, "Drilling techniques" and "Drill sample recovery" and the list of significant intercepts.
	easting and northing of the drill hole collar	
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Ben Hur reported intercepts include a minimum of 2.0 g/t Au value with a maximum 2m consecutive internal waste. No upper cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such	

Criteria	JORC Code explanation	Commentary
	aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	The Ben Hur gold deposit was drilled -56° to -62° towards 242° - 261° azimuth to drill perpendicular to the strike of mineralisation. The mineralised quartz dolerite
mineralization widths and	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	strikes 340° and dips \approx 70° to the east. Intercepts reported are close to true width.
Intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Presented in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A list of all holes drilled at Ben Hur by Regis Resources that intersect the underground target outside the planned pits and any composite grades above 2 g/t have been reported. Composite grades below 2 g/t are not considered material and are reported as such.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other material exploration data to report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	The Ben Hur RC strike extension drill program has been designed to test the quartz dolerite host unit south down plunge and along strike from the current Ben Hur Resource, with the aim to the validity of the Exploration Target and convert to resources.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Presented in the body of this announcement.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Geological metadata is centrally stored in a SQL database managed using Maxgeo's DataShed Software. Regis employ a database administrator responsible for the integrity of data imported and modified within the system. All geological and field data is entered into LogChief [™] or excel spread sheets with lookup tables and fixed formatting (and protected from modification) thus only allowing data to be entered using the RRL geological code system and sample protocol. Data is then emailed to the RRL database administrator for validation and importation into a SQL database using Datashed. Sample numbers are unique and pre-numbered calico sample bags are used.
	Data validation procedures used.	Following importation, the data goes through a series of digital and visual checks for duplication and non-conformity, followed by manual validation by a company geologist and database administrator.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The competent persons have made site visits to the Ben Hur area. No issues have been noted and all procedures were considered to be of industry standard.
		In addition to the above site visits, all exploration and resource development drilling programmes are subject to review by experienced senior Regis technical staff. These reviews have been completed from the commencement of drilling and continue to the present.
	If no site visits have been undertaken indicate why this is the case.	Site visits have been made to the Duketon area by the competent persons.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The confidence in the geological interpretation is high. The geology at Ben Hur consists of mafic and minor ultramafic units within a sequence of sheared metasediments and felsic volcanoclastics rocks. Major strike shearing is present running the length of the deposit with the gold mineralisation being associated with the shearing and localised in a differentiated doleritic dyke. Mineralisation is analogous to the Baneygo and Rosemont deposits, situated 20 and 26 kilometres north-west along strike respectively. Gold is hosted within a stockwork of quartz stringers, interpreted to be plunging moderately south. The primary lode is proximal to the sheared footwall of the quartz dolerite, with minor lodes forming parallel to it.
	Nature of the data used and of any assumptions made.	The geological data used to construct the geological model includes regional and detailed surface mapping, in pit wall and floor mapping, logging of RC/diamond core drilling, and, to a lesser degree, multi-element assaying. This data has been applied in generating the mineralisation constraints incorporating the geological controls. A nominal 0.2g/t Au lower cut-off grade was applied to the mineralisation model generation. Lithological wireframes, structural surfaces and geostatistical mineralisation zones have been defined that represent a combination of lithology and structural zones above the selected lower cut-off grade.

Criteria	JORC Code explanation	Commentary
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The relationship between geology and gold mineralisation of the deposit is relatively clear, and the interpretation is considered robust. There is no apparent alternative to the interpretation in the company's opinion.
	The use of geology in guiding and controlling Mineral Resource estimation.	A model of the weathering was generated prior to the mineralisation domain interpretation commencing enabling it to be used as a guide.
	The factors affecting continuity both of grade and geology.	The main mineralised zone consists of a sheared quartz dolerite 40 to 50 metres thick. Within this dolerite exists a stock work of quartz stringers. Gold mineralisation is fairly continuous along this zone with concentrations varying from predominantly low grade to patches of high grade. The sheared footwall of the unit contains a major lode with other minor lodes forming parallel to it but in the enechelon pattern, typical of the greenstone environment.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The approximate dimensions of the Ben Hur mineralisation is 2,400m along strike (N-S), 120m across (E-W), and 300m depth from 450mRL to 150m RL.
Estimation and modeling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	The Mineral Resource Estimate has been generated with Ordinary Kriging (OK) with no change of support. The OK estimation was constrained within Leapfrog Geo™ generated mineralisation domains defined from the resource drill hole datasets. OK is considered an appropriate grade estimation method for Ben Hur mineralisation given current drilling density and mineralisation style, which has allowed the development of robust and high confidence estimation constraints and parameters.
		The grade estimate is based on 1m down-the-hole composites of the resource dataset created in Surpac each located by their mid-point co-ordinates and assigned a length weighted average gold grade. The composite length of 1m was chosen because it is the most common sampling interval (1.0 metre).
		Detailed statistical and geostatistical investigations have been completed on the captured estimation data set. This includes exploration data analysis, boundary analysis and grade estimation trials. The variography applied to grade estimation has been generated using Snowden Supervisor. These investigations have been completed on each domain separately. KNA analysis has also been conducted in Snowden Supervisor in various locations on the domains to determine the optimum block size, minimum and maximum samples per search and search distance.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	No check estimate has been completed as part of the current study.
	The assumptions made regarding recovery of by-products.	No by-products are present or modelled.
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	No deleterious elements have been estimated or are important to the project economics\planning at Ben Hur.

Criteria	JORC Code explanation	Commentary
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Block dimensions are 5m (east) by 10m (north) by 2.5m (elevation) with sub- blocking of 2.5m by 5m by 1.25m and was chosen as it approximates half the drill hole density. The 2.5m elevation is a factor of the expected bench height (10m). The ordinary kriging algorithm was selected for grade interpolation and orientated 'ellipsoid' search ellipses were used to select data for interpolation. The ellipse was oriented to the average strike, dip and plunge of the mineralised lodes and weathering. The maximum search radius was set at 150m for all lodes. The major to semi-major, and the major to minor ratios were determined from the variogram ranges. Based on KNA results a minimum number of 4 and maximum number of 8 samples were used for hypogene lodes and a minimum number of 4 and maximum number of 6 samples were used for supergene lodes for estimation. A maximum of 3 samples were used from each drill hole.
	Any assumptions behind modelling of selective mining units.	No selective mining units were assumed in this estimate.
	Any assumptions about correlation between variables.	No correlated variables have been investigated or estimated.
	Description of how the geological interpretation was used to control the resource estimates.	The grade estimate is based on mineralisation constraints which have been interpreted based on a weathering interpretation, and a nominal 0.2g/t Au lower cut-off grade. Grade was estimated into each lode and weathering type. In most cases the mineralisation constraints have been used as hard boundaries for grade estimation wherein only composite samples within that domain are used to estimate blocks coded as within that domain. However, a soft boundary approach is utilised between weathering profiles in some lodes.
	Discussion of basis for using or not using grade cutting or capping.	A review of the composite data captured within the mineralisation constraints was completed to assess the need for high-grade cutting (capping). This assessment was completed both statistically and spatially to determine if the high-grade data clusters or were isolated. On the basis of the investigation, it was decided that no top-cuts were required.
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	The grade estimate was checked against the input drilling/composite data both visually on section (cross and long section) and in plan, and statistically on swath plots. Production data was seen as the most meaningful form of validation, which the model was compared to throughout the estimation process to ensure an accurate estimation was created.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The Mineral Resource tonnage is reported using a dry bulk density and therefore represents dry tonnage excluding moisture content. Bulk density was estimated into the model using inverse distance methodologies.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The cut-off grade of 0.4g/t for the stated Mineral Resource estimate is determined from standardised parameters used to generate the preliminary open pit designs that the Mineral Resource is quoted above and reflects potential open cut mining practices.

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The Resource model assumes open pit mining is completed using a mostly bulk mining method with targeted selectivity. It has been assumed that high quality grade control will aid delineation of ore/waste using diamond drilling, or similar, at a nominal spacing of 10m (north – along strike) and 5m (east – across strike) and applying a pattern sufficient to ensure adequate coverage of the mineralisation zones. Open Pit Resources are constrained within a Whittle [™] shell calculated at a gold price of \$2,900 utilising a set of pit slopes and costs utilised for preliminary mining assessments standardised across the Duketon Gold project. Underground resources are constrained within Mining Stope Optimiser shapes at a 1.5g/t cutoff generated in Deswik [™] to reflect similar mining practices to the operating Rosemont Underground mine. Stopes are removed that either overlap the open pit resource or are isolated and unlikely to be economic.
<i>Metallurgical factors or assumptions</i>	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Processing of all material at Ben Hur is well understood given the processing of material from the Rosemont and Baneygo deposits.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	It has been assumed that current or similar operational approaches, protocols and facilities applied to environmental factors at Duketon continue for the duration of the project life.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Bulk density values were determined by Regis using the Archimedes method and confirmed by test work completed by an external laboratory (SGS). The values were then extracted from the database and assigned a material type based on weathering profile and material type (mineralised or waste). Bulk density values are similar to those attributed at the Rosemont deposit and are supported by bulk density data (1.85t/m3 for oxide, 2.55t/m3 transitional and 2.72t/m3 fresh) from the open pit.
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	Oxide horizon and porous transitional horizon samples have all been measured by external laboratories using wax coating to account for void spaces, whereas competent samples have been completed both by the external laboratory and onsite. The independent laboratory measurements confirm that the onsite

Criteria	JORC Code explanation	Commentary
		measurements are accurate and representative, therefore the applied density values are considered reasonable and representative.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Bulk density values were attributed into the model based on weathering profile, there is little variation within the fresh mineralisation.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral Resources under the 2012 JORC code once all other modifying factors have been addressed.
		The geological and mineralisation continuity has been demonstrated with sufficient confidence to allow the Ben Hur Mineral Resource to be classified as Indicated where the drill spacing is at a maximum of 25m along strike and 25m across strike. Where the drill spacing is greater and to a maximum down-dip extrapolation of 25m, or within lodes where there are insufficient informing composites to allow for confident grade estimation, the Mineral Resource is classified as Inferred. The extrapolation of the lodes along strike and 'down dip' has been limited to a distance equal to half the previous section drill spacing or to 10m.
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The Mineral Resource classification method which is described above has also been based on the quality of the data collected (geology, survey and assaying data), the density of data, the confidence of the geological model and mineralisation model, and the grade estimation quality.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The reported Mineral Resource estimate is consistent with the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No reviews or check estimates have been completed as part of the current study.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	Confidence in the Mineral Resource estimate is high. The Resource has been classified based on the quality of the data collected, the density of data, the confidence of the geological model and mineralisation model, and the grade estimation quality. No relative statistical or geostatistical confidence or risk measure has been generated or applied.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The reported open pit Mineral Resources for Ben Hur are reported within the optimised Whittle [™] pit shells at a cut-off of 0.4g/t Au. The reported underground resources are all material within the MSO volumes.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	The competent person is of the opinion that the Ben Hur Resource will continue to perform in line with standard tolerances for the appropriate resource classification.

Appendix 2 – Drilling Results Outside and Beneath the Open Pit

Drilling at Ben Hur Trend 2 g/t Au lower cut, no upper cut, maximum 2m internal dilution. Previously released drill holes with underground cut-off grade parameters since the purchase of Ben Hur in 2019.

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENDD001	DD	6884811	437481	477	256	-60	225	171	2.1	4.3
RRLBENDD004	DD	6883594	437985	480	256	-60	362	279	0.4	5.3
RRLBENDD004	DD	6883594	437985	480	256	-60	362	294	1.6	26.5
RRLBENDD004	DD	6883594	437985	480	256	-60	362	298	1	2.9
RRLBENDD004	DD	6883594	437985	480	256	-60	362	306	0.6	2.3
RRLBENDD005	DD	6883810	437936	479	256	-60	381	86	1	11.5
RRLBENDD005	DD	6883810	437936	479	256	-60	381	295	0.3	21.2
RRLBENDD005	DD	6883810	437936	479	256	-60	381	299	0.3	3.9
RRLBENDD005	DD	6883810	437936	479	256	-60	381	312	0.3	5.9
RRLBENDD006	DD	6884785	437574	479	256	-60	324	273	1	2
RRLBENDD006	DD	6884785	437574	479	256	-60	324	275	2.5	2.1
RRLBENDD008	DD	6884973	437464	477	256	-60	298	180	0.5	2.7
RRLBENDD008	DD	6884973	437464	477	256	-60	298	261	0.4	8.9
RRLBENDD009	DD	6883313	438102	484	256	-60	405	304	0.5	55.8
RRLBENDD009	DD	6883313	438102	484	256	-60	405	332	0.3	2.2
RRLBENDD009	DD	6883313	438102	484	256	-60	405	335	0.6	2
RRLBENDD009	DD	6883313	438102	484	256	-60	405	337	5.5	2.3
RRLBENRC002	RC	6885056	437333	476	256	-60	174	111	1	7.5
RRLBENRC002	RC	6885056	437333	476	256	-60	174	116	1	2
RRLBENRC005	RC	6885005	437332	476	256	-60	150	105	1	2.6
RRLBENRC006	RC	6885011	437353	476	256	-60	184	128	1	2
RRLBENRC007	RC	6885016	437370	476	252	-60	190	149	3	2.8
RRLBENRC008	RC	6885083	437318	475	255	-60	154	131	1	2.7
RRLBENRC012	RC	6884964	437370	476	256	-60	160	108	1	2.3
RRLBENRC012	RC	6884964	437370	476	256	-60	160	124	1	3.9
RRLBENRC013	RC	6884968	437389	476	256	-60	178	141	1	6.3
RRLBENRC014	RC	6885041	437351	476	252	-60	190	136	1	3.6
RRLBENRC014	RC	6885041	437351	476	252	-60	190	146	1	2.1
RRLBENRC019	RC	6884947	437401	476	252	-60	208	122	1	2.1
RRLBENRC019	RC	6884947	437401	476	252	-60	208	140	2	2.3
RRLBENRC020	RC	6884897	437413	477	256	-60	178	131	6	7.8
RRLBENRC024	RC	6884871	437412	477	256	-61	172	121	1	3.3
RRLBENRC024	RC	6884871	437412	477	256	-61	172	125	1	2.2
RRLBENRC026	RC	6884571	437533	479	256	-60	160	123	1	2.6
RRLBENRC031	RC	6884682	437589	479	252	-60	130	100	1	71.6
RRLBENRC032	RC	6884164	437623	476	244	-60	130	97	1	2.9
RRLBENRC034	RC	6884161	437603	476	242	-58	112	74	2	11.5

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENRC036	RC	6884115	437654	476	254	-60	160	109	2	8.7
RRLBENRC036	RC	6884115	437654	476	254	-60	160	115	3	13.6
RRLBENRC038	RC	6883633	437904	479	256	-60	250	192	1	3.6
RRLBENRC038	RC	6883633	437904	479	256	-60	250	197	3	4
RRLBENRC039	RC	6883637	437924	479	252	-60	280	35	1	5.8
RRLBENRC039	RC	6883637	437924	479	252	-60	280	225	1	2
RRLBENRC040	RC	6883658	437911	479	256	-60	268	21	1	2.5
RRLBENRC040	RC	6883658	437911	479	256	-60	268	219	5	2.9
RRLBENRC041	RC	6883661	437931	479	256	-60	304	248	1	12.2
RRLBENRC041	RC	6883661	437931	479	256	-60	304	255	1	2.6
RRLBENRC041	RC	6883661	437931	479	256	-60	304	261	2	2.5
RRLBENRC042	RC	6883565	437957	480	256	-60	282	240	1	8.8
RRLBENRC043	RC	6884722	437519	478	256	-60	216	174	1	2.2
RRLBENRC044	RC	6884768	437494	478	256	-60	210	152	3	5.7
RRLBENRC045	RC	6884866	437462	477	252	-60	222	170	2	4.9
RRLBENRC046	RC	6884871	437478	477	252	-60	228	27	1	5.1
RRLBENRC046	RC	6884871	437478	477	252	-60	228	196	3	2.5
RRLBENRC047	RC	6884773	437511	478	256	-60	217	37	3	2.1
RRLBENRC047	RC	6884773	437511	478	256	-60	217	179	1	11
RRLBENRC047	RC	6884773	437511	478	256	-60	217	185	4	2.7
RRLBENRC048	RC	6885046	437368	476	252	-60	210	147	1	8
RRLBENRC049	RC	6884955	437422	477	252	-60	216	25	1	3.7
RRLBENRC049	RC	6884955	437422	477	252	-60	216	182	1	2.4
RRLBENRC050	RC	6884616	437517	479	256	-60	150	115	2	4.3
RRLBENRC054	RC	6884824	437429	477	256	-60	162	114	1	17.4
RRLBENRC054	RC	6884824	437429	477	256	-60	162	119	4	3.2
RRLBENRC055	RC	6884829	437450	477	256	-60	192	133	1	4.8
RRLBENRC055	RC	6884829	437450	477	256	-60	192	143	1	2.1
RRLBENRC057	RC	6884807	437462	477	256	-60	192	135	7	3.2
RRLBENRC059	RC	6884782	437467	477	256	-60	180	130	2	3.5
RRLBENRC062	RC	6884735	437468	478	256	-60	150	101	6	5.5
RRLBENRC063	RC	6884710	437470	478	256	-60	120	84	1	2.4
RRLBENRC064	RC	6884715	437490	478	256	-60	150	112	6	9
RRLBENRC065	RC	6884718	437505	478	256	-60	180	134	1	3.5
RRLBENRC065	RC	6884718	437505	478	256	-60	180	139	6	4.5
RRLBENRC066	RC	6884860	437444	477	252	-60	180	145	5	3.8
RRLBENRC068	RC	6884759	437463	478	256	-60	156	114	1	2.1
RRLBENRC069	RC	6884763	437478	478	256	-60	180	130	1	6.3
RRLBENRC072	RC	6884660	437589	480	252	-60	156	92	1	2.5
RRLBENRC073	RC	6884613	437502	479	256	-60	138	91	4	4.3
RRLBENRC074	RC	6884585	437503	479	252	-60	120	80	4	4.2

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENRC075	RC	6884573	437455	479	251	-61	72	4	1	2.7
RRLBENRC076	RC	6884589	437517	479	253	-61	144	109	1	2.8
RRLBENRC077	RC	6884593	437532	479	253	-61	150	76	1	4.3
RRLBENRC077	RC	6884593	437532	479	253	-61	150	128	1	2.2
RRLBENRC078	RC	6883494	437875	479	256	-61	189	102	1	27.8
RRLBENRC079	RC	6883498	437891	479	256	-61	183	134	1	3
RRLBENRC079	RC	6883498	437891	479	256	-61	183	138	1	13.1
RRLBENRC079	RC	6883498	437891	479	256	-61	183	147	1	2.7
RRLBENRC080	RC	6883547	437887	479	256	-61	216	134	1	4.7
RRLBENRC081	RC	6883551	437902	479	256	-60	240	164	9	3.8
RRLBENRC082	RC	6883577	437907	479	256	-60	258	174	1	3
RRLBENRC082	RC	6883577	437907	479	256	-60	258	182	7	2.7
RRLBENRC082	RC	6883577	437907	479	256	-60	258	192	2	8.2
RRLBENRC083	RC	6883595	437849	479	252	-60	162	102	2	17.3
RRLBENRC083	RC	6883595	437849	479	252	-60	162	116	2	3
RRLBENRC084	RC	6883605	437889	479	252	-60	222	172	1	2
RRLBENRC084	RC	6883605	437889	479	252	-60	222	176	14	2.9
RRLBENRC085	RC	6884186	437637	476	252	-60	162	No S	ignificant Ir	ntercept
RRLBENRC086	RC	6883722	437853	478	252	-59	210	156	1	3.6
RRLBENRC086	RC	6883722	437853	478	252	-59	210	164	12	2.7
RRLBENRC087	RC	6883677	437870	479	256	-60	210	150	7	3.6
RRLBENRC087	RC	6883677	437870	479	256	-60	210	165	1	2
RRLBENRC087	RC	6883677	437870	479	256	-60	210	169	6	8
RRLBENRC088	RC	6883682	437888	479	256	-60	282	174	1	5.2
RRLBENRC088	RC	6883682	437888	479	256	-60	282	180	1	2.6
RRLBENRC088	RC	6883682	437888	479	256	-60	282	191	2	3.1
RRLBENRC088	RC	6883682	437888	479	256	-60	282	197	1	2.1
RRLBENRC088	RC	6883682	437888	479	256	-60	282	202	2	2.6
RRLBENRC089	RC	6883656	437895	479	256	-60	240	186	1	2.2
RRLBENRC089	RC	6883656	437895	479	256	-60	240	193	1	2.7
RRLBENRC091	RC	6883630	437889	479	252	-60	216	114	1	10.2
RRLBENRC091	RC	6883630	437889	479	252	-60	216	151	1	3.1
RRLBENRC091	RC	6883630	437889	479	252	-60	216	158	4	2.5
RRLBENRC092	RC	6883821	437831	478	252	-60	234	No S	ignificant Ir	ntercept
RRLBENRC094	RC	6883791	437814	478	256	-60	198	143	3	4.9
RRLBENRC095	RC	6883799	437854	478	256	-60	264	No S	ignificant Ir	ntercept
RRLBENRC096	RC	6883776	437844	478	253	-60	234	119	1	5
RRLBENRC096	RC	6883776	437844	478	253	-60	234	177	1	8.5
RRLBENRC096	RC	6883776	437844	478	253	-60	234	195	1	2.6
RRLBENRC097	RC	6883780	437866	478	253	-60	264	219	1	8.5
RRLBENRC098	RC	6883745	437864	478	256	-60	264	179	1	3.4

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENRC098	RC	6883745	437864	478	256	-60	264	205	1	2.2
RRLBENRC098	RC	6883745	437864	478	256	-60	264	210	5	12.3
RRLBENRC098	RC	6883745	437864	478	256	-60	264	229	5	2.6
RRLBENRC099	RC	6883503	437910	480	256	-60	216	159	3	5.3
RRLBENRC099	RC	6883503	437910	480	256	-60	216	169	4	2.2
RRLBENRC100	RC	6883555	437917	479	256	-60	240	179	1	4.1
RRLBENRC100	RC	6883555	437917	479	256	-60	240	194	8	10.7
RRLBENRC102	RC	6884525	437552	480	256	-60	162	82	3	4.6
RRLBENRC103	RC	6883728	437886	478	251	-60	262	218	2	6.6
RRLBENRC103	RC	6883728	437886	478	251	-60	262	223	1	3.4
RRLBENRC104	RC	6884738	437480	478	256	-60	174	120	5	4.4
RRLBENRC105	RC	6884116	437676	476	248	-56	178	126	1	5.7
RRLBENRC105	RC	6884116	437676	476	248	-56	178	142	1	3.4
RRLBENRC106	RC	6884741	437493	478	256	-60	186	No S	ignificant Ir	ntercept
RRLBENRC107	RC	6883819	437845	478	252	-60	238	No S	ignificant Ir	ntercept
RRLBENRC109	RC	6883479	437933	480	256	-60	232	177	6	4.1
RRLBENRC109	RC	6883479	437933	480	256	-60	232	186	3	3.5
RRLBENRC110	RC	6885022	437391	476	256	-60	228	164	1	9.4
RRLBENRC111	RC	6883683	437902	478	261	-60	250	20	1	3.3
RRLBENRC111	RC	6883683	437902	478	261	-60	250	214	1	4.2
RRLBENRC111	RC	6883683	437902	478	261	-60	250	218	2	2.5
RRLBENRC112	RC	6885000	437416	476	256	-62	246	203	1	4.2
RRLBENRC113	RC	6883429	437937	480	256	-60	214	149	1	5.5
RRLBENRC113	RC	6883429	437937	480	256	-60	214	167	1	4.9
RRLBENRC114	RC	6884664	437512	479	256	-60	168	No S	ignificant Ir	ntercept
RRLBENRC115	RC	6883484	437950	480	256	-60	250	212	6	3.3
RRLBENRC116	RC	6884683	437479	478	257	-60	132	No S	ignificant Ir	ntercept
RRLBENRC117	RC	6883163	437991	487	255	-60.12	160	No S	ignificant Ir	ntercept
RRLBENRC118	RC	6884687	437497	478	256	-60	144	102	2	3.8
RRLBENRC119	RC	6883163	437991	487	256	-73.36	166	109	1	3.3
RRLBENRC120	RC	6884876	437433	477	256	-60	186	142	1	3.5
RRLBENRC120	RC	6884876	437433	477	256	-60	186	146	1	3.6
RRLBENRC120	RC	6884876	437433	477	256	-60	186	150	2	9.2
RRLBENRC121	RC	6882968	438037	489	257	-49.44	118	No S	ignificant Ir	ntercept
RRLBENRC122	RC	6884899	437429	477	256	-60	216	140	1	10.3
RRLBENRC122	RC	6884899	437429	477	256	-60	216	157	1	2.6
RRLBENRC123	RC	6885554	437172	475	256	-59.58	148	78	1	9.4
RRLBENRC123	RC	6885554	437172	475	256	-59.58	148	103	1	11.2
RRLBENRC124	RC	6884834	437469	477	256	-60	210	161	3	9
RRLBENRC125	RC	6885751	437097	476	256	-60	124	No S	ignificant Ir	ntercept
RRLBENRC126	RC	6884673	437542	479	256	-60	216	165	1	2.3

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENRC127	RC	6885938	437040	477	256	-60	136	No S	ignificant Ir	ntercept
RRLBENRC128	RC	6883368	437996	482	256	-60	264	210	8	2.4
RRLBENRC128	RC	6883368	437996	482	256	-60	264	221	5	4.4
RRLBENRC128	RC	6883368	437996	482	256	-60	264	230	230 1	
RRLBENRC129	RC	6885927	436994	476	256	-60	118	No S	No Significant Inter	
RRLBENRC130	RC	6883359	437964	482	256	-60	210	169	169 1	
RRLBENRC130	RC	6883359	437964	482	256	-60	210	174	4	2.7
RRLBENRC136	RC	6882424	438310	483	256	-60	172	69	1	4.6
RRLBENRC140	RC	6885117	437346	476	257	-60	210	175	1	3.1
RRLBENRC141	RC	6885087	437338	476	257	-60	192	No S	ignificant Ir	ntercept
RRLBENRC142	RC	6885063	437354	476	257	-60	198	No S	ignificant Ir	ntercept
RRLBENRC143	RC	6885051	437385	476	257	-60	228	No S	ignificant Ir	ntercept
RRLBENRC144	RC	6885057	437410	476	257	-60	252	211	1	2.3
RRLBENRC144	RC	6885057	437410	476	257	-60	252	233	1	7.3
RRLBENRC147	RC	6884903	437447	477	257	-60	222	160	1	3.2
RRLBENRC147	RC	6884903	437447	477	257	-60	222	184	2	5.5
RRLBENRC148	RC	6884881	437453	477	257	-60	219	165	1	3.1
RRLBENRC148	RC	6884881	437453	477	257	-60	219	177	1	3.3
RRLBENRC148	RC	6884881	437453	477	257	-60	219	182	1	2.2
RRLBENRC149	RC	6883489	437853	479	257	-60	120	No S	ignificant Ir	ntercept
RRLBENRC150	RC	6884787	437484	477	257	-60	196	151	5	7.1
RRLBENRC151	RC	6884793	437503	478	257	-60	220	34	1	5.8
RRLBENRC151	RC	6884793	437503	478	257	-60	220	182	2	9.6
RRLBENRC152	RC	6884839	437490	477	257	-60	238	201	7	6.2
RRLBENRC153	RC	6884775	437529	478	257	-60	250	60	1	3
RRLBENRC153	RC	6884775	437529	478	257	-60	250	205	3	2.6
RRLBENRC154	RC	6884744	437507	478	257	-60	196	153	1	11.4
RRLBENRC155	RC	6884691	437514	479	257	-60	172	No S	ignificant Ir	ntercept
RRLBENRC156	RC	6884697	437535	479	257	-60	196	166	1	2.8
RRLBENRC157	RC	6884701	437553	479	257	-60	226	No S	ignificant Ir	ntercept
RRLBENRC158	RC	6884166	437652	476	249	-60	172	133	1	2.4
RRLBENRC159	RC	6884172	437675	476	251	-60	190	No S	ignificant Ir	ntercept
RRLBENRC160	RC	6883512	437942	480	257	-60	252	196	18	3.9
RRLBENRC161	RC	6883410	437860	480	257	-60	102	39	1	3.5
RRLBENRC162	RC	6883419	437899	480	257	-60	150	No S	ignificant Ir	ntercept
RRLBENRC163	RC	6883434	437958	480	253	-60	216	173	1	3.6
RRLBENRC163	RC	6883434	437958	480	253	-60	216	178	1	5.5
RRLBENRC164	RC	6883439	437977	480	257	-60	258	210	11	3.1
RRLBENRC165	RC	6883447	438006	480	257	-60	318	269	5	2.3
RRLBENRC165	RC	6883447	438006	480	257	-60	318	284	1	3.4
RRLBENRC166	RC	6883341	437895	481	256	-60	96	No S	ignificant Ir	ntercept

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENRC167	RC	6883350	437927	481	256	-60	150	No S	ignificant Ir	ntercept
RRLBENRC168	RC	6883489	437970	480	257	-60	270	236	2	5
RRLBENRC168	RC	6883489	437970	480	257	-60	270	246	3	2
RRLBENRC168	RC	6883489	437970	480	257	-60	270	255	5	3.2
RRLBENRC169	RC	6883495	437990	480	255	-60	312	280	1	3.6
RRLBENRC169	RC	6883495	437990	480	255	-60	312	294	1	3.2
RRLBENRC170	RC	6884118	437685	476	257	-60	184	135	1	2.5
RRLBENRC170	RC	6884118	437685	476	257	-60	184	151	2	2.7
RRLBENRC171	RC	6884065	437695	476	257	-60	172	128	1	6.5
RRLBENRC171	RC	6884065	437695	476	257	-60	172	138	1	4.2
RRLBENRC171	RC	6884065	437695	476	257	-60	172	145	1	7.3
RRLBENRC172	RC	6884069	437718	476	257	-60	202	164	1	2.3
RRLBENRC173	RC	6883803	437877	478	257	-60	274	No S	ignificant Ir	ntercept
RRLBENRC174	RC	6883808	437901	478	257	-60	298	260	1	3
RRLBENRC174	RC	6883808	437901	478	257	-60	298	266	2	2.3
RRLBENRC175	RC	6883740	437839	478	257	-60	202	155	4	3.6
RRLBENRC175	RC	6883740	437839	478	257	-60	202	174	2	2.6
RRLBENRC176	RC	6883753	437899	478	257	-60	316	231	1	2.1
RRLBENRC176	RC	6883753	437899	478	257	-60	316	242	5	4.7
RRLBENRC177	RC	6883708	437905	478	257	-60	304	225	1	40.4
RRLBENRC177	RC	6883708	437905	478	257	-60	304	244	1	3.1
RRLBENRC178	RC	6883713	437925	479	257	-60	340	253	2	4.4
RRLBENRC178	RC	6883713	437925	479	257	-60	340	271	1	3.1
RRLBENRC178	RC	6883713	437925	479	257	-60	340	307	1	2.3
RRLBENRC179	RC	6883270	437917	482	257	-60	130	No S	ignificant Ir	ntercept
RRLBENRC180	RC	6883279	437950	483	257	-60	166	77	1	7.8
RRLBENRC180	RC	6883279	437950	483	257	-60	166	99	1	2.9
RRLBENRC181	RC	6883288	437983	484	257	-60	196	140	1	2.7
RRLBENRC182	RC	6884119	437711	476	257	-60	220	167	1	3.2
RRLBENRC182	RC	6884119	437711	476	257	-60	220	176	1	3
RRLBENRC183	RC	6884073	437739	476	257	-60	232	208	1	2.7
RRLBENRC184	RC	6884030	437723	476	255	-60	190	154	3	6.1
RRLBENRC185	RC	6884033	437744	476	255	-60	220	166	1	2.6
RRLBENRC185	RC	6884033	437744	476	255	-60	220	183	1	18.4
RRLBENRC186	RC	6884035	437768	477	255	-60	244	180	1	2.7
RRLBENRC187	RC	6883928	437769	477	257	-60	196	No S	ignificant Ir	ntercept
RRLBENRC188	RC	6883933	437791	477	257	-60	220	177	2	2.9
RRLBENRC189	RC	6883938	437812	477	257	-60	262	212	1	3
RRLBENRC190	RC	6883943	437832	477	255	-60	304	246	4	3.5
RRLBENRC190	RC	6883943	437832	477	255	-60	304	256	4	17.8
RRLBENRC191	RC	6883379	438022	482	250	-60	318	254	1	2.1

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENRC191	RC	6883379	438022	482	250	-60	318	279	1	2.4
RRLBENRC192	RC	6883383	438043	482	254	-60	294	No S	ignificant Ir	ntercept
RRLBENRC193	RC	6883385	438059	481	255	-60	354	318	2	5.4
RRLBENRC194	RC	6884624	437547	479	255	-62	220	No S	ignificant Ir	ntercept
RRLBENRC195	RC	6884632	437581	480	255	-62	280	No S	ignificant Ir	ntercept
RRLBENRC196	RC	6885642	437092	475	256	-60	90	26	1	2.5
RRLBENRC197	RC	6885650	437132	476	256	-60	150	No S	ignificant Ir	ntercept
RRLBENRC198	RC	6885661	437173	476	255	-60	186	134	1	2.1
RRLBENRC199	RC	6885547	437139	475	257	-60	102	No S	ignificant Ir	ntercept
RRLBENRC200	RC	6885559	437202	475	257	-60	210	No S	ignificant Ir	ntercept
RRLBENRC201	RC	6885450	437151	474	258	-60	132	No S	ignificant Ir	ntercept
RRLBENRC202	RC	6885461	437194	474	257	-60	126	81	2	3.5
RRLBENRC203	RC	6885470	437231	475	257	-60	198	No S	ignificant Ir	ntercept
RRLBENRC204	RC	6885465	437196	474	1	-90	48	No S	ignificant Ir	ntercept
RRLBENRC205	RC	6885191	437362	476	256	-60	84	30	1	10.7
RRLBENRC206	RC	6885198	437386	476	256	-60	114	64	1	4.9
RRLBENRC207	RC	6885153	437396	476	256	-60	102	44	3	3.4
RRLBENRC208	RC	6885159	437417	476	256	-60	132	76	1	4.1
RRLBENRC209	RC	6885104	437413	476	256	-60	90	27	3	9.5
RRLBENRC210	RC	6885086	437449	477	256	-60	132	90	1	7.2
RRLBENRC211	RC	6884990	437435	477	256	-60	90	34	1	3.7
RRLBENRC212	RC	6884951	437443	477	256	-60	84	21	1	3.2
RRLBENRC213	RC	6884957	437463	477	256	-60	114	54	2	9.6
RRLBENRC216	RC	6884847	437537	478	256	-60	132	26	2	4.7
RRLBENRC218	RC	6884727	437575	479	256	-60	126	90	1	10.9
RRLBENRC221	RC	6884627	437476	479	256	-60	114	60	5	2.4
RRLBENRC222	RC	6884579	437606	480	256	-60	114	No S	ignificant Ir	ntercept
RRLBENRC223	RC	6884539	437546	480	256	-60	162	107	1	3.3
RRLBENRC223	RC	6884539	437546	480	256	-60	162	111	1	3.4
RRLBENRC224	RC	6884494	437566	480	256	-60	30	No S	ignificant Ir	ntercept
RRLBENRC225	RC	6884500	437585	480	256	-60	54	No S	ignificant Ir	ntercept
RRLBENRC226	RC	6884507	437611	480	256	-60	84	47	1	4.7
RRLBENRC227	RC	6884513	437640	480	256	-60	114	No S	ignificant Ir	ntercept
RRLBENRC228	RC	6884477	437599	480	256	-60	84	No S	ignificant Ir	ntercept
RRLBENRC229	RC	6884429	437616	480	256	-60	90	No S	ignificant Ir	ntercept
RRLBENRC230	RC	6884433	437635	480	256	-60	90	33	1	5.1
RRLBENRC231	RC	6884438	437655	480	256	-60	114	No S	ignificant Ir	ntercept
RRLBENRC232	RC	6884443	437676	480	256	-60	144	89	1	10
RRLBENRC233	RC	6884407	437634	480	256	-60	90	20	1	2.1
RRLBENRC234	RC	6884413	437656	480	256	-60	114	56	1	19
RRLBENRC235	RC	6884418	437675	480	256	-60	132	93	1	5.7

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENRC236	RC	6884381	437629	479	256	-60	90	19	1	2.5
RRLBENRC237	RC	6884386	437657	480	256	-60	114	No S	ignificant Ir	ntercept
RRLBENRC238	RC	6884353	437634	479	256	-60	90	No S	ignificant Ir	ntercept
RRLBENRC239	RC	6884359	437655	479	256	-60	90	29	1	2.5
RRLBENRC240	RC	6884364	437678	480	256	-60	102	57	1	2.1
RRLBENRC240	RC	6884364	437678	480	256	-60	102	59	1	2.1
RRLBENRC241	RC	6884369	437695	480	256	-60	120	86	1	2.1
RRLBENRC242	RC	6884348	437701	479	256	-60	120	83	1	45
RRLBENRC245	RC	6884322	437696	479	256	-60	114	61	2	5.1
RRLBENRC248	RC	6884300	437690	479	256	-60	90	43	1	3
RRLBENRC249	RC	6884306	437711	479	256	-60	144	75	1	3.5
RRLBENRC253	RC	6884269	437743	479	256	-60	144	96	1	12
RRLBENRC255	RC	6884230	437734	478	256	-60	114	54	2	3.7
RRLBENRC255	RC	6884230	437734	478	256	-60	114	76	1	3.6
RRLBENRC257	RC	6884187	437733	477	256	-60	90	53	1	8
RRLBENRC259	RC	6884149	437731	477	256	-60	96	22	1	2.1
RRLBENRC259	RC	6884149	437731	477	256	-60	96	45	1	7.6
RRLBENRC260	RC	6884152	437751	477	256	-60	90	55	1	4.8
RRLBENRC261	RC	6884156	437770	477	256	-60	120	71	1	4.5
RRLBENRC262	RC	6884128	437745	477	256	-60	102	25	1	3.1
RRLBENRC263	RC	6884134	437764	477	256	-60	114	50	1	3.9
RRLBENRC263	RC	6884134	437764	477	256	-60	114	84	1	2.3
RRLBENRC264	RC	6884139	437785	477	256	-60	144	57	1	2.5
RRLBENRC264	RC	6884139	437785	477	256	-60	144	80	1	5
RRLBENRC264	RC	6884139	437785	477	256	-60	144	95	1	11.4
RRLBENRC265	RC	6884111	437752	476	256	-57	84	26	3	2.5
RRLBENRC266	RC	6884121	437798	477	256	-60	138	89	1	5.7
RRLBENRC267	RC	6884125	437817	477	256	-60	180	91	1	5.5
RRLBENRC267	RC	6884125	437817	477	256	-60	180	115	1	15.1
RRLBENRC268	RC	6884082	437759	476	256	-60	90	21	1	2.9
RRLBENRC279	RC	6883728	437904	479	256	-60	114	34	1	11.1
RRLBENRC280	RC	6883733	437926	479	256	-60	144	43	1	17.9
RRLBENRC281	RC	6883718	437940	479	256	-60	102	No S	ignificant Ir	ntercept
RRLBENRC282	RC	6883724	437960	479	256	-60	144	79	1	2.3
RRLBENRC283	RC	6883683	437917	479	256	-60	102	No S	ignificant Ir	ntercept
RRLBENRC284	RC	6883689	437938	479	256	-60	144	60	1	2.1
RRLBENRC285	RC	6883666	437947	479	256	-60	108	56	1	11.7
RRLBENRC286	RC	6883641	437939	479	256	-60	114	No S	ignificant Ir	ntercept
RRLBENRC287	RC	6883646	437961	479	256	-60	126	69	5	2.4
RRLBENRC288	RC	6883617	437941	479	256	-60	120	No S	ignificant Ir	ntercept
RRLBENRC289	RC	6883622	437964	479	256	-60	132	46	1	4.5

Hole ID	Hole Type	North	East	RL	Azimuth	Dip	Total Depth	From (m)	Interval (m)	Gold Grade (g/t Au)
RRLBENRC293	RC	6884484	437526	479	256	-60	108	No Significant Intercept		
RRLBENRC294	RC	6884406	437525	479	256	-60	84	No Significant Intercept		
RRLBENRC295	RC	6884409	437536	479	256	-60	90	No Significant Intercept		
RRLBENRC296	RC	6884376	437512	478	256	-60	42	No Significant Intercept		
RRLBENRC297	RC	6884383	437535	478	256	-60	84	No Significant Intercept		
RRLBENRC298	RC	6884337	437566	478	256	-57	102	No Significant Intercept		
RRLBENRC299	RC	6884341	437575	478	256	-60	144	No Significant Intercept		
RRLBENRC300	RC	6885156	437222	475	256	-60	90	14	4	4.7
RRLBENRC300	RC	6885156	437222	475	256	-60	90	24	2	2.7
RRLBENRC302	RC	6885136	437240	475	256	-60	84	21	1	3.5
RRLBENRC302	RC	6885136	437240	475	256	-60	84	33	1	4.3
RRLBENRC302	RC	6885136	437240	475	256	-60	84	46	1	21
RRLBENRC302	RC	6885136	437240	475	256	-60	84	60	1	4.9
RRLBENRC303	RC	6885144	437266	475	256	-60	114	68	1	2.8
RRLBENRC305	RC	6885119	437255	475	256	-60	90	63	1	8.6
RRLBENRC306	RC	6885129	437291	475	256	-60	132	97	1	3.1
RRLBENWE005	RC	6884107	437747	476	1	-90	90	20	1	3.6
RRLBENWE005	RC	6884107	437747	476	1	-90	90	42	9	24.4
RRLBENWE005	RC	6884107	437747	476	1	-90	90	56	4	29.7