

4 December 2024

EXPLORATION CONTINUES TO EXPAND GOLD MINERALISATION ACROSS PORTFOLIO

- At Duketon, Regis holds a large prospective landholding which is being systematically explored.
- Exploration activity, including 81,674m of drilling, has continued to expand mineralisation across several priority areas:
 - Exploration activities at Ben Hur have enhanced confidence in the potential underground prospectivity and, as previously announced, an underground Exploration Target has been established.
 - Infill drilling at Garden Well and Rosemont continues to identify extensions of known mineralisation, highlighting significant near-term underground growth potential at each.
 - Drilling at Tooheys Well continues to demonstrate down plunge extensions of known mineralisation, with additional down plunge holes planned.
 - Exploration activities at Kintyre and Gloster have highlighted additional open pit prospectivity.
- At Tropicana, near-mine exploration activities continue to identify extensions of known underground mineralisation:
 - Impressive width and grade intersections have been returned at both Boston Shaker and Tropicana.
 - Follow-up drilling of the Cobbler underground target successfully intersected mineralisation at depth.
 - Regional exploration continues with the primary aim of discovering satellite resources.
 - Three prospects, north of Tropicana, have delivered encouraging mineralised intersections, with follow-up drilling planned.

Regis Resources (**ASX:RRL, Regis or the Company**) is pleased to release its bi-annual exploration update and results from exploration activities that have occurred over the past six months.

Jim Beyer, Regis' Managing Director and CEO said: "The key to the on-going success of Regis has been our ability explore our extensive landholdings and successfully identify extensions to mineralisation. This latest update clearly shows this success continues.

In these last six months, we have seen ongoing delivery of impressive drilling results across several priority targets. We have been systematic in our approach to exploration and we are very pleased with the results. Garden Well, Rosemont, Tropicana and Boston Shaker underground exploration demonstrate the continuation of mineralisation down plunge and has expanded the limits of known mineralisation. An underground Exploration Target has been established at Ben Hur, which if exploration proves successful could become our fourth underground mine at Duketon. At Tropicana, drilling has intersected mineralisation at the Cobbler Underground Target, demonstrating the potential for another underground mineralised lode.

More regionally, at Duketon, Kintyre and Gloster are shaping up as potential open pits and at Tropicana, regional exploration activities continue to inform our on-going drill programs.

We continue to invest in our exploration activities, and we are pleased that this investment is delivering such impressive exploration outcomes across our portfolio. We are very proud of the progress our exploration team continues to make. Their work has delivered a significant pipeline of exploration targets at varying stages of maturity and our exploration team will continue to systematically evaluate and test these targets to create value for our shareholders."

DUKETON

Regis' Duketon landholding and the regional setting, including exploration areas discussed within this exploration update are shown below in Figure 1.

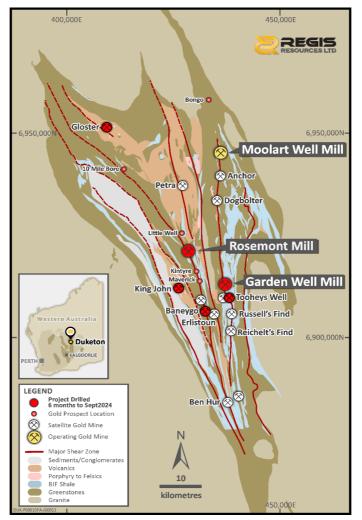


Figure 1: Duketon regional setting

Within the Duketon greenstone belt, Regis holds a significant pipeline of opportunities, consisting of approximately 100 exploration prospects and projects at varying stages of maturity that Regis continues to evaluate and test. This pipeline is represented in Figure 2.

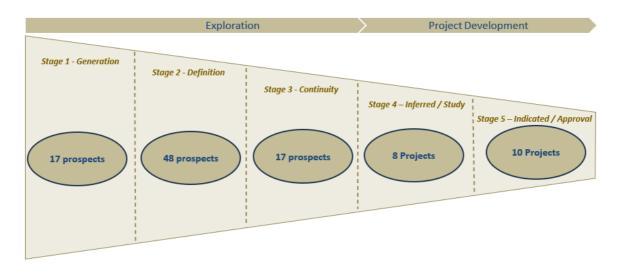


Figure 2: Duketon Pipeline of Exploration Prospects and Projects

Garden Well Trend

Regis continued to progress its understanding of the stratigraphy and structural setting on one of the most productive trends in the Duketon belt, an area which extends from north of Garden Well to south of Toohey's Well (Figure 3).

To date, exploration activities within this area have discovered over three million ounces of Mineral Resources and ongoing drilling beneath several of our historical open pits continues to demonstrate further growth potential. Regis continues to systematically test its priority greenfield and brownfield underground and open pit exploration targets.

During the period, drilling within this trend was primarily focused across Garden Well and Tooheys Well.

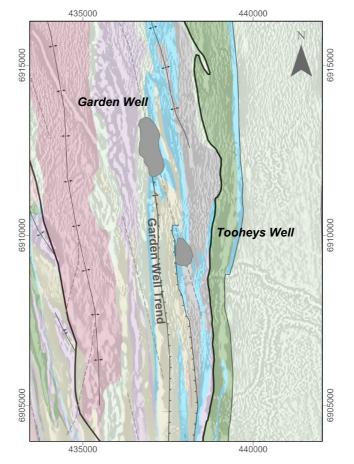


Figure 3: Garden Well Trend geology and deposits.

Further Exploration Success at Garden Well Underground

Garden Well has an underground Exploration Target that was published in the ASX announcement "Mineral Resource and Ore Reserve Statement" released on 20 June 2023 and outlined in Table 1. The potential quantity and grade of this Exploration Target is conceptual in nature and there is no certainty that further exploration work will result in the determination of further Mineral Resources.

Exploration Target	Tonnage (Mt)	Au (g/t)	Au (Moz.)
Garden Well	9 - 18	2.3 - 2.9	0.8 - 1.3

Figure 4 outlines the initial Garden Well underground Exploration Target area and location of the decline when the expenditure to explore the Exploration Target was approved. Figure 5 illustrates the resource expansion, and the progress made within the Exploration Target area since it was first announced.

Drilling beneath the Garden Well open pit continues to demonstrate the potential for a large mineralised system. Recent exploration successes have resulted in the identification of Garden Well Main (Figure 5), a new underground production area defined within the existing Garden Well footprint¹.

Ongoing exploration activities and significant, but improving, local geological knowledge indicate mineralised extensions down-plunge of the current underground Mineral Resource, which, if confirmed, will increase mine life and enhance value.

Figure 4: Original Garden Well long section looking west showing the Exploration Target Area at the time expenditure to explore the area to the North was approved.

The 1km-long exploration decline extending from Garden Well South to the Garden Well Main Zone continues to provide ideal access to test and realise the potential of other areas within the Exploration Target area.

Drilling to date has confirmed multiple strongly mineralised zones that extend beneath the open pit and along-strike from the Garden Well South area to the Garden Well Main area.

Better intersections outside the planned stope shapes which require follow-up drilling, highlighted in Figure 5, include:

•	20.5m @ 2.3 g/t Au	from	172m	RRLGWUG0144
•	20m @ 2.0 g/t Au	from	223m	RRLGWUG0129
•	7m @ 5.6 g/t Au	from	117m	RRLGWUG0185
•	5.5m @ 11.7 g/t Au	from	213m	RRLGWUG0137
		c	477	

- 5.9m @ 3.7 g/t Au from 177m RRLGWUG0185
- 0.5m @ 104.3 g/t Au from 273m RRLGWUG0151

¹ ASX announcement "Development Approval for Two Underground Mines and Underground Reserves Increase" released on 6 May 2024 and the subsequent ASX announcement "Clarification – Regis' Underground Growth Projects" released on 10 May 2024.

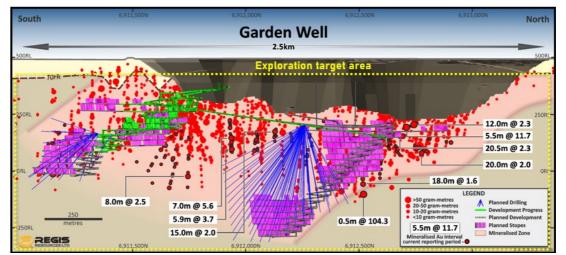


Figure 5: Garden Well long section looking west showing recent high-grade intersections outside the existing and planned underground mine at Garden Well South & Main plus planned drilling.

The exploration decline will continue to be utilised for infill and extensional drilling of Garden Well Main to extend known mineralisation and convert Inferred Resources into Indicated Resources. The same will continue at Garden Well South where down plunge extension will be drilled.

Tooheys Well Underground Potential

Tooheys Well open pit was started in 2018 and has produced 7Mt of ore at a grade of 1.44g/t for 328,000 ounces of gold. Open pit mining is expected to be completed in early 2025.

It is a folded sequence of volcano-sedimentary rocks, consisting of BIF, chert, shale, volcaniclastics, siltstones and mafic schists. The geology is similar to that of the Garden Well South underground with drilling targeting high-grade down plunge extensions of mineralisation.

Five holes were drilled approximately 250m to 300m down plunge of previously identified significant highgrade intersections. This drilling has intersected strongly altered sulphide zones similar to the previous high-grade mined in the open pit and returned strong results (Figure 6). Drilling is ongoing and will continue to test the potential for economic underground mineralisation. Previously announced results² include;

•	20m @ 2.2 g/t Au	from	466m	RRLTWDD013
•	7.9m @ 2.5 g/t Au	from	501m	RRLTWDD015
•	4.7m @ 2.3 g/t Au	from	425.7m	RRLTWDD016

Figure 6 also illustrates the proposed location of further down plunge exploration drilling to test for the continuation of mineralisation, to a depth of nearly 500m from surface.

² As announced in the ASX release titled "Quarterly Report to 30 June 2024" on 25 July 2024.

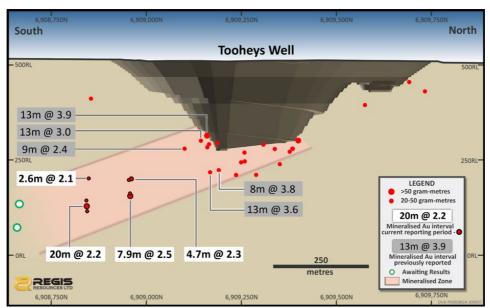


Figure 6: Toohey's Well long-section showing down plunge exploration drilling results and planned pierce points down plunge

Rosemont-Baneygo Trend

The area between Rosemont and Baneygo (Figure 7) continues to return promising drilling results in a geological setting similar to other existing orebodies along the trend. This geological trend continues south of Ben Hur where very high-grade mineralisation, and an underground Exploration Target has been established in the same geological setting as Rosemont.

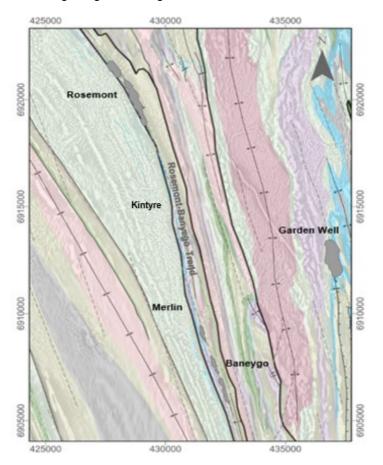


Figure 7: Rosemont-Baneygo Trend geology, deposits and prospects

Ben Hur Underground Exploration Target

Ben Hur is a series of open pits that, since the commencement of mining in 2023 up until September 2024 has produced 890kt at 1.3g/t for 37koz. Open pit mining activities are expected to extend into mid to late 2025.

The Ben Hur deposit is defined by mineralisation over a strike length of nearly 2km located 40km south of Rosemont (Figure 8) and hosted in the same sub-vertical east dipping quartz dolerite. Drilling beneath the open pits has demonstrated the potential for mineralisation to continue down plunge which, if economic, could support the establishment of a fourth underground production source.

The Exploration Target (Table 2) is estimated to contain between 4.0Mt and 6.0Mt at a grade ranging between 2.2 g/t Au and 2.8 g/t Au across the deposit and includes potential down plunge extensions of the current open pit mineralisation with a 500m vertical extent from 400m RL to -100m RL.

The potential quantity and grade of the Exploration Target, as set out in Table 2 and presented in Figure 8, is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate an extension of the current Mineral Resource into the Exploration Target area, and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared and reported in accordance with JORC Code 2012.

The Exploration Target area (Figure 8) was defined by the extension of high-grade mineralisation within the Ben Hur open pits and considering Regis' experience at similar deposits within the Duketon operation (namely Rosemont).

Exploration Target	Tonnage (Mt)	Au (g/t)	Au (koz)
Ben Hur	4.0 - 6.0	2.2 - 2.8	300 - 550

Table 2: Ben Hur Underground Exploration Target

This initial Exploration Target area has been reasonably defined based on a review of the Ben Hur deposit drill hole databases, geology, geophysical data sets and the 2023 Mineral Resource Estimate (MRE) data.

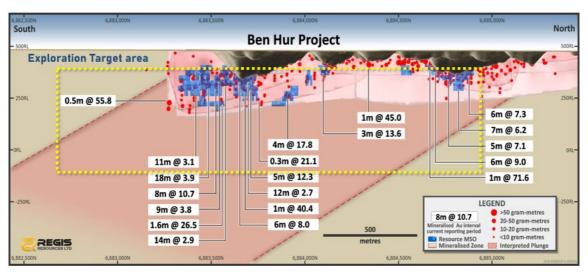


Figure 8: Exploration Target area, including Mining Stope Optimiser (MSO) shapes and potential, interpreted mineralised envelopes (pink) beneath the Ben Hur open pits (long section)

Drilling beneath Ben Hur has identified high-grade mineralisation with visible gold consistently seen on a sheared contact of the quartz-dolerite. Figure 9 shows recent drilling intersections and the follow-up drill plan to test the down-dip and down-plunge continuity of high-grade mineralisation.

Better intersections of recent drilling include:

•	18m @ 3.9 g/t Au	from	196m	RRLBENRC160
•	11m @ 3.1 g/t Au	from	210m	RRLBENRC164
•	8m @ 10.7 g/t Au	from	194m	RRLBENRC100
•	4m @ 17.8 g/t Au	from	256m	RRLBENRC190
•	1.6m @ 26.5 g/t Au	from	294m	RRLBENDD004
•	0.3m @ 21.1 g/t Au	from	294.4m	RRLBENDD005
•	0.5m @ 55.8 g/t Au	from	304m	RRLBENDD009

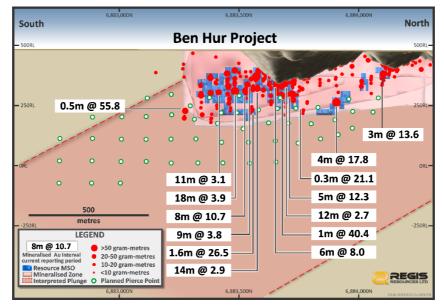


Figure 9: Ben Hur long section showing potential and interpreted mineralised envelopes (pink), drill intersections down-plunge and planned follow-up drilling pierce points.

Rosemont Underground

The orebodies at Rosemont are hosted in a steeply dipping north-trending quartz-dolerite unit intruding into a mafic-ultramafic sequence. Drilling activities have continued to explore multiple high-grade shoots which extend around existing underground infrastructure and along strike to the south.

Current Rosemont underground mining areas are presented in Figure 10 and include (from the north to the south) Rosemont Main, Rosemont Central and Rosemont South.

Rosemont Stage 3 is a new underground area which has extended the Rosemont South production area down-dip and down-plunge. Additionally, mineralisation remains open at depth and down plunge.

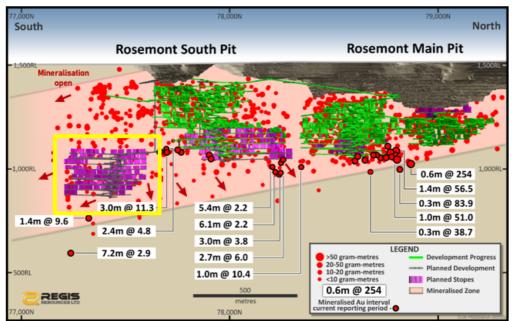


Figure 10: Rosemont long section showing the location of Rosemont Stage 3 (yellow box)

Rosemont Stage 3

As announced in ASX releases during May 2024, recent drilling success beneath the Rosemont South open pit resulted in the identification of Rosemont Stage 3. Rosemont Stage 3 is an extension of the current Rosemont South underground mining area, located 100m south of existing underground operations and extends at least 300m to a total depth of 700m below ground level (Figure 10).

ASX announcement "Development Approval for Two Underground Mines and Underground Reserves Increase" released on 6 May 2024, included an initial Exploration Target for the remaining areas within the Rosemont Stage 3 area as highlighted in Figure 10 and as presented in Table 3.

The potential quantity and grade of this Exploration Target are conceptual in nature, and there is no certainty that further exploration work will result in the determination of Mineral Resources.

Exploration Target	Tonnage (Mt)	Au (g/t)	Au (koz.)
Rosemont Stage 3	0.6 - 0.8	2 - 3	40 - 80

Table 3: Rosemont Stage 3 Exploration Target

Outside of the currently defined Rosemont Stage 3 mine plan, drilling continues to intersect strong mineralisation in the favourable Rosemont quartz-dolerite which continues beyond the planned stoping area at Rosemont Stage 3.

All holes have intersected mineralised quartz dolerite with fine disseminated sulphides, quartz veining and quartz-albite-sericite alteration occurring in multiple metre-scale zones, a common feature of Rosemont's gold-bearing geology.

Drilling during the period continues to demonstrate the potential for Rosemont Stage 3 to grow with new results supporting the Exploration Target. Better intersections selected outside the planned production area include:

•	1.4m @ 9.6 g/t Au	from	898m	RRLRMDD134W1
•	7.2m @ 2.9 g/t Au	from	1023m	RRLRMDD133W1
•	3.0m @ 11.3 g/t Au	from	102m	RUGDD1970

Infill drilling of Rosemont Stage 3 and beneath Rosemont Central and Main continues to be completed from both surface and underground locations. Surface diamond drilling is also continuing to test the potential down-dip and down-plunge extensions to the mineralisation, further expanding the potential underground production areas.

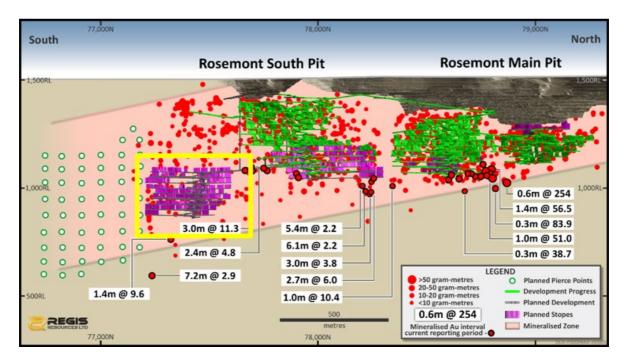


Figure 11: Rosemont long section showing new drill intersection outside the Stage 3 planned stopes and the planned pierce points down plunge

Kintyre - open pit mineralisation on the Rosemont Baneygo Trend

The Kintyre mineralisation is a potential open pit with a strike length of approximately 750m with mineralisation drilled to a current depth of nearly 200m below surface.

Kintyre is located between Rosemont and Baneygo and is hosted in quartz dolerite consistent with other deposits on the trend. Drilling has identified both supergene and primary mineralisation to the south, east and at depth beyond the historically identified mineralisation.

Strong mineralisation indicators in fresh quartz dolerite demonstrate the potential of the system at depth and will require follow up drilling with a significant component of the diamond core to better define the controls on mineralisation.

Selected significant results received include:

•	11m @ 1.9 g/t Au	from	66m	RRLKIRC027
•	10m @ 2.4 g/t Au	from	80m	RRLKIRC027
•	14m @ 4.7 g/t Au	from	44m	RRLKIRC030
•	10m @ 3.1 g/t Au	from	62m	RRLKIRC033
•	9m @ 2.6 g/t Au	from	76m	RRLKIRC033
•	12m @ 2.1 g/t Au	from	70m	RRLKIRC040
•	8m @ 3.4 g/t Au	from	35m	RRLKIRC047
•	9m @ 3.0 g/t Au	from	6m	RRLKIRC061
•	11m @ 2.7 g/t Au	from	57m	RRLKIRC072

	6,915,750N	6,916,000N	6,916,250N 430,250E	
South		Kintyre Prospec	t	North
- 500RL		750m		500RL-
	@ 34.6			• •
* 6m	n @ 7.8	15m @ 22.5	• • • • • • • • • • • • • • • • • • •	:
11m	n @ 1.9	14m@2.0	18m @ 1.9 4m @ 5.8	
10m	n @ 2.4	9m @ 3.0	16m @ 2.7 19m @ 3.0	
- 250RL 9m	n @ 2.6		14m @ 4.7 23m @ 1.6	250RL-
	n @ 3.1	16m @ 3.8	12m @ 2.1 LEGEND	23011
8m	n @ 3.4	10m @ 5.1		ram-metres
		250	current reporting period	gram-metres
	IS SLID	metres	1500 @ 22.5	gram-metres ram-metres
DUK-P00001AA-J00043	6 915 750N	6,916,000N	6,916,250N 430,250E	

Figure 12: Kintyre long section, showing significant intersections and scale of the mineralisation

Duketon North-West Area

Gloster: Drilling supports extensions to open pit mining

The Gloster gold deposit has been mined by open pit, producing 9.6Mt of ore at a grade of 1.05 g/t for 326 koz between 2016 and June 2024. Currently part of Regis' Group Mineral Resources, Gloster held a Mineral Resource Estimate of 6Mt at 1.2 g/t Au for 215,000 ounces of gold at December 31st 2023 (Table 4).

					Measured			Indicated			Inferred			Total Resour	se
Project	Equity	Туре	Cut-Off (g/t)	Tonnes (Mt)	Gold Grade (g/t)	Gold Metal (koz)									
Gloster	100%	Open-Pit	0.4				2.3	1.23	90.8	3.4	1.15	124.5	6	1.2	215
Duketon Total		Total		14	0.8	360	32	1.4	1,430	14	1.5	680	59	1.3	2,480
Regis Total	Gra	and Total		25	1.0	820	106	1.3	4,360	36	1.5	1,750	167	1.3	6,930
Notes:															

Table 4: Gloster Mineral Resource as at 31 December 2023

The above data has been rounded to the nearest 1,000,000 tonnes, 0.1 g/t gold grade and 10,000 ounces. Errors of summation may occur due to rounding

These Mineral Resources were included as part of Group Mineral Resources as announced in the 2024 Annual Mineral Resource and Ore Reserve update and released to the ASX on 17 June 2024. Within this, the Gloster Mineral Resources were considered to be non-material as they comprised a small proportion of Regis' Group Mineral Resource base. For transparency, the JORC Table 1 specifically relating to Gloster is appended to this report.

The Gloster mineralisation is hosted in intermediate volcanic and intrusive rocks. Mineralisation is structurally complex; consisting of steeply dipping shears and multiple flat lying mineralised vein sets. Mineralised zones are characterised by several metres of quartz-carbonate-sulphide veins, which commonly host visible gold.

Infill drilling tested beneath the pit returning numerous narrow high-grade results (Figure 13), working to upgrade Inferred Resources to Indicated Resources. A total of 49 holes for 10,822m were drilled to investigate grade continuity in an area being considered for an expansion of the open pit (nominally 100m beneath the base of the current pit).

Initial results from this infill drilling program have returned typical narrow high-grade intervals. A comprehensive review of structure and continuity of selected lodes will be undertaken when the current phase of drilling is complete.

Selected significant results received include:

•	7m @ 12.5 g/t Au	from	12m	RRLGLRC616
•	29m @ 2.8 g/t Au	from	213m	RRLGLRC662
•	20m @ 2.3 g/t Au	from	84m	RRLGLRC591
•	12m @ 3.0 g/t Au	from	47m	RRLGLRC631
•	9m @ 2.8 g/t Au	from	9m	RRLGLRC580
•	7m @ 5.4 g/t Au	from	5m	RRLGLRC619
•	4m @ 9.5 g/t Au	from	0m	RRLGLRC618
•	1m @ 37.8 g/t Au	from	110m	RRLGLRC583

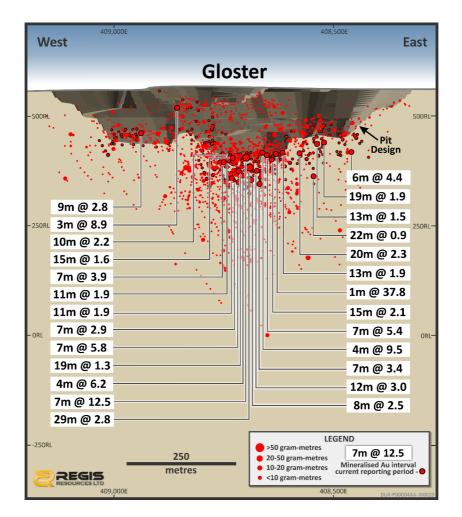


Figure 13: Gloster cross-section, showing significant intersections beneath the current pit shell

TROPICANA

The Tropicana Gold Mine (**"Tropicana"**) is a large-scale gold deposit within high-grade metamorphic rocks with a known strike length of ~7km in a northeast-trending mineralised corridor.

This corridor is comprised of four known mineralised zones named, from north to south, Boston Shaker, Tropicana, Havana, and Havana South (Figure 14). The gold mineralised zones are laterally extensive along strike and down-dip and range from a few metres to 50m true thickness.

Drilling continues to work towards the conversion of Inferred Resources into Indicated Resources, growing the Inferred Resource base, extending mineralisation down-plunge, exploring for faulted extensions of mineralised lodes and testing conceptual targets.

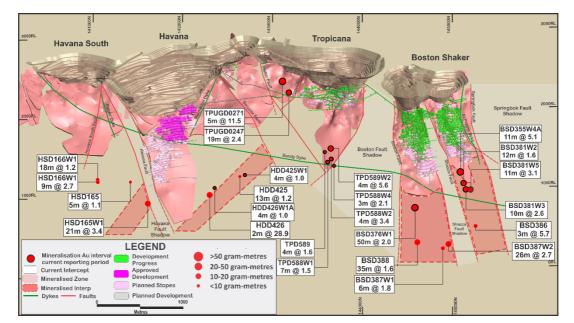


Figure 14: Tropicana oblique view of the mineralised corridor showing actual and conceptual open pit and underground production areas and the 0.3 g/t Au mineralised zones (pink)

Boston Shaker Underground Resource Drilling Continues to Deliver Spectacular Results

Resource drilling at Boston Shaker over the last six months has focused on conversion of Inferred Resources to Indicated Resources and extending mineralisation in unclassified areas.

Boston Shaker Resource Drilling – Southern Lode (BS03)

The BS03 underground diamond drilling programmes are designed to upgrade Inferred Resources into Indicated Resources and grow the Inferred Resources in areas of currently unclassified mineralisation. Drilling is targeting mineralisation constrained within the BS03 lode by the bounding Boston and Shazza shear zones.

At BS03, diamond core drilling was completed from an underground platform to convert Inferred Resources into Indicated Resources (Figure 15).

Better results include:

•	55m @ 2.5 g/t Au	from	241m	BSUGD0182
•	41m @ 2.3 g/t Au	from	213m	BSUGD0194
•	40m @ 2.7 g/t Au	from	261m	BSUGD0187
•	35m @ 5.0 g/t Au	from	232m	BSUGD0190
•	35m @ 4.0 g/t Au	from	299m	BSUGD0173
•	25m @ 3.3 g/t Au	from	191m	BSUGD0185
•	21m @ 4.9 g/t Au	from	307m	BSUGD0169

A surface diamond core drilling program at BS03 included a series of daughter holes wedging from parent hole BSD376 with intersections continuing to confirm the presence of the thickened high-grade shoot in the north of the BS03 lode (Figure 15). One of the better results beneath the Inferred Resource area was;

• 50m @ 2.0 g/t Au from 1001m BSD376W1

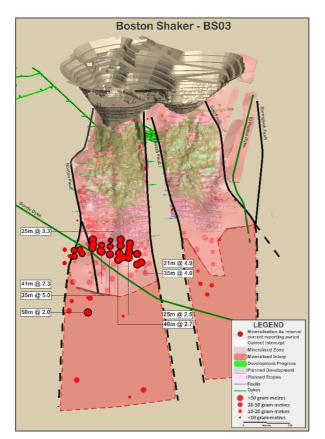


Figure 15: Boston Shaker BS03 long-section displaying gram metre pierce points and 0.3g/t Au mineralisation zone and recent high-grade intersections.

Boston Shaker Resource Drilling – Northern Lode (BS04)

At BS04, diamond core drilling was completed from an underground platform to convert Inferred Resources into Indicated Resources and from the surface to define Inferred Resources (Figure 16).

Drilling is spatially constrained by the Shazza shear to the south, the Springbok shear to the north while remaining open down-dip. Selected better results from underground drilling include:

•	14m @ 3.8 g/t Au	from	73m	BSUGD0265
•	12m @ 3.7g/t Au	from	77m	BSUGD0263
•	7m @ 6.1 g/t Au	from	65m	BSUGD0264
•	7m @ 4.9 g/t Au	from	93m	BSUGD0257

The surface drilling included a series of daughter holes wedging from parent hole BSD355, BSD381 and BSD383 with strong intersections continuing down plunge (Figure 16).

Selected better results beneath the Inferred Resource area include:

•	12m @ 1.6 g/t Au	from	963m	BSD381W2
•	11m @ 5.1 g/t Au	from	857m	BSD355W4A
•	11m @ 3.1 g/t Au	from	973m	BSD381W5
•	10m @ 2.6 g/t Au	from	948m	BSD381W3

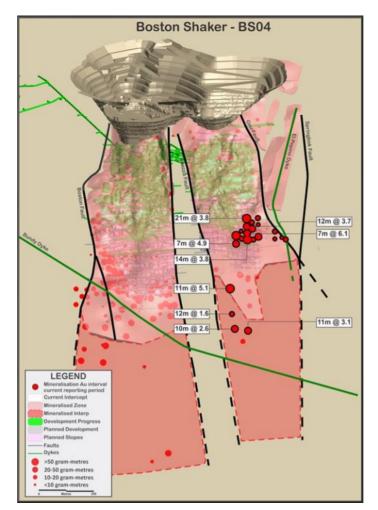


Figure 16: Boston Shaker BS04 long-section displaying gram metre pierce points and 0.3g/t Au mineralisation zone and recent high-grade intersections.

Tropicana Resource Drilling

Diamond core drilling was completed from an underground platform to convert Inferred Resources into Indicated Resources. The mineralised region targeted by drilling is spatially constrained by the Stellar shear zones to the south and the Jigger shear zone to the north.

Multiple highlights (Figure 17) from the program include:

•	19m @ 2.4 g/t Au	from	178m	TPUGD0244
•	16m @ 2.1 g/t Au	from	267m	TPUGD0238
•	15m @ 2.5 g/t Au	from	307m	TPUGD0236
•	15m @ 2.6 g/t Au	from	152m	TPUGD0247
•	14m @ 2.2 g/t Au	from	315m	TPUGD0237
•	5m @ 11.5 g/t Au	from	265m	TPUGD0271

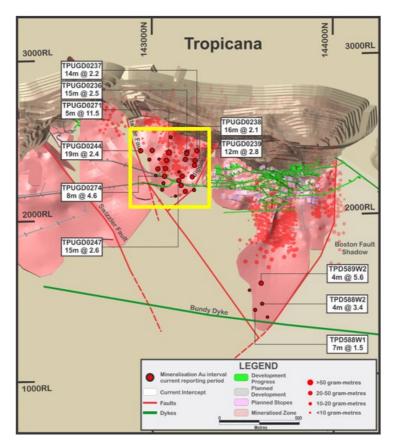


Figure 17: West facing long-section of the Tropicana deposit showing drilling locations of recent intersections.

Underground Resource Extension and Expansion Drilling Programme

During the period drilling was completed down-dip at Tropicana (TP3 Lode) from a parent hole and subsequent wedge holes. Extensional drilling was also completed at the Cobbler conceptual underground target.

Tropicana Underground Extension Drilling – TP3 Lode

The down-dip extension potential of the Tropicana mineralisation has been demonstrated by TPD588. The hole was completed to a depth of 1,212m and intersected the Casablanca and Boston faults as well as the down-plunge extension of the Tropicana mineralisation Figure 18.

TPD588 was drilled 350m down-dip from the deepest current mineralised Tropicana intersection and returned 3m @ 8.3g/t Au from 1,081m. Up-dip follow-up drilling investigating the continuity of mineralisation was completed during the period.

Better selected intersections include:

•	7m @ 1.5 g/t Au	from	1156m	TPD588W1
•	4m @ 5.6 g/t Au	from	719m	TPD589W2
•	4m @ 3.4 g/t Au	from	1168m	TPD588W2
•	4m @ 1.6 g/t Au	from	1156m	TPF589
•	3m @ 2.1 g/t Au	from	1119m	TPF588W4

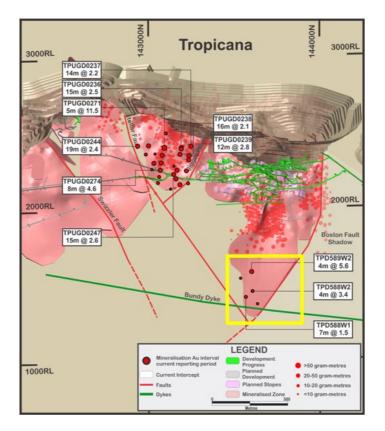


Figure 18: West facing long-section of the Tropicana deposit showing drilling locations of recent intersections.

Cobbler Underground Target

The Cobbler underground conceptual target is a blind, northern repeat of the Havana high-grade shoot beneath the Swizzler fault. It was tested by holes HDD425 and HDD426 which defined the down-dip continuation of mineralisation and will serve as parent holes for a series of systematic wedge holes to test across plunge for the conceptual Cobbler shoot (Figure 19).

Wedge drilling from HDD425 returned encouraging results which include:

•	4m @ 1.0 g/t Au	from	1156m	HDD425W1
•	4m @ 1.0 a/t Au	from	1168m	HDD426W1A

The results of drilling continues to demonstrate the continuity of mineralisation at Tropicana.

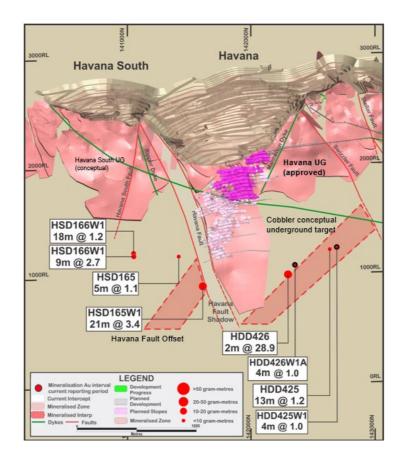
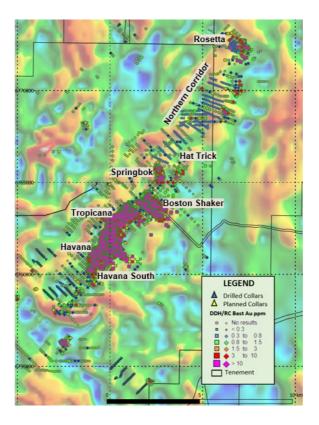



Figure 19: West facing long-section of the Cobbler Underground Target showing drilling locations of recent intersections.

TROPICANA REGIONAL EXPLORATION

The regional exploration programme continues to explore the tenement portfolio with the primary aim of discovering satellite resources. The focus over the last 6 months has been in three key areas north of Tropicana; Northern Corridor, Rosetta and Hat Trick (Figure 20).

Northern Corridor

The corridor north of Boston Shaker to the Lake Rosetta area comprise several geological and mineralisation trends which have returned significant results from multiple drilling programmes.

These trends have been the focus of significant exploration over the past six months with 14 reverse circulation drill lines completed and 10 to 15 holes drilled to approximately 150m depth on each line. The drilling completed for this program include 147 holes for 21,853m RC and 898m diamond.

The significant results shown in Figure 21 will be the focus of follow-up. Better results include

•	2m @ 50.4 g/t Au	from	53m	NCRC064
•	2m @ 17.0 g/t Au	from	148m	NCRC079
•	3m @ 14.0 g/t Au	from	61m	NCRC083

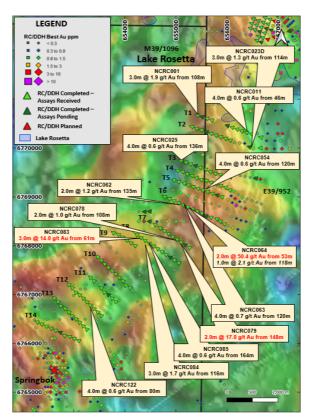


Figure 21: North Corridor drilling from Springbok to Rosetta Lakes

Rosetta Lake Margin

This program has been designed to test the shallow portions of the felsic garnet gneiss intersected from the previous year's drilling and includes 26 holes for 3,921m RC and 1,382m diamond.

Mineralisation at Rosetta typically occurs in felsic, garnet-bearing gneiss packages with sericite \pm hematite alteration and 1-2% pyrite.

The prospective block exhibits multi-stage deformation with structural data indicating a SE plunging, flat lying, tight fold geometry bounded by late-stage NE-SW and NW-SE trending faults.

The significant results shown in Figure 22 will be the focus of future follow-up with better results including:

•	22m @ 1.9 g/t Au	from	140m	RORC010
•	12m @ 1.6 g/t Au	from	142m	RORC007
•	10m @ 1.6 g/t Au	from	81m	RORC002
•	3m @ 6.0 g/t Au	from	110m	ROD019

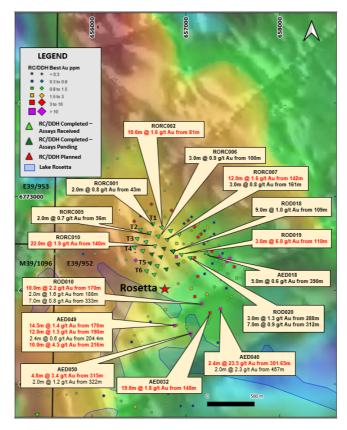


Figure 22: Rosetta Lake drilling

Hat Trick Prospect

The Hat Trick prospect is located approximately 4 km north-east of Tropicana. Tropicana mineralisation and stratigraphy is offset across multiple NW-SE to NE-SW trending shear zones which display dominantly dextral displacement.

This program tests the possibility that the offset continuation of Boston Shaker occurs at Hat Trick.

Bottom of hole aircore suggests that the Tropicana stratigraphy is present at Hat Trick. Tropicana mineralisation occurs on strong, NE-SW trending, high-to-the-east gravity gradients for much of its strike length.

Similar NE-SW trending gradients occur through the Hat Trick area making the area prospective for continuations of Tropicana mineralisation (Figure 23).

Drilling is ongoing at Hat Trick and aims to systematically test the region, much of which remains untested by reverse circulation / diamond drilling and has only shallow AC coverage. Recent assay results from Hat Trick drilling include:

•	3m @ 1.1 g/t Au	from	135m	HTRC051
•	2m @ 2.4 g/t Au	from	26m	HTRC099

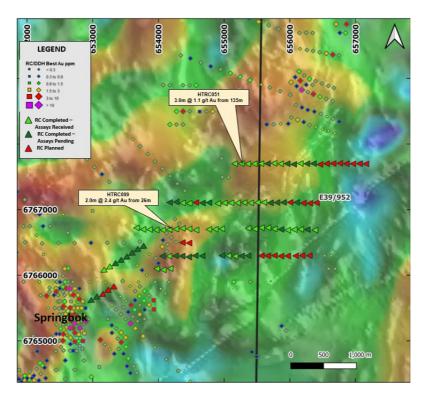


Figure 23: Hat Trick Drilling

Competent Persons

The Competent Person listing below includes details of professional memberships, professional roles, and the reporting activities for which each person is accepting responsibility for the accuracy and veracity of Regis' results and estimates. Each Competent Person in the table below has provided Regis with a sign-off for the relevant information provided by each contributor in this report.

Activity	Compotent	Professional Association		Company of		
Activity	Competent Person	Membership	Number		Activity responsibility	
Exploration	Jamie Williamson	MAusIMM	300112	AngloGold Ashanti	Exploration Results	
Exploration	Rohan Hine	MAusIMM	205547	Regis Resources	Exploration Results	
Exploration	Rob Henderson	MAIG	4031	Regis Resources	Exploration Results	
Mineral Resource Estimate	Robert Barr	MAusIMM	991808	Regis Resources	Gloster Mineral Resource Estimate	

 MAusIMM = Member of the Australasian Institute of Mining and Metallurgy and MAIG = Member of the Australian Institute of Geoscientists

• All Regis Resources personnel are full-time employees of Regis Resources Limited; all AngloGold Ashanti personnel are full time employees of AngloGold Ashanti.

 All the Competent Persons have provided Regis with written confirmation that they have sufficient experience that is relevant to the styles of mineralisation and types of deposits, and the activity being undertaken with respect to the responsibilities listed against each professional above, to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves – the JORC Code 2012 Edition

• Each Competent Person listed above has provided to Regis by e-mail:

- Proof of their current membership to their respective professional organisations as listed above;

 A signed consent to the inclusion of information for which each person is taking responsibility in the form and context in which it appears in this report, and that the respective parts of this report accurately reflect the supporting documentation prepared by each Competent Person for the respective responsibility activities listed above; and
 Confirmation that there are no issues that could be perceived by investors as a material conflict of interest in preparing the reported information.

Forward Looking Statements

This ASX announcement may contain forward looking statements that are subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially,

including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, Reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

Forward-looking statements, including projections, forecasts and estimates, are provided as a general guide only and should not be relied on as an indication or guarantee of future performance and involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Regis Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward looking statements or other forecast.

For further information please contact:

Investor Relations Enquiries: Jeff Sansom Regis Resources Limited T: +61 473 089 856 E: jsansom@regisresources.com Media Enquiries: Shane Murphy FTI Consulting T: +61 420 945 291 E: shane.murphy@fticonsulting.com

This announcement is authorised for release by the Managing Director and CEO of Regis Resources, Jim Beyer.

APPENDIX 1 JORC Code, 2012 Edition – Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

	SECTION 1 – DUKETON – SAMPLING AND DATA					
JORC Criteria	Explanation					
Sampling techniques	Results for Air core (AC), Reverse Circulation (RC) and Diamond Drilling (DD) undertaken at the Duketon Gold Project.					
teeningues	AC Drilling					
	Air core (AC) holes were routinely scoop sampled as 4m composited intervals to collect a nominal 2 - 3 kg sub sample.					
	• Routine standard reference material, sample blanks, and sample duplicates were inserted/collected at every 25th sample in the sample sequence.					
	RC Drilling					
	Reverse Circulation (RC) drill holes were routinely sampled at 1m intervals down the hole.					
	 Samples were collected at the drill rig using a rig-mounted MetzkeTM rotary or cone splitter to collect a nominal 2 - 3 kg sub sample. 					
	Routine standard reference material, sample blanks, and sample duplicates were inserted/collected at every 25th sample in the sample sequence.					
	Diamond Drilling					
	Nominal <2.5kg sub samples were collected from half sawn NQ sized diamond drill core.					
	DD holes were sampled at variable geological intervals down the hole.					
	Routine standard reference material and blanks were inserted/collected at least every 20th sample in the sample sequence.					
	All samples were submitted to Bureau Veritas Laboratory (Perth) for preparation and analysis for gold by 50g Fire Assay (AAS finish).					
Drilling	AC drilling was typically completed using an 89mm diameter AC blade bit.					
techniques	RC drilling was completed using a 139mm to 143mm diameter face sampling hammer.					
	DD was completed using PQ, HQ, or NQ diameter drill sizes (standard tube). Drill core was routinely orientated using a REFLEX ACT III tool.					
Drill sample	AC and RC Drilling					
recovery	A qualitative estimate of sample recovery was done for each sample collected from the drill rig.					
	A qualitative estimate of sample weight was done to ensure consistency of sample size and to monitor sample recoveries.					
	• Appropriate drill techniques were employed to maximize recovery and sample quality. Holes were terminated when excessive water was encountered in the hole.					
	All material was typically dry when sampled.					
	• Drill sample recovery and quality is considered to be adequate for the drilling technique employed. Diamond Drilling					
	A quantitative measure of sample recovery was done for each run of drill core.					
	Drill sample recovery approximates 100% in mineralised zones. Sample quality is considered to be good					
Logging	AC and RC Drilling					
	All drill intervals were geologically logged.					
	Where appropriate, geological logging recorded the abundance of specific minerals, rock types and weathering using a standardized logging system.					
	• A small sample of drill material was retained in chip trays for future reference and validation of geological logging.					
	Diamond Drilling					
	All drill core intervals were geologically logged.					
	Where appropriate, geological logging recorded the abundance of specific minerals, rock types and weathering using a standardized logging system.					
	Half core is retained in the core trays and stored for future reference. Wet and dry photographs were collected for each core tray.					
Sub-sampling	AC Drilling					
techniques and sample	All composite samples were scoop sampled at the drill rig.					
preparation	Routine field sample duplicates were taken to evaluate whether samples were representative.					
	Additional sample preparation was undertaken by Bureau Veritas laboratory.					
	RC Drilling					
	All 1m samples were cone/rotary split at the drill rig.					
	Routine field sample duplicates were taken to evaluate whether samples were representative.					

	SECTION 1 – DUKETON – SAMPLING AND DATA
JORC Criteria	Explanation
	Additional sample preparation was undertaken by Bureau Veritas laboratory. Diamond Drilling
	 Drill core was sawn in half along its long axis. One half of the drill core was taken for geochemical analysis. Samples were collected at variable geological intervals down the hole (sample length ranged from 0.2m to 1.28m)
	Additional sample preparation was undertaken by Bureau Veritas laboratory.
	At the laboratory, samples were weighed, dried and crushed to -2mm in a jaw crusher. The crushed sample was subsequently bulk-pulverised in a ring mill to achieve a nominal particle size of 85% passing 75um.
	Sample sizes and laboratory preparation techniques are considered to be appropriate for the stage of evaluation and the commodity being targeted.
Quality of assay data and	 Analysis for gold only was undertaken at Bureau Veritas by 50g Fire Assay with AAS finish to a lower detection limit of 0.01ppm. Fire assay is considered a "total" assay technique.
laboratory tests	 No geophysical tools or other non-assay instrument types were used in the analyses reported.
	 Review of routine standard reference material and sample blanks suggest there are no significant analytical bias or preparation errors in the reported analyses.
	 Results of analyses for field sample duplicates are consistent with the style of mineralisation being evaluated and considered to be representative of the geological zones which were sampled.
	Internal laboratory QAQC checks are reported by the laboratory.
Verification of	Drill hole data is compiled and digitally captured by geologists at the drill rig.
sampling and assaying	 The compiled digital data is verified and validated before loading into the drill hole database.
	Twin holes were not utilized to verify results.
	 Reported drill hole intersections are compiled by the Company's database manager and reviewed by Company personnel.
	There were no adjustments to assay data.
Location of data	Drill holes are reported in MGA94_51 coordinates.
points	 Drill hole collars were set out in local mine grids AMG84_51 and MGA94_51 coordinates.
	 For AC and some RC, drill hole collars were positioned using hand held GPS.
	 For RC and DD, drill hole collars were typically positioned and picked up using Trimble RTK GPS, calibrated to a base station (expected accuracy of 20mm).
	 RC and DD drill holes are routinely surveyed for down hole deviation at approximately 30m spaced intervals down the hole using North Seeking Gyro downhole tools.
	 The topographic surface for all projects is derived from a combination of the primary drill hole pickups and the pre- existing photogrammetric contouring.
	Locational accuracy at collar and down the drill hole is considered appropriate for the stage of evaluation.
Data spacing	Depending on the location and target, holes were drilled on variably spaced sections and hole spacings, as follows.
and distribution	Resource diamond drilling is nominally 80m x 40m to 40m x 40m spaced.
	 Resource RC drilling is nominally 80m x 40m to 40m x 40m spaced.
	 RC and AC drilling at regional prospects occurred on sections nominally spaced between 200m to 800m apart, with hole spacing varying between 40m to 200m on sections.
	Sample compositing was not applied to the reported intervals.
Orientation of data in relation	AC Drilling
to geological structure	At regional prospects, exploration is at an early stage and the true orientation of mineralisation has not been confirmed, however the reported drill hole orientations are considered appropriate for the geological setting and similar style deposits within the region.
	RC and Diamond Drilling
	The orientation of mineralisation has generally been confirmed by earlier drilling, and the reported drilling is believed to have intersected the targeted mineralisation at an angle which does not introduce significant sampling bias.
Sample security	Samples are securely sealed and stored onsite, before delivery to Perth laboratories via contract freight transport. Chain of custody consignment notes and sample submission forms are sent with the samples. Sample submission forms are also emailed to the laboratory and are used to track sample batches.
Audits or reviews	There has been no external audit or review of the sampling techniques or data.

APPENDIX 1 Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.) Section 2 contains relevant data on projects and prospects discussed in the main body text or those included below and considered to be material.

SECTION 2 – DUKETON – EXPLORATION RESULTS		
JORC Criteria	Explanation	
Mineral tenement and land tenure status	Garden Well The Garden Well gold deposit is located on M38/1249, M38/1250, M38/283. Current registered holders of the tenements are: M38/1249 Regis Resources Ltd; M38/1250 and M38/283 Regis Resources Ltd and Duketon Resources Pty Ltd (100% subsidiary of Regis Resources Ltd); 2% Royalty to Franco Nevada. Normal Western Australian state royalties apply.	
	Rosemont The Rosemont gold project is located on M38/237, M38/250 & M38/343. Current registered holders of the tenements are Regis Resources Ltd & Duketon Resources Pty Ltd (100% subsidiary of Regis Resources Ltd). Normal Western Australian state royalties apply plus there is a 2% Royalty to Franco Nevada.	
	Regional Regis maintains strong exploration budgets in the order of five times the minimum expenditure commitment for its tenement package. The tenure is secure at the time of reporting and there are no known impediments to mining and on-going exploration.	
Exploration done by other parties	Previous historical exploration work by other Companies includes geochemical surface sampling, mapping, airborne and surface geophysical surveys, RAB, AC, RC and DD drilling. Substantial resource drilling and detailed mining studies have been undertaken on a number of deposits.	
Geology Reported drilling is located within the Duketon Gold Project and covers part of the Duketon Greenston Archaean Yilgarn Craton. The Duketon Greenstone Belt is comprised of mafic and ultramafic rocks, fer volcaniclastic rocks, and associated sedimentary rocks. Cainozoic regolith covers much of the Duketon comprising colluvium, sheet wash and sand plain deposits.		
	Relevant geological characteristics of selected deposits and prospects are discussed where relevant in the body of the announcement.	
Drill hole Information	Drill hole information including collar location and drill direction are documented in Appendix C and in the body of the announcement.	
Data aggregation methods	The reported intersections are length-weighted average grade intervals calculated using the following parameters: AC Drilling - Minimum 0.25 g/t Au cut off with a maximum of 4m consecutive internal waste within the interval. Regional RC Drilling - Minimum 0.4 g/t Au cut off with a maximum of 2m consecutive internal waste within the interval. No upper gold cut off has been applied Diamond Drilling (except GWUG) - Minimum 2.0 g/t Au cut off with a maximum of 2m consecutive internal waste within the interval. No upper gold cut off has been applied. No metal equivalents are reported. GWUG Diamond drilling - Minimum 1.0 g/t Au cut off with a maximum of 3m consecutive internal waste within the interval.	
Relationship between mineralisation widths and intercept lengths		
Diagrams	Refer to the body of the announcement.	
Balanced reporting	Results have not been comprehensively reported. Appropriate plans and long sections show the distribution of drilling (mineralised and unmineralised) relative to the reported intersections.	
Other substantive exploration data	There is no other exploration data which is considered material to the results reported in this announcement.	
Further work	RC and diamond drilling where appropriate will be undertaken to follow up the results reported in this announcement. Appropriate diagrams are included in the body of the announcement.	

APPENDIX 1 JORC Code, 2012 Edition – Section 1 Sampling Techniques and Data

SECTION 1 - TROPICANA JV - SAMPLING AND DATA

JORC Criteria	Explanation		
Sampling techniques	Resource development reverse circulation drilling has been carried out using industry standard drilling and sampling equipment to collect a 3-4kg subsample from a 1m sample. Sub-sampling has been conducted using a cone splitter for sample reduction. Regional exploration reverse circulation drilling has been carried out using industry standard drilling equipment. Where drilling is reconnaissance in nature, 4m composite samples are collected. For each 1m drill interval two approximately 2.5kg samples are collected by sub sampling the lot utilizing a stationary cone splitter. One sample is contained within a calico bag and retained, the second is captured in a plastic bag and is spear sampled to generate the composite sample. Should anomalous gold be reported from the composite sample or potentially favorable geology intercepted, the 1m sample contained within the calico bag is dispatched to the laboratory for analysis. Drill core has been sampled from both full and half core of NQ2 diameter.		
Drilling techniques	 Reverse circulation (RC) percussion drilling using face-sampling bits (5¼ inch or 133mm diameter) have been used to collect samples from the shallower (up-dip) part of the deposits with a nominal maximum RC depth of ~150m. Diamond core drilling (DD) has been used for deeper holes, with diamond tails drilled from RC pre-collars. To control the deviation of deep DD holes drilled since 2011, many of these holes were drilled from short ~60m RC pre-collars or using 63.5mm (HQ) diameter core from surface. Diamond core drilling for MRE definition is predominantly 47.6mm (NQ) diameter core, with a lesser number of holes drilled for collection of metallurgical and/or geotechnical data using 63.5mm (HQ2, HQ3) or 85mm (PQ) core diameters. In fresh rock, cores are oriented wherever possible for collection of structural data. Prior to 2009, core orientations are made using the EzyMark tool with the Reflex Ace Tool replacing the system in later drilling programs. 		
Drill sample recovery	 RC recovery: Prior to 2008 semi-quantitative assessment was made regarding RC sample recovery with recovery visually estimated as 25%, 50%, 75% or 100% of the expected volume of a 1m drilling interval. Since 2008, AGAA has implemented quantitative measure on every 25th interval where the masses of the sample splits are recorded and compared to the theoretical mass of the sampling interval for the rock type being drilled. AGAA found that overall RC recovery in the regolith was >80% and total recovery in fresh rock. DD recovery: DD recovery has been measured as a percentage of the total length of core recovered compared to the drill interval. Core recovery is consistently high in fresh rock with minor losses occurring in heavily fractured ground or for DD in the regolith. The main methods to maximise recovery have been recovery monitoring as described above and DD below a ~150m depth. No relationship exists between sample recovery and grade and the Competent Person considers that grade and sample biases that may have occurred due to the preferential loss or gain of fine or coarse material are unlikely. 		
Logging	RC cuttings and DD cores have been logged geologically and geotechnically with reference to AGAA's logging standard library, to levels of detail that support MRE work, Ore Reserve estimation (ORE) and metallurgical studies. Qualitative logging includes codes for lithology, regolith, and mineralisation for both RC and DD samples, with sample quality data recorded for RC such as moisture, recovery, and sub-sampling methods. DD cores are photographed, qualitatively and structurally logged with reference to orientation measurements where available. Geotechnical quantitative logging includes QSI, RQD, matrix and fracture characterisation. The majority of holes are logged fully along the entire length. Selective logging of geotechnical data capture is completed on infill holes to restrict data collection to the key area of interest.		
Sub-sampling techniques and sample preparation	 RC – Primary splitting: Prior to 2007, RC samples were collected from the RC cyclone stream using a tiered riffle splitter. From 2007, a static cone splitter was introduced and replaced the use of riffles splitting on all rigs. The RC sampling interval is generally 1m but from 2016, 2m intervals were introduced for RC pre-collar holes. The splitters collected a ~12% split from the primary lot with two 12% splits collected – the first for laboratory submission and second as a reference or duplicate. Most samples were collected dry with <2% of samples recorded as being split in moist or wet state. The main protocol to ensure the RC samples were representative of the material being collected was monitoring of sample recovery and collection and assay of replicate samples. From April 2024 composite RC samples have been collected in certain situations where drilling is reconnaissance in nature. For each 1m drill interval two approximately 2.5kg samples are collected by sub sampling the lot utilizing a stationary cone splitter. One sample is contained within a calico bag and retained, the second is captured in a plastic bag and is spear sampled to generate the composite sample. Should anomalous gold be reported from the composite 		

SECTION 1 – TROPICANA JV – SAMPLING AND DATA		
JORC Criteria	Explanation	
	 sample or potentially favorable geology intercepted, the 1m sample contained within the calico bag is dispatched to the laboratory for analysis. DD cores are predominantly collected of 1m intervals with sampling determined by geological assessment of potential mineralisation Prior to 2022 all NQ cores have been half-core sampled with the core cut longitudinally with a wet diamond blade. From 2022 onwards selected infill NQ cores have been whole sampled following a process of crushing and splitting through a 50% of the Splitter prior to submission to the laboratory. A few of the DD whole cores have been sampled from HQ3 cores drilled to twin RC holes in the regolith or for geotechnical or metallurgical testing. In 2005, some 1,150m of cores drilled in the oxide zone were chisel split rather than wet-cut, but this poorer subsampling represents <0.01% of the core drilled. Laboratory preparation: Sample preparation has taken place at a number of laboratories since commencement of MRE definition drilling including SGS Perth (pre- 2006). Genalysis Perth (2006 to April 2016) and SGS (Tropicana Gold Mine) TGM onsite laboratory (2015 Boston Shaker samples and post-April 2016) to Laborator 10 yamples), SGS Perth and SGS TGM from January 2018, SGS TGM, Kalgoorile and Perth in addition to Intertek Perth from 2021 onwards RC samples are oven dried then pulped in a mixer mill to a particle size distribution (PSD) of 90% passing 75 mm before subsampling for fire assay. Genalysis prepared DD half-core samples by jaw-crushing then pulverisation of the whole crushed to to a PSD of 90% passing 75 mm before subsamples or crusher to ary split to -1 kg before pulversiton and sub-sampling for fire assay. A 1 SGS Tropicana laboratory samples, were processed in automated sample graven sub-sampling for fire assay. A 1 SGS Tropicana laboratory samples were processed in automated sample grave sub-s	
Quality of assay data and laboratory tests	No geophysical tools have been used to determine any element concentrations. All prepared pulps have undergone 50g fire assay, which is considered a total assay for gold. As discussed above all laboratories have used industry-standard quality control procedures with standards used to monitor accuracy, replicate assay to monitor precision, blanks to monitor potential cross contamination and sieve tests to monitor PSD compliance. AGAA has also used other 'umpire' laboratories to monitor accuracy including Genalysis Perth (prior to November 2006 and 2016 and to June 2017), SGS Laboratory (from November 2006 to August 2007, June 2017 to June 2019) and ALS Perth (since August 2007), with these check assaying campaigns coinciding with each MRE update. All check assay results have been deemed acceptable. AGAA has reviewed the quality sample results on a batch by batch and monthly basis and has found that the overall performance of the laboratories used for MRE samples is satisfactory.	
Verification of sampling and assaying	Significant drill hole intersections of mineralisation are routinely verified by AGAA's senior geological staff and have also been inspected by several independent auditors as described further below. Twin holes have been drilled to compare results from RC and DD drilling with the DD results confirming that there is no material down hole smearing of grades in the nearby RC drilling and sampling.	

SECTION 1 – TROPICANA JV – SAMPLING AND DATA			
JORC Criteria	Explanation		
	All logging and sample data is captured digitally in the field using Field Marshall Software, prior to upgrade to Micromine's Geobank database in 2016. Data is downloaded daily to the Tropicana Exploration Database (Datashed) and checked for accuracy, completeness and structure by the field personnel. Assay data is merged electronically from the laboratories into a central Datashed database, with information verified spatially in Vulcan software. AGAA maintains standard work procedures for all data management steps. An assay importing protocol has been set up to ensure quality samples are checked and accepted before data can be loaded into the assay database All electronic data is routinely backed up to AGAA's server in Perth. There have been no adjustments or scaling of assay data other than setting below detection limit values to half detection for MRE work.		
Location of data points	All completed drill hole collar locations of surface holes have been using real time kinematic global positioning (RTK GPS) equipment, which was connected to the state survey mark (SSM) network. The grid system is GDA94 Zone 51 using AHD elevation datum. Prior to 2007, drill hole path surveys have been completed on all holes using 'Eastman' single shot camera tools, with down hole gyro tools used for all drilling post 2007. A digital terrain model was prepared by Whelan's Surveyors of Kalgoorlie from aerial photography flown in 2007, which has been supplemented with collar data surveyed using RTK GPS. This model is considered to have centimetre-scale accuracy. The MRE and ORE are on a local Tropicana Gold Mine grid (TMG), which is derived by a two-point transform from Map Grid Australia (MGA) and Australian Height Datum (AHD) as follows: • Point 1: • MGA Zone 51: 617.762.61mE = TMG: 50,000.00mE • MGA Zone 51: 6,727,822.78mN =TMG: 95,000.00mN • AHD elevation = TMG: MGA elevation + 2,000m • MGA Zone 51: 688,473.50mE = TMG: 50,000.00mE • MGA Zone 51: 6728,23.48mN = TMG: 50,000.00mE • MGA Zone 51: 6,798,533.48mN = TMG: 195,000.00mN		
Data spacing and distribution	 AHD elevation = TMG: MGA elevation + 2,000m The drill hole spacing used to define MREs nominally ranges from 25mN by 25mE to 100mN by 100mE (local grid) over most of the MRE area with a small area of 10mN by 10mE used for grade control calibration work. Most of the open pit MRE has been tested on a 50mN by 50mE grid with closer spaced 25mN by 25mE patterns in the upper parts of the deposit. The Boston Shaker underground MRE is drilled at 50mN by 25mE in the upper levels and out to 100mN by 100mE at deeper levels. The Havana Deeps underground MRE has been drilled at 50mN by 25mE pattern in the upper area and out to 100mN by 100mE at deeper levels. Down-hole sample intervals are typically 1m, with 2m compositing applied for MRE work. The Competent Person considers that these data spacings are sufficient to establish the degree of geological and grade continuity appropriate for the MRE and ORE estimation procedures, and the JORC Code classifications applied. 		
Orientation of data in relation to geological structure	Most drill holes are oriented to intersect the shallowly east dipping mineralisation at a high angle and as such, the Competent Person considers that a grade bias due to the orientation of data in relation to geological structure is highly unlikely.		
Sample security	The chain-of-sample custody is managed by AGAA. Samples were collected in pre-numbered calico bags, which are then accumulated into polywoven bags for transport from the collection site. The accumulated samples are then loaded into crates and road hauled to the respective laboratories (Perth/Kalgoorlie) or processed onsite at the TGM laboratory. Sample dispatches are prepared by the field personnel using a database system linked to the drill hole data. Sample dispatch sheets are verified against samples received at the laboratory and any issues such as missing samples and so on are resolved before sample preparation commences. The Competent Person considers that the likelihood of deliberate or accidental loss, mix-up or contamination of samples is very low.		
Audits or reviews	Field quality control data and assurance procedures are reviewed on a daily, monthly and quarterly basis by AGAA's field personnel and senior geological staff. The field quality control and assurance of the sampling was audited by consultant Quantitative Geoscience in 2007 and 2009. The conclusion of the audit was that the data was suitable for MRE work. In 2017, MRE consultants Optiro reviewed data collections and assay quality as part of an MRE review and found no material issues.		

APPENDIX 1 Section 2 - Reporting of Exploration Results

SECTION 2 – TROPICANA JV – EXPLORATON RESULTS		
JORC Criteria	Explanation	
Mineral tenement and land tenure status	The TGM MREs are located wholly within WA mining lease M39/1096, which commenced on 11 March 2015 and has a term of 21 years (expiry 10 March 2036). TGM in a joint venture between AGAA (70%) and RRL (30%) with AGAA as manager. Gold production is subject to WA State royalties of 2.5% of the value of gold produced. The Competent Person has confirmed that there are no material issues relating to native title or heritage, historical sites, wilderness or national parks, or environmental settings. The tenure is secure at the time of reporting and there are no known impediments to exploitation of the MRE and ORE and on-going exploration of the mining lease.	
Exploration done by other parties	AGAA entered a joint venture (JV) with IGO in early 2002 with the main target of interest being a Western Mining Corporation (WMC) gold soil anomaly of 31ppb, which was reporting in a WA government open file report. Prior to the JV, the WMC soil sampling program was the only known exploration activity and the only dataset available were WA government regional magnetic and gravity data.	
Geology	TGM is on the western margin of a 700km long magnetic feature that is interpreted to be the collision suture zone between the Archean age Yilgarn Craton to the west and the Proterozoic age Albany-Fraser Orogen to the east of this feature. The gold deposits are hosted by a package of Archean age high metamorphic grade gneissic rocks. Four distinct structural domains have been identified – Boston Shaker, Tropicana, Havana and Havana South, which represent the same mineral deposit disrupted by northeast striking faults that post-date the mineralisation. The gold mineralisation is hosted by a shallowly southwest dipping sequence of quartz-feldspar gneiss, amphibolite, granulite and meta-sedimentary chert lithologies. The gold mineralisation is concentrated in a 'favourable horizon' of quartz-feldspar gneiss, with a footwall of garnet gneiss, amphibolite or granulite. Mineralisation is characterised by pyrite disseminations, bands and crackle veins within altered quartz-feldspar gneiss. Higher grades are associated with close-spaced veins and sericite and biotite alteration. Mineralisation presents as stacked higher grade lenses within a low-grade alteration envelope. Geological studies suggest the mineralisation is related to shear planes that post-date the development of the main gneissic fabric and metamorphic thermal maximum.	
Drill hole information	Drill hole information including collar location and drill direction are documented in Appendix 1 and in the body of the announcement	
Data aggregation methods	The reported intersections are length-weighted average grade intervals calculated using a 0.7 g/t gold lower cut, no upper cut, maximum 2m internal dilution. All diamond drill assays determined on half core (NQ2) samples by fire assay.	
Relationship between mineralisation width and intercept lengths	Drilling intersects the mineralisation at a high angle and as such approximates true thicknesses in most cases. Regional exploration intersections are reported as downhole widths which in most cases is approximately perpendicular to the plane of mineralisation.	
Diagrams	Refer to the body of the announcement.	
Balanced reporting	Results have been comprehensively reported with the exception regional RC & AC drilling. Appropriate plans and long sections show the distribution of all drilling (mineralised and unmineralised) relative to the reported intersections.	
Further work	Exploration drilling is continuing across the project area	

APPENDIX 2 GLOSTER JORC Code 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The Gloster gold prospect was sampled using of Reverse Circulation (RC $-$ 1,048 holes for 110,773m), Aircore (AC $-$ 26 holes for 1,716m) and Diamond (DD $-$ 91 holes for 22,555m) drill holes producing mainly 1m samples on a nominal 25m east spaced holes on 25m north grid spacing, which were drilled angled -60 degrees to 245 degrees.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Regis drill hole collar locations were picked up by site-based authorised surveyors using Trimble RTK GPS. Downhole surveying was measured by the drilling contractors using Reflex EZ-Shot Downhole Survey Instrument for RC holes and DD holes. The surveys were completed every 30m down each drill hole.
		Core is aligned and measured by tape, comparing back to downhole core blocks consistent with industry practice.
		Regis drill hole sampling had certified standards and blanks inserted every 20th sample (DD only) or every 25th sample (RC and AC) to assess the accuracy and methodology of the external laboratories, and field duplicates (RC and AC only) were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Results of the QAQC sampling were considered acceptable. QAQC results are not recorded for historical drilling, although twin hole drilling has demonstrated the accuracy of the historical assay intercepts.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	For the Regis RC drilling 1m samples were obtained by cone splitter (2.5kg – 3.0kg) and were utilised for lithology logging and assaying. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (SGS).
		Diamond drilling completed to industry standard using varying sample lengths (0.3 to 1.2m) based on geological intervals, which are then dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas).
Drilling techniques	etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC drilling completed with a 140mm diameter face sampling hammer.
		AC drilling was completed with an 89mm diameter AC blade bit.
		Surface diamond drilling carried out by using HQ3 (triple tube) techniques. Core is routinely orientated by REFLEX ACT III tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC recovery was visually assessed, with recovery being excellent except in some wet intervals which are recorded on logs. <1% of the overall mineralised zones have been recorded as wet.
		Historical recovery is not recorded.
		DD core was measured and compared to the drilled intervals, and recorded as a percentage recovery. Overall recovery is recorded as 94%, with the low number a result of the fact that the

Criteria	JORC Code explanation	Commentary
		weathering profile is relatively deep meaning the bulk of the core is through oxide zones. The breakdown of the recovery within mineralised zones is 94% in oxide, 95% in transitional and 99% in fresh.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cyclone and cone splitter to provide uniform sample size, and these were cleaned routinely (cleaned at the end of each rod and more frequently in wet conditions). A booster was also used in conjunction with the RC drill rig to ensure dry samples are achieved.
		The target zones ranged from oxidised rock near surface where recoveries were lower, to highly competent fresh rock where the DD method provided high recovery. Shorter runs were adopted in the oxide zones to improve recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Sample recoveries for RC and AC drilling are visually estimated to be medium to high. No significant bias is expected although no recovery and grade correlation study was completed. The DD sample recovery in the transitional and fresh rock zones is high, and no significant bias is expected. Recoveries in the oxidised zone were lower.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All Regis drill holes are logged by qualified Geologists to support a Mineral Resource Estimation and Ore Reserve study. Logging completed by previous companies is assumed to be of industry standard.
		Lithology, alteration, veining, mineralisation and, on some holes, magnetic susceptibility were logged from the RC chips and saved in the database. Chips from every 1m interval are also placed in chip trays and stored in a designated building at site for future reference.
		Lithology, alteration, veining, mineralisation and geotechnical information were logged from the DD core and saved in the database. Half core is also retained in the core trays and stored in a designated coreyard at site for future reference.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All logging is qualitative except for magnetic susceptibility and geotechnical measurements. Wet and dry photographs were completed on the core.
	The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Most core was half cut with a diamond core saw with the same half always sampled and the surplus retained in the core trays. Non-competent clay zones are sampled as whole core where necessary due to difficulty in cutting.
		At the end of the last Regis diamond drilling program some holes were full core sampled to reduce sampling error and variability.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The RC drilling utilised a cyclone and cone splitter to consistently produce 2.5kg to 3.0kg dry samples.

Criteria	JORC Code explanation	Commentary
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed, and then pulverised to 85% passing 75µm (industry standard practice is assumed for the historical drilling). This is considered acceptable for an Archaean gold deposit.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	For RC and AC drilling field duplicates were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed roughly every 15th sample to assess the repeatability and variability of the gold mineralisation.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	For RC sampling field duplicates were taken at the rig from a second chute on the cone splitter allowing for the duplicate and main sample to be the same size and sampling technique. Field duplicates are taken every 20th sample. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample.
		Field duplicates on core, i.e. other half of cut core, have not been routinely assayed, however a small program completed by Regis Resource's identified significant variability between the two core halves that resulted in whole core sampling being instituted.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (2.5kg to 3kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style (hypogene associated with shearing and supergene enrichment), the width and continuity of the intersections, the sampling methodology, the coarse gold variability and the assay ranges for the gold.
		Field duplicates have routinely been collected to ensure monitoring of the sub-sampling quality. Acceptable precision and accuracy is noted in the field duplicates albeit the precision is marginally acceptable and consistent with a coarse gold Archaean gold deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All gold assaying for RC/AC was completed by external commercial laboratories. Samples are dried, crushed, and then pulverised to 85% passing 75µm and assayed using a 50g charge for fire assay analysis with AAS or ICP finish. This technique is industry standard for gold and considered appropriate.
		Gold assaying for DD was completed by commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis with AAS or ICP finish. This technique is industry standard for gold and considered appropriate.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical measurements were routinely made.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified Reference Material (CRM or standards) and blanks were inserted every 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.

Criteria	JORC Code explanation	Commentary
		Evaluation of both the Regis submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM assaying report shows no consistent positive or negative overall mean bias. Duplicate assaying show high levels of correlation and no apparent bias between the duplicate pairs. Field duplicate samples show marginally acceptable levels of correlation and no relative bias.
		Results of the QAQC sampling were considered acceptable for an Archaean gold deposit. Substantial focus has been given to ensuring sampling procedures met industry best practise to ensure acceptable levels of accuracy and precision were achieved in a coarse gold environment.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have visually inspected the significant intersections. Numerous highly qualified and experienced company personnel from exploration and production positions have visually inspected the significant intersections.
	The use of twinned holes.	The spatial location and assaying accuracy of historical drilling was confirmed with RC and DD twin holes. The Regis RC drilling spatial location and assaying accuracy was also twinned by Regis DD holes. GC holes consistently verify the spatial location, width and tenor of the resource drilling intercepts.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All geological and field data is entered into LogChief [™] or excel spreadsheets with lookup tables and fixed formatting (and protected from modification) thus only allowing data to be entered using the Regis geological code system and sample protocol. Data is then emailed to the Regis database administrator for validation and importation into a SQL database using Datashed.
	Discuss any adjustment to assay data.	Any samples not assayed (i.e. destroyed in processing, listed not received) have had the assay value converted to a -9 in the database. Any samples assayed below detection limit (0.01ppm Au) have been converted to 0.005ppm (half detection limit) in the database.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Pre 2012 Regis drill hole collar locations were picked up using a Sokkia DGPS localised to onsite datum (expected accuracy 300mm). 2012 onwards Regis drill hole collar locations were picked up by site-based authorized surveyors using Trimble RTK GPS, calibrated to a base station (expected accuracy of 20mm).
		Downhole surveying (magnetic azimuth and dip of the drill hole) was measured by the drilling contractors in conjunction with Regis personnel using Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool for DD and RC holes, and Eastman Single Shot Camera for the AC holes. The surveys were completed every 30m down each drill hole, except for the AC holes, which were surveyed at the collar and then 80m down the hole. GC RC and AC holes do not get downhole surveyed due to their shallow nature. Magnetic azimuth is converted to AMG azimuth in the database, and AMG azimuth is used in the Mineral Resource estimation.
	Specification of the grid system used.	The grid system is and AMG Zone 51 (AGD 84) for surveying pickups, as well as any modelling.

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	The topographic surface has been derived from a combination of the primary drill hole pickups, pit pickups and the pre-existing photogrammetric contouring.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The drilling has an effective spacing of 5 metres (east) by 10 metres (north) in the grade control drilled areas (up to 20m below current mined surface), and 25 metres (east) by 25 metres (north) for the remainder of the deposit.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral Resources under the 2012 JORC code once all other modifying factors have been addressed.
	Whether sample compositing has been applied.	Samples have been composited to 1m length for estimation, representing the most common sample length within the data set. Compositing commenced at the ore boundaries.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation at Gloster is moderately dipping to the northeast so drilling is orientated to best suit the mineralisation to be closely perpendicular to both the strike and dip of the mineralisation. Intercepts are close to true-width in all cases.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not believed that drilling orientation has introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Perth via contract freight Transport, who then deliver the samples directly to the laboratory. Sample submission forms are sent with the samples as well as emailed to the laboratory and are used to keep track of the sample batches.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits on sampling techniques and data have been completed.

Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Normal Western Australian state royalties apply and a further royalty of between A \$10-\$100/troy ounce dependent on the gold price (A \$) is payable to a third party on a quarterly basis

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Gloster was discovered in 1902, with no modern exploration work completed until Hillmin Gold Mines Pty Ltd and Aurotech NL conducted mapping, RC drilling, DD and RAB in the mid 1980's, culminating in Resource Estimates and feasibility studies. Leader Resources NL conducted some RC and DD drilling in 1991 before Maiden Gold NL purchase the project in 1994, completing more RC, DD and RAB drilling. In 1995 Johnsons Well Mining (JWM) acquired the tenements and completed more RC, DD and RAB drilling to infill and extend the area of known gold mineralisation. A Resource Estimate was completed in 1997 by JWM.
Geology	Deposit type, geological setting and style of mineralisation.	Gold mineralisation at Gloster is within a NW-SE trending, NE dipping shear zone and associated with flat to moderately NE dipping quartz veins hosted in intermediate intrusives. 5m transported cover sequence conceals the gold mineralisation and weathering extends up to 100m depth. Intensive gold leaching has occurred in the uppermost 15m of the weathering profile.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	This Table 1 refers to the Gloster Mineral Resource Estimate. The Table 1 for exploration results is also attached to this release.
	easting and northing of the drill hole collar	
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	This Table 1 refers to the Gloster Mineral Resource Estimate. The Table 1 for exploration results is also attached to this release
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship	These relationships are particularly important in the reporting of Exploration Results.	The Gloster drill holes were drilled at -60° to 245° and the mineralised zone is moderately dipping to
between mineralization widths and	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	the northeast. The intercepts reported are close to true width.
intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	This Table 1 refers to the Gloster Mineral Resource Estimate. The Table 1 for exploration results is also attached to this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This Table 1 refers to the Gloster Mineral Resource Estimate. The Table 1 for exploration results is also attached to this release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This Table 1 refers to the Gloster Mineral Resource Estimate. The Table 1 for exploration results is also attached to this release.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Additional drilling to upgrade the inferred and unclassified Mineral Resource Estimate to an Ore Reserve is planned for 2024.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	This Table 1 refers to the Gloster Mineral Resource Estimate. The Table 1 for exploration results is also attached to this release

Section 3 - Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary				
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Geological metadata is centrally stored in a SQL database managed using DataShed Software. Regis Resources Ltd ("RRL") employ a database administrator responsible for the integrity of data imported and modified within the system. All geological and field data is entered into LogChief™ or excel spread sheets with lookup tables and fixed formatting (and protected from modification) thus only allowing data to be entered using the RRL geological code system and sample protocol. Data is then emailed to the RRL database administrator for validation and importation into a SQL database using Datashed. Sample numbers are unique and pre-numbered calico sample bags are used.				
	Data validation procedures used.	Following importation, the data goes through a series of digital and visual checks for duplication and non-conformity, followed by manual validation by a company geologist and database administrator.				
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The competent person has made site visits to Gloster. No issues have been noted and all procedures were considered to be of industry standard. In addition to the above site visits, all exploration and resource development drilling programmes are subject to review by experienced senior Regis technical staff. These reviews have been completed from the commencement of drilling and continue to the present.				
	If no site visits have been undertaken indicate why this is the case.	Not applicable.				
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The confidence in the geological interpretation is high. Locally at Gloster the mineralisation is within a NW-SE trending, NE dipping shear zone and associated with flat to moderately NE dipping quartz veins hosted in intermediate intrusives. A 5m transported cover sequence conceals the gold mineralisation and weathering extends up to 100m depth. Intensive gold leaching has occurred in the uppermost 15m of the weathering profile.				
		The narrow nature of mineralised structures within the Gloster Resource makes the precise determination of ore location difficult, however the Competent person believes that, from comparison of the model applied with existing Grade Control and Mining data that the interpretation is reasonable.				
	Nature of the data used and of any assumptions made.	The geological data used to construct the geological model includes regional and detailed surface and open pit mapping, logging of RC/diamond core drilling, and information from historical reports. It is assumed that the geological observations made within the current workings are consistent with the deposit at depth.				
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The mine scale geology of the deposit is relatively simple, and the interpretation is considered robust The small scale domaining of the veins and domains is challenging and relies on the judgement of the resource geologist. While alternative small scale interpretations exist it is unlikely these would have a material impact on the Mineral Resource Estimate.				
	The use of geology in guiding and controlling Mineral Resource estimation.	A model of the lithology and weathering was generated prior to the mineralisation domain interpretation commencing, assisted by dedicated lithology wireframing completed by Regis				

Criteria	JORC Code explanation	Commentary
		Resources Exploration staff. The mineralisation geometry has a very strong relationship with the lithological interpretation and structure where it is associated with shearing and quartz veining. In weathered zones the redox fronts also become important factors in mineralisation control and have been applied to guide the mineralisation zone interpretation.
	The factors affecting continuity both of grade and geology.	Steep and moderately dipping shears and quartz-carbonate veins localise and control the gold mineralisation in the more hypogene-controlled transitional and fresh horizons. In the oxide horizon, the gold mineralisation is also influenced by the redox fronts, where it is sometimes spread in a more sub-horizontal manner. There is a direct correlation between gold and quartz-carbonate veins.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The approximate dimensions of the deposit are 1,200m along strike (NNW-SSE), 400m across (ENE-WSW), and 500m below surface.
Estimation and modeling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	The Mineral Resource estimate has been generated via Ordinary Kriging (OK) with no change of support. The OK estimation was constrained within Leapfrog Geo [™] generated mineralisation domains defined from the resource drill hole dataset, and guided by a geological and structural model. OK is considered an appropriate grade estimation method for Gloster mineralisation given current drilling density and mineralisation style, which has allowed the development of robust and high confidence estimation constraints and parameters.
		The grade estimate is based on 1m down-the-hole composites of the resource dataset created in Leapfrog Geo [™] each located by their mid-point co-ordinates and assigned a length weighted average gold grade. The composite length of 1m was chosen because it is the most common sampling interval (1.0 metre), and is also an appropriate choice for the kriging of gold into the model blocks assuming open pit mining will continue to occur on approximately 2.5 metre benches.
		Detailed statistical and geostatistical investigations have been completed on each domain composites. This includes exploration data analysis, boundary analysis and grade estimation trials. The variography applied to grade estimation has been generated using Snowden Supervisor [™] . These investigations have been completed on each ore domain separately. Kriging Neighbourhood Analysis has also been conducted in Snowden Supervisor [™] in various locations on the domains to determine the optimum block size, minimum and maximum samples per search and search distance.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	No check estimate has been completed as part of the current study, although mine production records and site-based Grade Control estimate were used as the main validation tool to ensure an accurate Mineral Resource estimate.
		Previous estimates have utilised categorical indicator kriging, however the complexity of the orebody structures and multiple mineralising orientations have meant they have been a poor estimator on a bench scale, frequently overestimating the tonnes and/or grade of the orebody. The current model is more constrained and more conservative than previous estimates.
	The assumptions made regarding recovery of by-products.	No by-products are present or modelled.
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	No deleterious elements have been estimated or are important to the project economics/planning at Gloster.

Criteria	JORC Code explanation	Commentary					
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Block dimensions are 5.0m (east) by 5.0m (north) by 2.5m (elevation) with sub-blocking down to 1.25m in all three directions, and was chosen as it approximates GC drill hole spacing. Block size is significantly smaller than the resource drill spacing of 25m x 25m, but was necessary to accurately reflect the volumes of the dipping mineralised structures. The 2.5m elevation equals the mining bench height. The interpolation utilised a single estimation pass of larger search ellipse, in conjunction with a low min max samples of 8 min and 16 max samples and min 4 samples per drillhole.					
	Any assumptions behind modelling of selective mining units.	No selective mining units were assumed in this estimate.					
	Any assumptions about correlation between variables.	No correlated variables have been investigated or estimated.					
	Description of how the geological interpretation was used to control the resource estimates.	The grade estimate is based on mineralisation constraints which have been interpreted based on a lithological and weathering interpretation, and a nominal 0.4g/t Au lower cut-off grade. The mineralisation constraints have been used as hard boundaries for grade estimation wherein only composite samples within that domain are used to estimate blocks coded as within that domain. Statistical investigations have been completed to test the change in statistical and spatial characteristics of the domain grouped by weathering showing there to be little variation between profiles.					
	Discussion of basis for using or not using grade cutting or capping.	A review of the composite data captured within the mineralisation constraints was completed assess the need for high-grade cutting (capping). This assessment was completed both statistica and spatially to determine if the high-grade data clusters or were isolated. On the basis of t investigation, separate and appropriate high-grade cuts were applied to each domain population.					
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	The grade estimate was checked against the input drilling/composite data both visually on section (cross and long section) and in plan, and statistically on swath plots. Production data was seen as the most meaningful form of validation, which the model was compared to throughout the estimation process to ensure an accurate estimation was created.					
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The Mineral Resource tonnage is reported using a dry bulk density and therefore represents dry tonnage excluding moisture content.					
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The cut-off grade of 0.4g/t for the stated Mineral Resource estimate is determined from standardised parameters used to generate the open pit shell that the Mineral Resource is quoted above, and reflects potential mining practices.					
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The Resource model assumes open cut mining is completed and a moderate to high level of mining selectivity is achieved in mining. It has been assumed that high quality grade control will continue to be applied to ore/waste delineation processes using AC/RC drilling, or similar, at a nominal spacing of 10m (north – along strike) and 5m (east – across strike), and applying a pattern sufficient to ensure adequate coverage of the mineralisation zones.					

Criteria	JORC Code explanation	Commentary				
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	A gold recovery of 92% was used to generate the open pit shell above which the Mineral Resource has been quoted. This has been based on potential recoveries indicated in feasibility metallurgical testwork, production data and ongoing testwork to determine cyanidable gold recoveries.				
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	It has been assumed that current or similar operational approaches, protocols and facilities applied to environmental factors at Regis' other operations in the Duketon Belt will continue to be applied at Gloster.				
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	The bulk density values were derived from 155 measurements from across the deposit, taken on the core by an independent laboratory (ALS) via water immersion method with wax coating on oxide and transitional samples (50 measurements) and onsite via water immersion method on fresh rock and competent samples (105 measurements).				
		There is little variation of bulk density values within each oxidation profile, therefore mean values have been applied to each horizon. Oxide is 1.80t/m3, saprock (transitional) is 2.30t/m3, and fresh is 2.75t/m3.				
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the	Fifty (50) of the bulk density samples have all been measured by external laboratories using wax coating to account for void spaces.				
	deposit.	105 measurements were taken onsite via water immersion method on fresh rock and compete transitional samples, and line up closely with the independently measured samples.				
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Little spatial variation is noted for the bulk density data within lithological and weathering boundaries and therefore an average bulk density has been assigned for tonnage reporting based on weathering coding.				
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral Resources under the 2012 JORC code once all other modifying factors have been addressed.				
		The strategy adopted in the current study informed Inferred and Indicated material using Kriging efficiency and Slope of Regression as well as Average anisotropic distance, ID-squared drill spacing and geologic continuity.				
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The Mineral Resource classification method which is described above has also been based on the comparison to production, the quality of the data collected (geology, survey and assaying data), the density of data, the confidence of the geological model and mineralisation model, and the grade estimation quality.				

Criteria	JORC Code explanation	Commentary
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The reported Mineral Resource estimate is consistent with the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No reviews have been completed as part of the current study.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	Confidence in the Mineral Resource estimate is high. The Resource has been classified based on the quality of the data collected, the density of data, the confidence of the geological model and mineralisation model, and the grade estimation quality. This has been applied to a relative confidence based on data density and zone confidence for Resource classification, and is backed up by comparisons to production data. No relative statistical or geostatistical confidence or risk measure has been generated or applied.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The reported Mineral Resources for Gloster are within a pit shell created from an open pit optimisation using a \$2,900 gold price and appropriate wall angles and costs for the location of the deposit. Material outside of the pit shell was examined for UG potential using a 2.5g/t cut-off and a minimum tonnage requirement and nil material was generated.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	Reconciliation comparisons against production were performed as part of the Resource update process. The competent person is of the opinion that the global Resource will continue to perform in line with industry standard tolerances for Indicated and Inferred Resources.

APPENDIX 3: Reporting of Drill Results

Appendix 3-1 - Diamond drilling at Garden Well UG 1 g/t gold lower cut, no upper cut, maximum 3m internal dilution

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	mFrom	mTo	Interval	Au_ppm
RRLGWDD001	6912477	436631	397	-90	0	0.0	0.0	0.0	0.0
RRLGWUG0097	6911744	437208	276	-55	207	152.9	154.0	1.1	2.5
RRLGWUG0097	6911744	437208	276	-55	207	200.0	200.5	0.5	5.5
RRLGWUG0097	6911744	437208	276	-55	207	205.0	205.7	0.7	5.1
RRLGWUG0097A	6911745	437209	276	-55	207	201.0	201.9	0.9	2.2
RRLGWUG0097A	6911745	437209	276	-55	207	226.0	229.0	3.0	2.4
RRLGWUG0097A	6911745	437209	276	-55	207	266.0	267.0	1.0	3.7
RRLGWUG0097A	6911745	437209	276	-55	207	303.0	304.0	1.0	2.3
RRLGWUG0097A	6911745	437209	276	-55	207	313.0	314.0	1.0	2.8
RRLGWUG0097A	6911745	437209	276	-55	207	339.5	340.3	0.8	2.1
RRLGWUG0097A	6911745	437209	276	-55	207	341.0	342.0	1.0	2.4
RRLGWUG0098	6911745	437209	276	-68	223	107.0	108.0	1.0	2.4
RRLGWUG0098	6911745	437209	276	-68	223	198.0	199.0	1.0	2.0
RRLGWUG0098	6911745	437209	276	-68	223	243.0	245.0	2.0	3.0
RRLGWUG0098	6911745	437209	276	-68	223	251.0	252.0	1.0	2.7
RRLGWUG0101	6911745	437209	276	-63	193	126.0	127.0	1.0	2.0
RRLGWUG0101	6911745	437209	276	-63	193	233.2	233.5	0.3	7.7
RRLGWUG0101	6911745	437209	276	-63	193	241.0	242.0	1.0	2.5
RRLGWUG0101	6911745	437209	276	-63	193	277.0	278.0	1.0	3.4
RRLGWUG0101	6911745	437209	276	-63	193	356.7	357.0	0.3	4.3
RRLGWUG0101	6911745	437209	276	-63	193	370.0	370.6	0.6	2.1
RRLGWUG0101	6911745	437209	276	-63	193	371.1	371.4	0.3	4.1
RRLGWUG0102	6911745	437209	276	-76	199	135.0	136.0	1.0	4.1
RRLGWUG0102	6911745	437209	276	-76	199	251.0	254.0	3.0	2.3
RRLGWUG0102	6911745	437209	276	-76	199	282.8	283.2	0.3	2.5
RRLGWUG0102	6911745	437209	276	-76	199	299.0	300.0	1.0	2.1
RRLGWUG0102	6911745	437209	276	-76	199	306.0	307.0	1.0	6.1
RRLGWUG0102	6911745	437209	276	-76	199	331.5	331.8	0.3	15.9
RRLGWUG0102	6911745	437209	276	-76	199	341.0	344.0	3.0	2.1
RRLGWUG0102	6911745	437209	276	-76	199	359.0	360.0	1.0	6.8
RRLGWUG0102	6911745	437209	276	-76	199	364.0	365.0	1.0	2.6
RRLGWUG0103	6911747	437210	276	-81	268	129.0	130.0	1.0	2.1
RRLGWUG0103	6911747	437210	276	-81	268	136.0	137.0	1.0	3.1
RRLGWUG0103	6911747	437210	276	-81	268	210.0	212.0	2.0	2.3
RRLGWUG0103	6911747	437210	276	-81	268	224.0	225.0	1.0	2.2
RRLGWUG0103	6911747	437210	276	-81	268	227.0	228.0	1.0	2.4
RRLGWUG0103	6911747	437210	276	-81	268	289.0	290.0	1.0	2.8
RRLGWUG0103	6911747	437210	276	-81	268	304.0	308.0	4.0	3.5
RRLGWUG0103	6911747	437210	276	-81	268	358.0	359.0	1.0	3.0
RRLGWUG0105	6911744	437208	277	-42	201	127.0	128.0	1.0	9.4
RRLGWUG0105	6911744	437208	277	-42	201	132.0	133.0	1.0	2.3
RRLGWUG0105	6911744	437208	277	-42	201	194.0	195.0	1.0	5.5
RRLGWUG0105	6911744	437208	277	-42	201	203.0	203.9	0.9	2.6
RRLGWUG0105	6911744	437208	277	-42	201	211.0	212.0	1.0	3.3

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	mFrom	mTo	Interval	Au_ppm
RRLGWUG0105	6911744	437208	277	-42	201	235.5	236.7	1.2	2.0
RRLGWUG0105	6911744	437208	277	-42	201	350.0	351.0	1.0	2.9
RRLGWUG0106	6911342	437272	162	-41	180	70.5	71.3	0.8	2.7
RRLGWUG0106	6911342	437272	162	-41	180	90.6	91.0	0.4	2.4
RRLGWUG0106	6911342	437272	162	-41	180	178.0	179.0	1.0	5.5
RRLGWUG0106	6911342	437272	162	-41	180	225.5	226.7	1.2	2.6
RRLGWUG0106	6911342	437272	162	-41	180	251.0	252.0	1.0	8.2
RRLGWUG0106	6911342	437272	162	-41	180	255.3	265.4	10.1	4.4
RRLGWUG0106	6911342	437272	162	-41	180	268.3	275.0	6.7	3.9
RRLGWUG0107	6911341	437272	162	-32	186	66.2	66.6	0.4	3.3
RRLGWUG0107	6911341	437272	162	-32	186	230.5	235.0	4.5	3.6
RRLGWUG0107A	6911322	437283	163	-34	190	73.0	74.0	1.0	10.0
RRLGWUG0107A	6911322	437283	163	-34	190	222.0	225.0	3.0	3.0
RRLGWUG0107A	6911322	437283	163	-34	190	247.4	249.0	1.6	3.2
RRLGWUG0107A	6911322	437283	163	-34	190	251.2	256.7	5.5	8.1
RRLGWUG0107A	6911322	437283	163	-34	190	288.0	289.0	1.0	2.4
RRLGWUG0108	6911322	437284	163	-39	195	86.0	87.0	1.0	2.5
RRLGWUG0108	6911322	437284	163	-39	195	215.0	219.0	4.0	3.2
RRLGWUG0108	6911322	437284	163	-39	195	222.0	233.5	11.5	5.8
RRLGWUG0108	6911322	437284	163	-39	195	235.6	239.0	3.4	5.9
RRLGWUG0109	6911322	437283	162	-29	200	194.0	197.0	3.0	2.5
RRLGWUG0109	6911322	437283	162	-29	200	202.0	203.0	1.0	3.4
RRLGWUG0109	6911322	437283	162	-29	200	206.4	207.3	0.9	4.9
RRLGWUG0109	6911322	437283	162	-29	200	211.0	212.0	1.0	2.7
RRLGWUG0109	6911322	437283	162	-29	200	220.0	221.0	1.0	3.3
RRLGWUG0109	6911322	437283	162	-29	200	223.0	227.0	4.0	2.1
RRLGWUG0109	6911322	437283	162	-29	200	241.0	242.0	1.0	2.5
RRLGWUG0110	6911322	437283	162	-44	204	58.7	59.2	0.5	3.2
RRLGWUG0110	6911322	437283	162	-44	204	67.0	67.6	0.6	3.2
RRLGWUG0110	6911322	437283	162	-44	204	156.0	156.6	0.6	2.7
RRLGWUG0110	6911322	437283	162	-44	204	166.0	166.5	0.5	2.4
RRLGWUG0110	6911322	437283	162	-44	204	195.0	195.5	0.5	2.2
RRLGWUG0110	6911322	437283	162	-44	204	198.2	199.0	0.9	4.6
RRLGWUG0110	6911322	437283	162	-44	204	204.0	209.5	5.5	5.5
RRLGWUG0111	6911322	437283	162	-32	209	176.0	177.0	1.0	4.1
RRLGWUG0111	6911322	437283	162	-32	209	180.0	188.1	8.1	7.1
RRLGWUG0111	6911322	437283	162	-32	209	191.0	193.0	2.0	4.6
RRLGWUG0111	6911322	437283	162	-32	209	202.0	204.0	2.0	2.8
RRLGWUG0113	6911341	437271	163	-9	205	51.0	52.0	1.0	2.3
RRLGWUG0113	6911341	437271	163	-9	205	92.0	92.5	0.5	2.9
RRLGWUG0113	6911341	437271	163	-9	205	176.6	177.5	0.9	2.1
RRLGWUG0113	6911341	437271	163	-9	205	188.9	190.1	1.2	2.5
RRLGWUG0113	6911341	437271	163	-9	205	195.5	199.6	4.1	3.0
RRLGWUG0113	6911341	437271	163	-9	205	207.1	207.8	0.7	10.7
RRLGWUG0113	6911341	437271	163	-9	205	211.0	213.0	2.0	3.9
RRLGWUG0113	6911341	437271	163	-9	205	221.0	222.0	1.0	3.6
RRLGWUG0113	6911341	437271	163	-9	205	235.0	236.0	1.0	3.4

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	mFrom	mTo	Interval	Au_ppm
RRLGWUG0113	6911341	437271	163	-9	205	255.0	256.0	1.0	2.2
RRLGWUG0114	6911341	437271	164	2	206	198.0	199.0	1.0	3.2
RRLGWUG0118	6911341	437271	163	-11	215	78.0	79.0	1.0	48.8
RRLGWUG0118	6911341	437271	163	-11	215	166.0	179.0	13.0	4.3
RRLGWUG0118	6911341	437271	163	-11	215	184.0	186.0	2.0	3.3
RRLGWUG0118	6911341	437271	163	-11	215	187.6	188.0	0.4	5.9
RRLGWUG0118	6911341	437271	163	-11	215	192.0	193.0	1.0	2.0
RRLGWUG0118	6911341	437271	163	-11	215	200.0	201.0	1.0	2.6
RRLGWUG0119	6911341	437271	164	2	215	214.6	215.0	0.4	3.1
RRLGWUG0119	6911341	437271	164	2	215	217.4	217.8	0.4	4.3
RRLGWUG0119	6911341	437271	164	2	215	222.1	222.5	0.4	3.2
RRLGWUG0119	6911341	437271	164	2	215	228.0	229.0	1.0	2.1
RRLGWUG0120	6911341	437271	164	14	216	73.0	74.0	1.0	2.2
RRLGWUG0120	6911341	437271	164	14	216	191.0	194.0	3.0	2.7
RRLGWUG0123	6911402	437236	161	-47	226	78.0	79.0	1.0	3.1
RRLGWUG0123	6911402	437236	161	-47	226	139.0	140.0	1.0	8.5
RRLGWUG0128	6912624	437101	151	-22	326	0.0	0.0	0.0	0.0
RRLGWUG0129	6912624	437101	151	-16	321	192.0	193.0	1.0	3.2
RRLGWUG0129	6912624	437101	151	-16	321	225.0	237.6	12.6	2.5
RRLGWUG0130	6912624	437101	152	-11	316	163.6	164.0	0.5	2.7
RRLGWUG0130	6912624	437101	152	-11	316	173.0	174.0	1.0	2.0
RRLGWUG0130	6912624	437101	152	-11	316	199.0	203.0	4.0	2.6
RRLGWUG0130	6912624	437101	152	-11	316	206.0	208.0	2.0	2.4
RRLGWUG0130	6912624	437101	152	-11	316	232.7	233.8	1.1	2.4
RRLGWUG0130	6912624	437101	152	-11	316	243.0	248.5	5.5	3.5
RRLGWUG0130	6912624	437101	152	-11	316	252.0	257.0	5.0	2.7
RRLGWUG0131	6912624	437101	152	-7	315	0.0	0.0	0.0	0.0
RRLGWUG0133	6912625	437101	152	-2	322	221.0	222.4	1.4	3.4
RRLGWUG0133	6912625	437101	152	-2	322	349.0	350.0	1.0	4.7
RRLGWUG0133	6912625	437101	152	-2	322	352.5	353.0	0.6	2.2
RRLGWUG0137	6912616	437099	153	13	294	212.5	213.2	0.7	78.7
RRLGWUG0137	6912616	437099	153	13	294	216.0	218.0	2.0	2.5
RRLGWUG0137	6912616	437099	153	13	294	224.9	225.2	0.3	2.0
RRLGWUG0137	6912616	437099	153	13	294	239.0	240.0	1.0	2.3
RRLGWUG0137	6912616	437099	153	13	294	263.0	264.0	1.0	2.6
RRLGWUG0137	6912616	437099	153	13	294	274.0	281.0	7.0	2.6
RRLGWUG0137	6912616	437099	153	13	294	284.0	285.0	1.0	3.7
RRLGWUG0137	6912616	437099	153	13	294	288.0	294.0	6.0	2.4
RRLGWUG0137	6912616	437099	153	13	294	300.3	301.0	0.7	2.5
RRLGWUG0137	6912616	437099	153	13	294	306.0	309.0	3.0	2.4
RRLGWUG0140	6912616	437099	151	-28	296	118.7	119.0	0.3	3.8
RRLGWUG0140	6912616	437099	151	-28	296	128.0	129.6	1.6	4.3
RRLGWUG0140	6912616	437099	151	-28	296	147.0	148.0	1.0	2.1
RRLGWUG0140	6912616	437099	151	-28	296	166.0	166.7	0.7	2.8
RRLGWUG0141	6912615	437099	152	-19	281	111.0	112.0	1.0	2.3
RRLGWUG0141	6912615	437099	152	-19	281	117.7	118.5	0.9	4.6
RRLGWUG0141	6912615	437099	152	-19	281	126.0	127.2	1.2	2.8

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	mFrom	mTo	Interval	Au_ppm
RRLGWUG0141	6912615	437099	152	-19	281	133.3	134.4	1.0	4.8
RRLGWUG0141	6912615	437099	152	-19	281	140.3	141.0	0.7	4.5
RRLGWUG0142	6912616	437099	152	-16	292	129.9	131.0	1.1	2.4
RRLGWUG0142	6912616	437099	152	-16	292	135.1	136.0	0.9	7.0
RRLGWUG0142	6912616	437099	152	-16	292	154.0	155.0	1.0	4.1
RRLGWUG0142	6912616	437099	152	-16	292	161.7	162.6	0.9	2.4
RRLGWUG0142	6912616	437099	152	-16	292	169.0	174.1	5.1	2.5
RRLGWUG0143	6912615	437099	152	-7	279	130.0	130.9	0.9	2.7
RRLGWUG0143	6912615	437099	152	-7	279	131.5	134.0	2.5	2.1
RRLGWUG0143	6912615	437099	152	-7	279	135.0	136.0	1.0	2.3
RRLGWUG0143	6912615	437099	152	-7	279	141.5	142.0	0.5	2.8
RRLGWUG0143	6912615	437099	152	-7	279	146.0	149.4	3.4	2.8
RRLGWUG0143	6912615	437099	152	-7	279	157.0	157.5	0.5	2.1
RRLGWUG0143	6912615	437099	152	-7	279	182.0	183.6	1.6	4.7
RRLGWUG0143	6912615	437099	152	-7	279	206.0	207.0	1.0	2.3
RRLGWUG0143	6912615	437099	152	-7	279	219.5	220.0	0.5	2.4
RRLGWUG0144	6912615	437099	151	3	291	175.6	185.5	9.9	3.0
RRLGWUG0144	6912615	437099	151	3	291	188.0	192.5	4.5	3.0
RRLGWUG0144	6912615	437099	151	3	291	199.4	200.4	1.0	2.0
RRLGWUG0144	6912615	437099	151	3	291	228.0	236.4	8.4	2.8
RRLGWUG0145	6912615	437099	153	-7	279	143.0	148.0	5.0	2.2
RRLGWUG0145	6912615	437099	153	-7	279	164.0	164.5	0.5	2.0
RRLGWUG0145	6912615	437099	153	-7	279	199.5	200.4	1.0	3.2
RRLGWUG0145	6912615	437099	153	-7	279	215.6	216.0	0.4	2.3
RRLGWUG0146	6912588	437100	154	-78	283	168.8	170.0	1.2	3.1
RRLGWUG0147	6912588	437100	154	-70	271	131.0	132.0	1.0	4.4
RRLGWUG0147	6912588	437100	154	-70	271	175.7	176.4	0.7	3.4
RRLGWUG0147	6912588	437100	154	-70	271	179.0	180.0	1.0	2.2
RRLGWUG0147	6912588	437100	154	-70	271	196.0	197.0	1.0	2.1
RRLGWUG0148	6912588	437100	154	-61	274	124.0	126.0	2.0	4.0
RRLGWUG0148	6912588	437100	154	-61	274	140.0	141.1	1.1	4.9
RRLGWUG0148	6912588	437100	154	-61	274	171.0	172.0	1.0	3.0
RRLGWUG0149	6912589	437099	154	-48	273	91.3	92.0	0.7	2.1
RRLGWUG0149	6912589	437099	154	-48	273	113.0	114.0	1.0	2.8
RRLGWUG0149	6912589	437099	154	-48	273	123.0	124.0	1.0	5.2
RRLGWUG0149	6912589	437099	154	-48	273	135.6	136.4	0.8	10.0
RRLGWUG0149	6912589	437099	154	-48	273	139.0	146.0	7.0	2.1
RRLGWUG0149	6912589	437099	154	-48	273	150.2	151.0	0.8	13.9
RRLGWUG0149	6912589	437099	154	-48	273	162.0	163.0	1.0	3.7
RRLGWUG0150	6912588	437099	154	-29	271	90.0	92.2	2.2	3.2
RRLGWUG0150	6912588	437099	154	-29	271	103.0	107.0	4.0	2.1
RRLGWUG0150	6912588	437099	154	-29	271	109.7	115.0	5.3	5.9
RRLGWUG0150	6912588	437099	154	-29	271	118.3	121.0	2.7	3.0
RRLGWUG0150	6912588	437099	154	-29	271	131.6	133.0	1.5	5.8
RRLGWUG0150	6912588	437099	154	-29	271	200.5	201.3	0.8	5.8
RRLGWUG0151	6912501	437100	166	-79	290	107.0	109.0	2.0	2.5
RRLGWUG0151	6912501	437100	166	-79	290	114.0	115.0	1.0	3.9

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	mFrom	mTo	Interval	Au_ppm
RRLGWUG0151	6912501	437100	166	-79	290	135.0	142.0	7.0	3.3
RRLGWUG0151	6912501	437100	166	-79	290	147.0	148.0	1.0	2.1
RRLGWUG0151	6912501	437100	166	-79	290	149.0	150.0	1.1	2.1
RRLGWUG0151	6912501	437100	166	-79	290	150.7	151.0	0.4	2.2
RRLGWUG0151	6912501	437100	166	-79	290	184.0	187.0	3.0	4.0
RRLGWUG0151	6912501	437100	166	-79	290	200.0	201.0	1.0	2.3
RRLGWUG0151	6912501	437100	166	-79	290	206.2	210.0	3.9	2.7
RRLGWUG0151	6912501	437100	166	-79	290	223.0	223.7	0.7	2.1
RRLGWUG0151	6912501	437100	166	-79	290	227.0	228.1	1.1	4.6
RRLGWUG0151	6912501	437100	166	-79	290	234.0	237.0	3.0	2.8
RRLGWUG0151	6912501	437100	166	-79	290	273.5	274.0	0.5	104.3
RRLGWUG0152	6912501	437100	167	-73	283	93.2	94.0	0.8	2.3
RRLGWUG0152	6912501	437100	167	-73	283	122.0	123.0	1.0	2.8
RRLGWUG0152	6912501	437100	167	-73	283	133.9	134.5	0.6	2.5
RRLGWUG0152	6912501	437100	167	-73	283	138.0	139.0	1.0	2.6
RRLGWUG0152	6912501	437100	167	-73	283	144.0	145.0	1.0	4.0
RRLGWUG0152	6912501	437100	167	-73	283	150.0	161.0	11.0	3.7
RRLGWUG0152	6912501	437100	167	-73	283	168.0	169.0	1.0	2.5
RRLGWUG0152	6912501	437100	167	-73	283	178.2	179.0	0.8	2.1
RRLGWUG0152	6912501	437100	167	-73	283	188.3	189.0	0.7	2.8
RRLGWUG0153	6912466	437099	173	-82	255	117.0	117.8	0.8	4.6
RRLGWUG0153	6912466	437099	173	-82	255	139.0	140.0	1.0	2.9
RRLGWUG0153	6912466	437099	173	-82	255	142.0	143.0	1.0	2.8
RRLGWUG0153	6912466	437099	173	-82	255	146.0	147.0	1.0	2.5
RRLGWUG0153	6912466	437099	173	-82	255	153.0	154.0	1.0	5.2
RRLGWUG0153	6912466	437099	173	-82	255	159.0	160.0	1.0	2.4
RRLGWUG0153	6912466	437099	173	-82	255	161.5	163.0	1.5	2.6
RRLGWUG0153	6912466	437099	173	-82	255	165.6	169.0	3.4	3.0
RRLGWUG0153	6912466	437099	173	-82	255	180.7	197.0	16.3	2.9
RRLGWUG0153	6912466	437099	173	-82	255	223.0	224.0	1.0	2.2
RRLGWUG0153	6912466	437099	173	-82	255	236.6	237.0	0.4	16.7
RRLGWUG0154	6912466	437100	171	-74	278	108.0	109.0	1.0	2.6
RRLGWUG0154	6912466	437100	171	-74	278	118.0	118.5	0.5	5.7
RRLGWUG0154	6912466	437100	171	-74	278	125.5	127.0	1.5	2.7
RRLGWUG0154	6912466	437100	171	-74	278	129.0	130.2	1.2	2.0
RRLGWUG0154	6912466	437100	171	-74	278	136.0	138.0	2.0	3.8
RRLGWUG0154	6912466	437100	171	-74	278	144.6	147.0	2.4	5.9
RRLGWUG0154	6912466	437100	171	-74	278	149.6	151.8	2.2	2.3
RRLGWUG0154	6912466	437100	171	-74	278	154.0	163.3	9.3	6.1
RRLGWUG0154	6912466	437100	171	-74	278	163.4	164.0	0.6	3.5
RRLGWUG0154	6912466	437100	171	-74	278	175.0	179.0	4.0	4.3
RRLGWUG0154	6912466	437100	171	-74	278	183.0	183.8	0.8	2.3
RRLGWUG0154	6912466	437100	171	-74	278	187.0	188.0	1.0	2.2
RRLGWUG0155	6912404	437099	181	-15	262	87.6	88.0	0.4	4.6
RRLGWUG0155	6912404	437099	181	-15	262	89.0	89.7	0.7	2.2
RRLGWUG0155	6912404	437099	181	-15	262	110.8	112.4	1.6	2.2
RRLGWUG0155	6912404	437099	181	-15	262	113.0	112.4	1.0	2.1

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	mFrom	mTo	Interval	Au_ppm
RRLGWUG0155	6912404	437099	181	-15	262	117.0	117.6	0.6	5.8
RRLGWUG0156	6912404	437099	182	1	262	68.0	69.0	1.0	17.2
RRLGWUG0156	6912404	437099	182	1	262	94.8	95.3	0.5	3.1
RRLGWUG0156	6912404	437099	182	1	262	123.0	124.0	1.0	12.2
RRLGWUG0156	6912404	437099	182	1	262	136.0	137.0	1.0	2.5
RRLGWUG0156	6912404	437099	182	1	262	152.6	153.0	0.4	5.8
RRLGWUG0157	6912404	437099	182	13	262	82.0	83.0	1.0	2.5
RRLGWUG0157	6912404	437099	182	13	262	103.0	104.0	1.0	9.1
RRLGWUG0158	6912404	437099	182	12	274	83.0	84.0	1.0	10.5
RRLGWUG0158	6912404	437099	182	12	274	109.0	110.0	1.0	2.5
RRLGWUG0158	6912404	437099	182	12	274	119.0	120.0	1.0	2.9
RRLGWUG0158	6912404	437099	182	12	274	142.0	143.0	1.0	4.5
RRLGWUG0158	6912404	437099	182	12	274	164.0	166.0	2.0	7.6
RRLGWUG0158	6912404	437099	182	12	274	186.3	187.0	0.7	2.0
RRLGWUG0159	6912362	437099	186	-57	264	109.8	110.2	0.4	3.4
RRLGWUG0160	6912362	437099	186	-35	266	52.0	53.0	1.0	4.4
RRLGWUG0161	6912362	437099	187	-19	262	67.0	68.0	1.0	3.2
RRLGWUG0161	6912362	437099	187	-19	262	71.0	72.0	1.0	2.9
RRLGWUG0161	6912362	437099	187	-19	262	107.0	108.0	1.0	4.9
RRLGWUG0161	6912362	437099	187	-19	262	113.0	114.0	1.0	2.1
RRLGWUG0161	6912362	437099	187	-19	262	125.0	125.7	0.7	4.5
RRLGWUG0162	6912362	437099	188	-1	262	74.0	75.0	1.0	2.3
RRLGWUG0162	6912362	437099	188	-1	262	119.0	122.0	3.0	10.2
RRLGWUG0162	6912362	437099	188	-1	262	143.3	144.2	0.8	92.8
RRLGWUG0163	6912362	437099	188	13	261	59.1	60.0	0.9	2.0
RRLGWUG0163	6912362	437099	188	13	261	64.0	65.0	1.0	2.4
RRLGWUG0163	6912362	437099	188	13	261	162.4	162.8	0.4	2.4
RRLGWUG0163	6912362	437099	188	13	261	168.1	168.6	0.5	2.2
RRLGWUG0163	6912362	437099	188	13	261	174.0	175.2	1.2	3.2
RRLGWUG0166	6912324	437100	194	3	267	108.1	108.5	0.4	5.8
RRLGWUG0166	6912324	437100	194	3	267	123.0	124.0	1.0	4.6
RRLGWUG0166	6912324	437100	194	3	267	137.0	137.9	0.9	8.0
RRLGWUG0166	6912324	437100	194	3	267	158.0	159.0	1.0	5.6
RRLGWUG0167	6912277	437100	198	-73	263	129.6	130.0	0.4	5.2
RRLGWUG0167	6912277	437100	198	-73	263	144.0	144.5	0.5	17.6
RRLGWUG0167	6912277	437100	198	-73	263	163.0	164.0	1.0	2.4
RRLGWUG0167	6912277	437100	198	-73	263	180.0	180.7	0.7	3.3
RRLGWUG0168	6912277	437100	199	-58	270	123.0	125.0	2.0	4.3
RRLGWUG0169	6912277	437099	199	-58	270	103.0	104.0	1.0	4.4
RRLGWUG0169	6912277	437099	199	-58	270	123.2	124.0	0.8	4.9
RRLGWUG0169	6912277	437099	199	-58	270	128.2	128.6	0.4	2.1
RRLGWUG0170	6912277	437099	199	-23	276	100.0	101.0	1.0	2.4
RRLGWUG0170	6912277	437099	199	-23	276	112.0	112.9	0.9	2.0
RRLGWUG0170	6912277	437099	199	-23	276	127.4	128.1	0.7	2.9
RRLGWUG0170	6912277	437099	199	-23	276	133.0	134.0	1.0	4.8
RRLGWUG0171	6912243	437099	205	-12	268	101.0	105.4	4.4	2.3
RRLGWUG0171	6912243	437099	205	-12	268	131.0	132.0	1.0	3.4

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	mFrom	mTo	Interval	Au_ppm
RRLGWUG0172	6912198	437100	210	-58	277	95.0	96.0	1.0	4.1
RRLGWUG0173	6912198	437100	210	-44	182	90.0	91.0	1.0	2.2
RRLGWUG0173	6912198	437100	210	-44	182	103.7	104.0	0.3	4.4
RRLGWUG0174	6912198	437099	210	-29	271	89.0	90.0	1.0	3.9
RRLGWUG0175	6912198	437099	211	-16	270	0.0	0.0	0.0	0.0
RRLGWUG0176	6912143	437100	218	-46	262	88.5	91.0	2.6	2.2
RRLGWUG0176	6912143	437100	218	-46	262	125.1	126.4	1.3	3.0
RRLGWUG0177	6912143	437099	218	-32	263	88.0	90.0	2.0	3.5
RRLGWUG0177	6912143	437099	218	-32	263	114.0	115.0	1.0	2.2
RRLGWUG0177	6912143	437099	218	-32	263	122.0	122.9	0.9	2.1
RRLGWUG0177	6912143	437099	218	-32	263	126.0	127.0	1.0	2.1
RRLGWUG0177	6912143	437099	218	-32	263	133.0	134.0	1.0	2.4
RRLGWUG0178	6912144	437099	219	-19	264	91.0	93.0	2.0	2.5
RRLGWUG0178	6912144	437099	219	-19	264	119.0	127.0	8.0	2.9
RRLGWUG0179	6912044	437108	232	-74	265	102.0	103.0	1.0	2.5
RRLGWUG0179	6912044	437108	232	-74	265	113.1	114.0	0.9	2.6
RRLGWUG0179	6912044	437108	232	-74	265	143.0	144.0	1.0	4.1
RRLGWUG0179	6912044	437108	232	-74	265	148.0	149.0	1.0	17.0
RRLGWUG0180	6912044	437108	232	-71	282	80.0	80.9	0.9	3.1
RRLGWUG0180	6912044	437108	232	-71	282	97.0	100.1	3.1	2.2
RRLGWUG0180	6912044	437108	232	-71	282	108.0	109.0	1.0	2.1
RRLGWUG0180	6912044	437108	232	-71	282	114.2	115.0	0.9	2.1
RRLGWUG0180	6912044	437108	232	-71	282	138.0	140.8	2.8	2.4
RRLGWUG0180	6912044	437108	232	-71	282	148.0	149.0	1.0	2.1
RRLGWUG0181	6912044	437108	232	-61	278	88.0	89.0	1.1	2.7
RRLGWUG0181	6912044	437108	232	-61	278	94.0	95.0	1.0	3.2
RRLGWUG0181	6912044	437108	232	-61	278	98.0	99.0	1.0	2.4
RRLGWUG0181	6912044	437108	232	-61	278	119.0	120.0	1.0	2.7
RRLGWUG0182	6912043	437108	232	-49	278	78.0	79.0	1.0	2.5
RRLGWUG0182	6912043	437108	232	-49	278	86.1	86.6	0.5	2.3
RRLGWUG0182	6912043	437108	232	-49	278	89.9	91.0	1.2	3.5
RRLGWUG0182	6912043	437108	232	-49	278	103.5	104.0	0.5	3.7
RRLGWUG0182	6912043	437108	232	-49	278	120.4	121.0	0.6	2.3
RRLGWUG0182	6912043	437108	232	-49	278	125.0	127.0	2.0	3.4
RRLGWUG0184	6911925	437100	248	-72	280	29.0	30.0	1.0	2.5
RRLGWUG0184	6911925	437100	248	-72	280	34.0	35.0	1.0	2.2
RRLGWUG0184	6911925	437100	248	-72	280	39.0	40.0	1.0	2.4
RRLGWUG0184	6911925	437100	248	-72	280	56.0	57.0	1.0	3.4
RRLGWUG0184	6911925	437100	248	-72	280	62.0	65.0	3.0	2.5
RRLGWUG0184	6911925	437100	248	-72	280	88.0	89.0	1.0	6.4
RRLGWUG0184	6911925	437100	248	-72	280	148.0	149.0	1.0	3.9
RRLGWUG0184	6911925	437100	248	-72	280	155.5	156.5	1.0	2.3
RRLGWUG0184	6911925	437100	248	-72	280	157.0	158.0	1.0	2.2
RRLGWUG0184	6911925	437100	248	-72	280	166.0	166.6	0.6	4.6
RRLGWUG0184	6911925	437100	248	-72	280	169.9	171.0	1.1	2.3
RRLGWUG0184	6911925	437100	248	-72	280	234.0	234.9	0.9	2.1
RRLGWUG0185	6911925	437100	249	-58	281	23.4	23.7	0.3	3.0

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	mFrom	mTo	Interval	Au_ppm
RRLGWUG0185	6911925	437100	249	-58	281	29.0	29.7	0.7	25.1
RRLGWUG0185	6911925	437100	249	-58	281	42.0	43.0	1.0	3.4
RRLGWUG0185	6911925	437100	249	-58	281	46.0	47.0	1.0	3.0
RRLGWUG0185	6911925	437100	249	-58	281	54.0	55.0	1.0	2.9
RRLGWUG0185	6911925	437100	249	-58	281	59.6	60.1	0.5	5.7
RRLGWUG0185	6911925	437100	249	-58	281	66.0	67.0	1.0	2.1
RRLGWUG0185	6911925	437100	249	-58	281	109.0	110.0	1.0	2.8
RRLGWUG0185	6911925	437100	249	-58	281	118.0	120.0	2.0	9.3
RRLGWUG0185	6911925	437100	249	-58	281	123.0	124.0	1.0	17.6
RRLGWUG0185	6911925	437100	249	-58	281	145.0	146.0	1.0	7.2
RRLGWUG0185	6911925	437100	249	-58	281	149.4	150.0	0.6	2.3
RRLGWUG0185	6911925	437100	249	-58	281	154.0	155.0	1.0	2.2
RRLGWUG0185	6911925	437100	249	-58	281	160.0	161.0	1.0	2.5
RRLGWUG0185	6911925	437100	249	-58	281	163.0	164.0	1.0	2.5
RRLGWUG0185	6911925	437100	249	-58	281	170.0	171.0	1.0	2.5
RRLGWUG0185	6911925	437100	249	-58	281	181.0	182.0	1.0	16.5
RRLGWUG0185	6911925	437100	249	-58	281	195.0	196.0	1.0	5.4

Hole_ID	LOCAL_North	LOCAL_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval
RRLRMDD133	77211	23195	501	-70	249	1016.5	No sig	gnificant inter	sections
RRLRMDD133W1	77211	23195	501	-70	249	1080.5	1026.8	1034	7.2
RRLRMDD133W1	77211	23195	501	-70	249	1080.5	1059.4	1059.9	0.5
RRLRMDD133W3	77211	23195	501	-70	249	996.4	No si	gnificant inter	sections
RRLRMDD133W4	77211	23195	501	-70	249	984.8	875.2	876.25	1.1
RRLRMDD133W5	77211	23195	501	-70	249	867.8	694	695	1.0
RRLRMDD133W5	77211	23195	501	-70	249	867.8	717	718	1.0
RRLRMDD133W5	77211	23195	501	-70	249	867.8	723	724	1.0
RRLRMDD133W5	77211	23195	501	-70	249	867.8	728	729	1.0
RRLRMDD133W5	77211	23195	501	-70	249	867.8	739	740.6	1.6
RRLRMDD133W5	77211	23195	501	-70	249	867.8	744.7	745.3	0.6
RRLRMDD133W5	77211	23195	501	-70	249	867.8	747.9	751	3.1
RRLRMDD133W5	77211	23195	501	-70	249	867.8	771.5	772	0.5
RRLRMDD133W5	77211	23195	501	-70	249	867.8	776.8	779.2	2.4
RRLRMDD133W5	77211	23195	501	-70	249	867.8	807.9	808.5	0.6
RRLRMDD134W1	77291	23249	502	-69	243	993.5	875.6	876.6	1
RRLRMDD134W1	77291	23249	502	-69	243	993.5	882.3	883.2	0.9
RRLRMDD134W1	77291	23249	502	-69	243	993.5	897.6	899.0	1.4
RRLRMUG011	77770	22829	137	4	217	215.3	No significant intersections		
RRLRMUG012	77770	22829	137	-6	217	218.7	No significant intersections		
RRLRMUG016	77770	22829	136	-16	217	230	No significant intersections		

Appendix 3-3 – RC drilling at Gloster 0.4 g/t Au lower cut, no upper cut, maximum 2m internal dilution.

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm	
RRLGLRC577	6950350	408786	465	-50	245	30.0	No	o significan	t intersectio	ons	
RRLGLRC578	6950348	408806	465	-90	245	36.0	No significant intersections				
RRLGLRC579	6950343	408824	465	-55	245	36.0	No significant intersections				
RRLGLRC580	6950351	408843	465	-55	65	66.0	1.0	2.0	1.0	0.4	
RRLGLRC580	6950351	408843	465	-55	65	66.0	9.0	18.0	9.0	2.8	
RRLGLRC580	6950351	408843	465	-55	65	66.0	30.0	35.0	5.0	0.5	
RRLGLRC580	6950351	408843	465	-55	65	66.0	40.0	51.0	11.0	0.6	
RRLGLRC580	6950351	408843	465	-55	65	66.0	54.0	55.0	1.0	0.5	
RRLGLRC581	6950755	408359	491	-59	241	120.0	48.0	51.0	3.0	1.8	
RRLGLRC581	6950755	408359	491	-59	241	120.0	54.0	55.0	1.0	14.9	
RRLGLRC581	6950755	408359	491	-59	241	120.0	59.0	62.0	3.0	4.0	
RRLGLRC581	6950755	408359	491	-59	241	120.0	75.0	77.0	2.0	1.9	
RRLGLRC581	6950755	408359	491	-59	241	120.0	115.0	117.0	2.0	2.0	
RRLGLRC582	6950771	408415	491	-77	55	66.0	44.0	45.0	1.0	1.0	
RRLGLRC582	6950771	408415	491	-77	55	66.0	52.0	59.0	7.0	1.2	
RRLGLRC583	6950736	408453	486	-50	126	144.0	37.0	43.0	6.0	0.7	
RRLGLRC583	6950736	408453	486	-50	126	144.0	55.0	56.0	1.0	0.7	
RRLGLRC583	6950736	408453	486	-50	126	144.0	63.0	64.0	1.0	0.5	
RRLGLRC583	6950736	408453	486	-50	126	144.0	70.0	72.0	2.0	4.6	
RRLGLRC583	6950736	408453	486	-50	126	144.0	79.0	80.0	1.0	0.6	

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC583	6950736	408453	486	-50	126	144.0	110.0	111.0	1.0	37.8
RRLGLRC583	6950736	408453	486	-50	126	144.0	121.0	132.0	11.0	0.6
RRLGLRC583	6950736	408453	486	-50	126	144.0	136.0	138.0	2.0	1.3
RRLGLRC584	6950727	408442	486	-50	121	150.0	89.0	90.0	1.0	2.1
RRLGLRC584	6950727	408442	486	-50	121	150.0	98.0	111.0	13.0	1.9
RRLGLRC584	6950727	408442	486	-50	121	150.0	116.0	135.0	19.0	1.0
RRLGLRC584 RRLGLRC585	6950727	408442	486 486	-50	121 250	150.0	138.0	144.0 48.0	6.0 1.0	0.8
RRLGLRC585	6950712 6950712	408418 408418	486	-85 -85	250	108.0 108.0	47.0 55.0	48.0 56.0	1.0	3.0 0.5
RRLGLRC585	6950712	408418	486	-85	250	108.0	63.0	70.0	7.0	0.3
RRLGLRC585	6950712	408418	486	-85	250	108.0	72.0	73.0	1.0	0.4
RRLGLRC585	6950712	408418	486	-85	250	108.0	82.0	84.0	2.0	3.3
RRLGLRC585	6950712	408418	486	-85	250	108.0	99.0	106.0	7.0	1.1
RRLGLRC586	6950712	408393	486	-60	230	110.0	43.0	45.0	2.0	1.1
RRLGLRC586	6950711	408393	486	-60	240	110.0	48.0	53.0	5.0	0.4
RRLGLRC586	6950711	408393	486	-60	240	110.0	58.0	59.0	1.0	5.3
RRLGLRC586	6950711	408393	486	-60	240	110.0	69.0	72.0	3.0	1.0
RRLGLRC587	6950693	408353	485	-72	240	90.0	25.0	26.0	1.0	1.9
RRLGLRC587	6950693	408351	485	-72	250	90.0	65.0	66.0	1.0	1.3
RRLGLRC587	6950693	408351	485	-72	250	90.0	75.0	76.0	1.0	0.9
RRLGLRC588	6950707	408409	486	-77	132	102.0	20.0	21.0	1.0	0.9
RRLGLRC588	6950707	408409	486	-77	132	102.0	28.0	29.0	1.0	0.6
RRLGLRC588	6950707	408409	486	-77	132	102.0	36.0	37.0	1.0	0.6
RRLGLRC588	6950707	408409	486	-77	132	102.0	56.0	57.0	1.0	0.5
RRLGLRC588	6950707	408409	486	-77	132	102.0	66.0	67.0	1.0	0.6
RRLGLRC588	6950707	408409	486	-77	132	102.0	78.0	98.0	20.0	0.6
RRLGLRC588	6950707	408409	486	-77	132	102.0	101.0	102.0	1.0	1.6
RRLGLRC589	6950673	408421	480	-52	78	138.0	25.0	27.0	2.0	0.8
RRLGLRC589	6950673	408421	480	-52	78	138.0	40.0	41.0	1.0	0.6
RRLGLRC589	6950673	408421	480	-52	78	138.0	48.0	49.0	1.0	0.9
RRLGLRC589	6950673	408421	480	-52	78	138.0	60.0	62.0	2.0	2.7
RRLGLRC589	6950673	408421	480	-52	78	138.0	92.0	93.0	1.0	0.5
RRLGLRC589	6950673	408421	480	-52	78	138.0	98.0	99.0	1.0	0.6
RRLGLRC589	6950673	408421	480	-52	78	138.0	102.0	103.0	1.0	0.7
RRLGLRC589	6950673	408421	480	-52	78	138.0	106.0	107.0	1.0	3.8
RRLGLRC589	6950673	408421	480	-52	78	138.0	110.0	124.0	14.0	1.0
RRLGLRC590	6950674	408423	480	-62	100	114.0	13.0	15.0	2.0	0.7
RRLGLRC590	6950674	408423	480	-62	100	114.0	30.0	31.0	1.0	0.5
RRLGLRC590	6950674	408423	480	-62	100	114.0	37.0	38.0	1.0	0.6
RRLGLRC590	6950674	408423	480	-62	100	114.0	42.0	43.0	1.0	0.6
RRLGLRC590	6950674	408423	480	-62	100	114.0	56.0	62.0	6.0	0.7
RRLGLRC590	6950674	408423	480	-62	100	114.0	65.0	66.0	1.0	0.8
RRLGLRC590	6950674	408423	480	-62	100	114.0	76.0	77.0	1.0	2.1
RRLGLRC590	6950674	408423	480	-62	100	114.0	87.0	93.0	6.0	0.7
RRLGLRC590	6950674	408423	480	-62	100	114.0	99.0	102.0	3.0	1.0
RRLGLRC590	6950674	408423	480	-62	100	114.0	106.0	112.0	6.0	0.6
RRLGLRC591	6950674	408422	480	-50	130	174.0	16.0	19.0	3.0	0.7

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC591	6950674	408422	480	-50	130	174.0	29.0	30.0	1.0	0.4
RRLGLRC591	6950674	408422	480	-50	130	174.0	34.0	37.0	3.0	1.1
RRLGLRC591	6950674	408422	480	-50	130	174.0	47.0	48.0	1.0	1.5
RRLGLRC591	6950674	408422	480	-50	130	174.0	84.0	104.0	20.0	2.3
RRLGLRC591	6950674	408422	480	-50	130	174.0	108.0	110.0	2.0	0.8
RRLGLRC591	6950674	408422	480	-50	130	174.0	113.0	114.0	1.0	0.6
RRLGLRC591	6950674	408422	480	-50	130	174.0	135.0	142.0	7.0	0.5
RRLGLRC591 RRLGLRC591	6950674 6950674	408422 408422	480 480	-50 -50	130 130	174.0 174.0	145.0 164.0	148.0 172.0	3.0 8.0	0.6
RRLGLRC591	6950674	408406	480	-50	130	84.0	15.0	172.0	3.0	6.5
RRLGLRC592	6950674	408406	482	-50	146	84.0	22.0	27.0	5.0	0.8
RRLGLRC592	6950674	408406	482	-50	140	84.0	31.0	36.0	5.0	0.5
RRLGLRC592	6950674	408406	482	-50	146	84.0	50.0	51.0	1.0	0.3
RRLGLRC592	6950674	408406	482	-50	140	84.0	64.0	77.0	13.0	1.5
RRLGLRC592	6950674	408406	482	-50	146	84.0	82.0	83.0	1.0	0.6
RRLGLRC593	6950670	408408	482	-66	90	114.0	8.0	9.0	1.0	1.3
RRLGLRC593	6950670	408408	482	-66	90	114.0	12.0	13.0	1.0	0.9
RRLGLRC593	6950670	408408	482	-66	90	114.0	12.0	19.0	1.0	0.5
RRLGLRC593	6950670	408408	482	-66	90	114.0	22.0	23.0	1.0	0.8
RRLGLRC593	6950670	408408	482	-66	90	114.0	26.0	33.0	7.0	0.5
RRLGLRC593	6950670	408408	482	-66	90	114.0	38.0	39.0	1.0	0.5
RRLGLRC593	6950670	408408	482	-66	90	114.0	42.0	44.0	2.0	1.8
RRLGLRC593	6950670	408408	482	-66	90	114.0	65.0	66.0	1.0	1.5
RRLGLRC593	6950670	408408	482	-66	90	114.0	76.0	77.0	1.0	0.4
RRLGLRC593	6950670	408408	482	-66	90	114.0	87.0	91.0	4.0	1.9
RRLGLRC593	6950670	408408	482	-66	90	114.0	95.0	102.0	7.0	1.5
RRLGLRC593	6950670	408408	482	-66	90	114.0	105.0	106.0	1.0	1.1
RRLGLRC593	6950670	408408	482	-66	90	114.0	109.0	110.0	1.0	0.7
RRLGLRC593	6950670	408408	482	-66	90	114.0	113.0	114.0	1.0	0.6
RRLGLRC594	6950673	408389	484	-66	100	90.0	11.0	16.0	5.0	0.5
RRLGLRC594	6950673	408389	484	-66	100	90.0	24.0	29.0	5.0	0.9
RRLGLRC594	6950673	408389	484	-66	100	90.0	44.0	45.0	1.0	0.5
RRLGLRC594	6950673	408389	484	-66	100	90.0	48.0	67.0	19.0	1.9
RRLGLRC594	6950673	408389	484	-66	100	90.0	72.0	73.0	1.0	1.2
RRLGLRC594	6950673	408389	484	-66	100	90.0	77.0	83.0	6.0	0.6
RRLGLRC595	6950654	408371	485	-50	101	132.0	8.0	9.0	1.0	1.7
RRLGLRC595	6950654	408371	485	-50	101	132.0	18.0	19.0	1.0	0.7
RRLGLRC595	6950654	408371	485	-50	101	132.0	51.0	52.0	1.0	0.5
RRLGLRC595	6950654	408371	485	-50	101	132.0	71.0	77.0	6.0	0.5
RRLGLRC595	6950654	408371	485	-50	101	132.0	83.0	91.0	8.0	0.7
RRLGLRC595	6950654	408371	485	-50	101	132.0	125.0	129.0	4.0	0.5
RRLGLRC596	6950721	408409	486	-65	240	100.0	39.0	47.0	8.0	1.0
RRLGLRC596	6950721	408409	486	-65	240	100.0	50.0	51.0	1.0	0.5
RRLGLRC596	6950721	408409	486	-65	240	100.0	65.0	66.0	1.0	1.4
RRLGLRC596	6950721	408409	486	-65	240	100.0	71.0	72.0	1.0	1.9
RRLGLRC596	6950721	408409	486	-65	240	100.0	84.0	86.0	2.0	1.1
RRLGLRC596	6950721	408409	486	-65	240	100.0	92.0	94.0	2.0	1.5

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC597	6950705	408410	486	-68	95	120.0	18.0	19.0	1.0	0.8
RRLGLRC597	6950705	408410	486	-68	95	120.0	32.0	33.0	1.0	0.5
RRLGLRC597	6950705	408410	486	-68	95	120.0	36.0	38.0	2.0	0.7
RRLGLRC597	6950705	408410	486	-68	95	120.0	43.0	45.0	2.0	1.4
RRLGLRC597	6950705	408410	486	-68	95	120.0	48.0	49.0	1.0	0.8
RRLGLRC597	6950705	408410	486	-68	95	120.0	56.0	61.0	5.0	1.1
RRLGLRC597	6950705	408410	486	-68	95	120.0	67.0	68.0	1.0	0.9
RRLGLRC597	6950705	408410	486	-68	95	120.0	85.0	86.0	1.0	2.0
RRLGLRC597	6950705	408410	486	-68	95	120.0	97.0	98.0	1.0	1.0
RRLGLRC597	6950705	408410	486	-68	95	120.0	109.0	111.0	2.0	0.5
RRLGLRC597	6950705	408410	486	-68	95	120.0	113.0	114.0	1.0	0.6
RRLGLRC598	6950645	408775	553	-54	246	300.0	52.0	55.0	3.0	8.9
RRLGLRC598	6950645	408775	553	-54	246	300.0	75.0	76.0	1.0	2.8
RRLGLRC598	6950645	408775	553	-54	246	300.0	111.0	118.0	7.0	0.7
RRLGLRC598	6950645	408775	553	-54	246	300.0	125.0	126.0	1.0	1.9
RRLGLRC598	6950645	408775	553	-54	246	300.0	160.0	167.0	7.0	2.0
RRLGLRC598	6950645	408775	553	-54	246	300.0	233.0	235.0	2.0	1.5
RRLGLRC598	6950645	408775	553	-54	246	300.0	246.0	247.0	1.0	0.6
RRLGLRC598	6950645	408775	553	-54	246	300.0	261.0	264.0	3.0	3.8
RRLGLRC598	6950645	408775	553	-54	246	300.0	272.0	279.0	7.0	2.1
RRLGLRC598	6950645	408775	553	-54	246	300.0	284.0	289.0	5.0	0.9
RRLGLRC599	6950336	408860	465	-55	65	54.0	1.0	3.0	2.0	3.1
RRLGLRC599	6950336	408860	465	-55	65	54.0	11.0	13.0	2.0	0.6
RRLGLRC599	6950336	408860	465	-55	65	54.0	19.0	25.0	6.0	1.2
RRLGLRC599	6950336	408860	465	-55	65	54.0	30.0	31.0	1.0	0.5
RRLGLRC599	6950336	408860	465	-55	65	54.0	40.0	43.0	3.0	0.4
RRLGLRC600	6950616	408558	410	-50	120	102.0	10.0	11.0	1.0	0.9
RRLGLRC600	6950616	408558	410	-50	120	102.0	16.0	17.0	1.0	1.7
RRLGLRC600	6950616	408558	410	-50	120	102.0	28.0	32.0	4.0	0.8
RRLGLRC600	6950616	408558	410	-50	120	102.0	45.0	46.0	1.0	0.4
RRLGLRC600	6950616	408558	410	-50	120	102.0	73.0	75.0	2.0	3.5
RRLGLRC600	6950616	408558	410	-50	120	102.0	89.0	90.0	1.0	0.7
RRLGLRC601	6950586	408551	410	-85	236	90.0	4.0	6.0	2.0	1.1
RRLGLRC601	6950586	408551	410	-85	236	90.0	12.0	14.0	2.0	4.6
RRLGLRC601	6950586	408551	410	-85	236	90.0	21.0	22.0	1.0	0.6
RRLGLRC601	6950586	408551	410	-85	236	90.0	32.0	34.0	2.0	0.8
RRLGLRC601	6950586	408551	410	-85	236	90.0	44.0	48.0	4.0	1.2
RRLGLRC601	6950586	408551	410	-85	236	90.0	60.0	65.0	5.0	1.5
RRLGLRC601	6950586	408551	410	-85	236	90.0	79.0	82.0	3.0	2.0
RRLGLRC601	6950586	408551	410	-85	236	90.0	88.0	89.0	1.0	0.7
RRLGLRC602	6950586	408558	410	-86	66	90.0	4.0	5.0	1.0	0.6
RRLGLRC602	6950586	408558	410	-86	66	90.0	6.0	7.0	1.0	0.4
RRLGLRC602	6950586	408558	410	-86	66	90.0	12.0	13.0	1.0	1.9
RRLGLRC602	6950586	408558	410	-86	66	90.0	23.0	26.0	3.0	0.6
RRLGLRC602	6950586	408558	410	-86	66	90.0	36.0	37.0	1.0	1.2
RRLGLRC602	6950586	408558	410	-86	66	90.0	46.0	49.0	3.0	0.9
RRLGLRC602	6950586	408558	410	-86	66	90.0	52.0	54.0	2.0	1.5

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC602	6950586	408558	410	-86	66	90.0	59.0	60.0	1.0	0.4
RRLGLRC602	6950586	408558	410	-86	66	90.0	66.0	67.0	1.0	3.3
RRLGLRC602	6950586	408558	410	-86	66	90.0	74.0	78.0	4.0	1.2
RRLGLRC602	6950586	408558	410	-86	66	90.0	83.0	84.0	1.0	0.5
RRLGLRC603	6950564	408572	410	-75	243	90.0	4.0	15.0	11.0	1.1
RRLGLRC603	6950564	408572	410	-75	243	90.0	18.0	19.0	1.0	0.5
RRLGLRC603	6950564	408572	410	-75	243	90.0	22.0	23.0	1.0	3.9
RRLGLRC603	6950564	408572	410	-75	243	90.0	33.0	35.0	2.0	1.0
RRLGLRC603	6950564	408572	410	-75	243	90.0	40.0	45.0	5.0	0.7
RRLGLRC603	6950564	408572	410	-75	243	90.0	53.0	54.0	1.0	0.8
RRLGLRC603	6950564	408572	410	-75	243	90.0	61.0	62.0	1.0	3.5
RRLGLRC603	6950564	408572	410	-75	243	90.0	74.0	76.0	2.0	0.9
RRLGLRC603	6950564	408572	410	-75	243	90.0	80.0	84.0	4.0	0.7
RRLGLRC604	6950532	408621	410	-52	246	78.0	2.0	10.0	8.0	0.9
RRLGLRC604	6950532	408621	410	-52	246	78.0	14.0	16.0	2.0	6.0
RRLGLRC604	6950532	408621	410	-52	246	78.0	24.0	25.0	1.0	4.6
RRLGLRC604	6950532	408621	410	-52	246	78.0	34.0	35.0	1.0	0.5
RRLGLRC604	6950532	408621	410	-52	246	78.0	43.0	44.0	1.0	1.7
RRLGLRC604	6950532	408621	410	-52	246	78.0	66.0	67.0	1.0	0.7
RRLGLRC605	6950523	408616	410	-70	245	66.0	3.0	4.0	1.0	0.9
RRLGLRC605	6950523	408616	410	-70	245	66.0	7.0	8.0	1.0	0.6
RRLGLRC605	6950523	408616	410	-70	245	66.0	11.0	12.0	1.0	0.4
RRLGLRC605	6950523	408616	410	-70	245	66.0	21.0	24.0	3.0	1.8
RRLGLRC605	6950523	408616	410	-70	245	66.0	34.0	38.0	4.0	0.5
RRLGLRC605	6950523	408616	410	-70	245	66.0	48.0	49.0	1.0	1.0
RRLGLRC605	6950523	408616	410	-70	245	66.0	54.0	56.0	2.0	0.9
RRLGLRC605	6950523	408616	410	-70	245	66.0	61.0	64.0	3.0	1.2
RRLGLRC606	6950528	408636	410	-70	245	66.0	0.0	2.0	2.0	1.2
RRLGLRC606	6950528	408636	410	-70	245	66.0	6.0	12.0	6.0	1.3
RRLGLRC606	6950528	408636	410	-70	245	66.0	16.0	17.0	1.0	1.8
RRLGLRC606	6950528	408636	410	-70	245	66.0	21.0	22.0	1.0	1.3
RRLGLRC606	6950528	408636	410	-70	245	66.0	25.0	26.0	1.0	0.4
RRLGLRC606	6950528	408636	410	-70	245	66.0	30.0	31.0	1.0	5.2
RRLGLRC606	6950528	408636	410	-70	245	66.0	36.0	37.0	1.0	0.8
RRLGLRC606	6950528	408636	410	-70	245	66.0	48.0	49.0	1.0	0.6
RRLGLRC606	6950528	408636	410	-70	245	66.0	52.0	55.0	3.0	0.5
RRLGLRC607	6950502	408634	410	-54	252	60.0	12.0	15.0	3.0	2.8
RRLGLRC607	6950502	408634	410	-54	252	60.0	35.0	36.0	1.0	0.8
RRLGLRC607	6950502	408634	410	-54	252	60.0	50.0	54.0	4.0	1.2
RRLGLRC608	6950520	408656	410	-58	240	60.0	5.0	8.0	3.0	2.5
RRLGLRC608	6950520	408656	410	-58	240	60.0	18.0	19.0	1.0	1.4
RRLGLRC608	6950520	408656	410	-58	240	60.0	24.0	25.0	1.0	1.7
RRLGLRC608	6950520	408656	410	-58	240	60.0	53.0	54.0	1.0	0.6
RRLGLRC609	6950531	408651	410	-64	71	66.0	11.0	12.0	1.0	3.4
RRLGLRC609	6950531	408651	410	-64	71	66.0	16.0	17.0	1.0	1.5
RRLGLRC609	6950531	408651	410	-64	71	66.0	24.0	30.0	6.0	1.1
RRLGLRC609	6950531	408651	410	-64	71	66.0	33.0	34.0	1.0	1.3

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC609	6950531	408651	410	-64	71	66.0	39.0	44.0	5.0	1.5
RRLGLRC609	6950531	408651	410	-64	71	66.0	54.0	61.0	7.0	1.9
RRLGLRC610	6950529	408648	410	-76	233	54.0	0.0	1.0	1.0	0.6
RRLGLRC610	6950529	408648	410	-76	233	54.0	8.0	28.0	20.0	0.7
RRLGLRC610	6950529	408648	410	-76	233	54.0	33.0	38.0	5.0	1.6
RRLGLRC610	6950529	408648	410	-76	233	54.0	42.0	44.0	2.0	0.8
RRLGLRC610	6950529	408648	410	-76	233	54.0	50.0	52.0	2.0	1.3
RRLGLRC611	6950553	408611	410	-80	245	90.0	3.0	6.0	3.0	0.9
RRLGLRC611	6950553	408611	410	-80	245	90.0	11.0	16.0	5.0	1.2
RRLGLRC611	6950553	408611	410	-80	245	90.0	19.0	21.0	2.0	4.8
RRLGLRC611	6950553	408611	410	-80	245	90.0	28.0	29.0	1.0	7.6
RRLGLRC611	6950553	408611	410	-80	245	90.0	33.0	37.0	4.0	1.4
RRLGLRC611	6950553	408611	410	-80	245	90.0	48.0	49.0	1.0	0.9
RRLGLRC611	6950553	408611	410	-80	245	90.0	56.0	57.0	1.0	0.5
RRLGLRC611	6950553	408611	410	-80	245	90.0	71.0	78.0	7.0	1.2
RRLGLRC611	6950553	408611	410	-80	245	90.0	81.0	82.0	1.0	1.0
RRLGLRC612	6950546	408596	410	-82	245	84.0	1.0	2.0	1.0	4.1
RRLGLRC612	6950546	408596	410	-82	245	84.0	8.0	9.0	1.0	0.9
RRLGLRC612	6950546	408596	410	-82	245	84.0	13.0	17.0	4.0	0.6
RRLGLRC612	6950546	408596	410	-82	245	84.0	27.0	32.0	5.0	1.0
RRLGLRC612	6950546	408596	410	-82	245	84.0	35.0	36.0	1.0	0.7
RRLGLRC612	6950546	408596	410	-82	245	84.0	42.0	43.0	1.0	0.4
RRLGLRC612	6950546	408596	410	-82	245	84.0	53.0	55.0	2.0	0.5
RRLGLRC612	6950546	408596	410	-82	245	84.0	58.0	60.0	2.0	6.0
RRLGLRC612	6950546	408596	410	-82	245	84.0	67.0	68.0	1.0	0.7
RRLGLRC612	6950546	408596	410	-82	245	84.0	72.0	80.0	8.0	2.2
RRLGLRC613	6950544	408590	410	-67	246	90.0	0.0	1.0	1.0	0.8
RRLGLRC613	6950544	408590	410	-67	246	90.0	7.0	8.0	1.0	0.6
RRLGLRC613	6950544	408590	410	-67	246	90.0	14.0	20.0	6.0	0.5
RRLGLRC613	6950544	408590	410	-67	246	90.0	25.0	26.0	1.0	0.4
RRLGLRC613	6950544	408590	410	-67	246	90.0	27.0	28.0	1.0	0.5
RRLGLRC613	6950544	408590	410	-67	246	90.0	62.0	63.0	1.0	0.4
RRLGLRC613	6950544	408590	410	-67	246	90.0	67.0	68.0	1.0	0.9
RRLGLRC613	6950544	408590	410	-67	246	90.0	73.0	80.0	7.0	3.4
RRLGLRC614	6950543	408587	410	-56	244	78.0	0.0	2.0	2.0	3.6
RRLGLRC614	6950543	408587	410	-56	244	78.0	13.0	14.0	1.0	0.5
RRLGLRC614	6950543	408587	410	-56	244	78.0	17.0	18.0	1.0	0.6
RRLGLRC614	6950543	408587	410	-56	244	78.0	25.0	26.0	1.0	2.3
RRLGLRC614	6950543	408587	410	-56	244	78.0	37.0	38.0	1.0	3.9
RRLGLRC614	6950543	408587	410	-56	244	78.0	50.0	55.0	5.0	1.2
RRLGLRC614	6950543	408587	410	-56	244	78.0	72.0	73.0	1.0	0.4
RRLGLRC614	6950543	408587	410	-56	244	78.0	76.0	78.0	2.0	0.9
RRLGLRC615	6950584	408598	410	-75	117	96.0	2.0	3.0	1.0	1.5
RRLGLRC615	6950584	408598	410	-75	117	96.0	10.0	21.0	11.0	1.0
RRLGLRC615	6950584	408598	410	-75	117	96.0	27.0	28.0	1.0	6.3
RRLGLRC615	6950584	408598	410	-75	117	96.0	32.0	36.0	4.0	4.5
RRLGLRC615	6950584	408598	410	-75	117	96.0	46.0	47.0	1.0	0.7

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC615	6950584	408598	410	-75	117	96.0	59.0	60.0	1.0	2.7
RRLGLRC615	6950584	408598	410	-75	117	96.0	67.0	74.0	7.0	5.8
RRLGLRC615	6950584	408598	410	-75	117	96.0	77.0	80.0	3.0	1.4
RRLGLRC615	6950584	408598	410	-75	117	96.0	89.0	90.0	1.0	0.5
RRLGLRC616	6950588	408584	410	-55	77	120.0	4.0	8.0	4.0	0.6
RRLGLRC616	6950588	408584	410	-55	77	120.0	12.0	19.0	7.0	12.5
RRLGLRC616	6950588	408584	410	-55	77	120.0	28.0	29.0	1.0	1.3
RRLGLRC616	6950588	408584	410	-55	77	120.0	40.0	41.0	1.0	0.5
RRLGLRC616	6950588	408584	410	-55	77	120.0	46.0	47.0	1.0	0.7
RRLGLRC616	6950588	408584	410	-55	77	120.0	55.0	56.0	1.0	2.1
RRLGLRC616	6950588	408584	410	-55	77	120.0	59.0	60.0	1.0	0.6
RRLGLRC616	6950588	408584	410	-55	77	120.0	68.0	79.0	11.0	1.9
RRLGLRC616	6950588	408584	410	-55	77	120.0	88.0	90.0	2.0	0.5
RRLGLRC616	6950588	408584	410	-55	77	120.0	93.0	94.0	1.0	2.3
RRLGLRC616	6950588	408584	410	-55	77	120.0	103.0	104.0	1.0	0.7
RRLGLRC616	6950588	408584	410	-55	77	120.0	119.0	120.0	1.0	0.8
RRLGLRC617	6950643	408558	409	-60	106	84.0	5.0	7.0	2.0	2.4
RRLGLRC617	6950643	408558	409	-60	106	84.0	12.0	19.0	7.0	0.8
RRLGLRC617	6950643	408558	409	-60	106	84.0	25.0	26.0	1.0	0.7
RRLGLRC617	6950643	408558	409	-60	106	84.0	54.0	55.0	1.0	0.4
RRLGLRC617	6950643	408558	409	-60	106	84.0	80.0	81.0	1.0	3.1
RRLGLRC618	6950644	408552	410	-69	76	84.0	0.0	4.0	4.0	9.5
RRLGLRC618	6950644	408552	410	-69	76	84.0	9.0	10.0	1.0	1.5
RRLGLRC618	6950644	408552	410	-69	76	84.0	15.0	16.0	1.0	0.5
RRLGLRC618	6950644	408552	410	-69	76	84.0	26.0	27.0	1.0	2.5
RRLGLRC618	6950644	408552	410	-69	76	84.0	30.0	32.0	2.0	0.9
RRLGLRC618	6950644	408552	410	-69	76	84.0	44.0	45.0	1.0	2.1
RRLGLRC618	6950644	408552	410	-69	76	84.0	48.0	53.0	5.0	0.9
RRLGLRC618	6950644	408552	410	-69	76	84.0	56.0	59.0	3.0	1.1
RRLGLRC618	6950644	408552	410	-69	76	84.0	75.0	78.0	3.0	2.4
RRLGLRC619	6950640	408546	410	-68	298	60.0	5.0	12.0	7.0	5.4
RRLGLRC619	6950640	408546	410	-68	298	60.0	15.0	31.0	16.0	0.8
RRLGLRC619	6950640	408546	410	-68	298	60.0	39.0	44.0	5.0	0.7
RRLGLRC619	6950640	408546	410	-68	298	60.0	53.0	56.0	3.0	3.0
RRLGLRC620	6950636	408540	410	-67	267	48.0	7.0	9.0	2.0	2.0
RRLGLRC620	6950636	408540	410	-67	267	48.0	12.0	27.0	15.0	2.1
RRLGLRC620	6950636	408540	410	-67	267	48.0	44.0	45.0	1.0	0.5
RRLGLRC620	6950636	408540	410	-67	267	48.0	47.0	48.0	1.0	0.5
RRLGLRC621	6950597	408536	410	-75	242	66.0	4.0	5.0	1.0	0.6
RRLGLRC621	6950597	408536	410	-75	242	66.0	19.0	20.0	1.0	1.3
RRLGLRC621	6950597	408536	410	-75	242	66.0	30.0	31.0	1.0	0.4
RRLGLRC621	6950597	408536	410	-75	242	66.0	38.0	43.0	5.0	0.6
RRLGLRC621	6950597	408536	410	-75	242	66.0	49.0	54.0	5.0	1.4
RRLGLRC622	6950596	408534	410	-50	242	60.0	5.0	6.0	1.0	0.5
RRLGLRC622	6950596	408534	410	-50	242	60.0	8.0	9.0	1.0	0.5
RRLGLRC622	6950596	408534	410	-50	242	60.0	13.0	14.0	1.0	1.7
RRLGLRC622	6950596	408534	410	-50	242	60.0	17.0	18.0	1.0	0.5

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC622	6950596	408534	410	-50	242	60.0	32.0	35.0	3.0	0.6
RRLGLRC622	6950596	408534	410	-50	242	60.0	39.0	41.0	2.0	0.9
RRLGLRC622	6950596	408534	410	-50	242	60.0	45.0	46.0	1.0	0.7
RRLGLRC622	6950596	408534	410	-50	242	60.0	49.0	50.0	1.0	1.4
RRLGLRC623	6950583	408544	410	-74	223	66.0	3.0	4.0	1.0	1.4
RRLGLRC623	6950583	408544	410	-74	223	66.0	20.0	22.0	2.0	0.6
RRLGLRC623	6950583	408544	410	-74	223	66.0	29.0	31.0	2.0	0.8
RRLGLRC623	6950583	408544	410	-74	223	66.0	41.0	44.0	3.0	1.0
RRLGLRC623	6950583	408544	410	-74	223	66.0	64.0	66.0	2.0	0.8
RRLGLRC624	6950523	408606	410	-55	223	72.0	11.0	12.0	1.0	1.0
RRLGLRC624	6950523	408606	410	-55	223	72.0	22.0	24.0	2.0	0.7
RRLGLRC624	6950523	408606	410	-55	223	72.0	37.0	47.0	10.0	0.7
RRLGLRC624	6950523	408606	410	-55	223	72.0	52.0	54.0	2.0	1.7
RRLGLRC624	6950523	408606	410	-55	223	72.0	67.0	68.0	1.0	0.9
RRLGLRC625	6950538	408631	410	-84	246	66.0	7.0	12.0	5.0	0.6
RRLGLRC625	6950538	408631	410	-84	246	66.0	20.0	34.0	14.0	1.2
RRLGLRC625	6950538	408631	410	-84	246	66.0	41.0	42.0	1.0	0.7
RRLGLRC625	6950538	408631	410	-84	246	66.0	47.0	51.0	4.0	2.7
RRLGLRC625	6950538	408631	410	-84	246	66.0	56.0	57.0	1.0	0.8
RRLGLRC626	6950503	408620	410	-50	246	66.0	33.0	34.0	1.0	0.7
RRLGLRC626	6950503	408620	410	-50	246	66.0	38.0	40.0	2.0	1.1
RRLGLRC626	6950503	408620	410	-50	246	66.0	44.0	45.0	1.0	0.8
RRLGLRC626	6950503	408620	410	-50	246	66.0	51.0 × 0	57.0	6.0	1.0
RRLGLRC627	6950484	408632	410	-84	273	48.0	8.0	9.0	1.0	1.1
RRLGLRC627 RRLGLRC627	6950484 6950484	408632 408632	410 410	-84 -84	273 273	48.0 48.0	14.0 37.0	15.0 38.0	1.0 1.0	2.6 0.7
RRLGLRC627	6950484	408660	410	-64	273	48.0	8.0	10.0	2.0	2.8
RRLGLRC628	6950496	408660	410	-55	242	48.0	16.0	22.0	6.0	0.6
RRLGLRC628	6950496	408660	410	-55	242	48.0	28.0	30.0	2.0	7.5
RRLGLRC628	6950496	408660	410	-55	242	48.0	43.0	45.0	2.0	0.5
RRLGLRC629	6950496	408663				36.0			1.0	0.5
RRLGLRC629	6950486	408663	410	-76 -76	220 220	36.0	1.0 4.0	2.0 5.0	1.0	0.3
RRLGLRC629	6950486	408663	410	-76	220	36.0	12.0	19.0	7.0	0.4
RRLGLRC630	6950480	408660	410	-60	250	60.0	12.0	4.0	3.0	0.6
RRLGLRC630	6950481	408660	410	-60	250	60.0	11.0	15.0	4.0	1.6
RRLGLRC630	6950481	408660	410	-60	250	60.0	35.0	36.0	1.0	0.5
RRLGLRC630	6950481	408660	410	-60	250	60.0	43.0	44.0	1.0	1.7
RRLGLRC630	6950481	408660	410	-60	250	60.0	50.0	54.0	4.0	0.5
RRLGLRC631	6950622	408540	410	-54	119	108.0	10.0	12.0	2.0	4.1
RRLGLRC631	6950622	408540	410	-54	119	108.0	16.0	20.0	4.0	1.9
RRLGLRC631	6950622	408540	410	-54	119	108.0	25.0	26.0	1.0	0.9
RRLGLRC631	6950622	408540	410	-54	119	108.0	33.0	34.0	1.0	0.6
RRLGLRC631	6950622	408540	410	-54	119	108.0	47.0	59.0	12.0	3.0
RRLGLRC631	6950622	408540	410	-54	119	108.0	64.0	65.0	12.0	0.7
RRLGLRC631	6950622	408540	410	-54	119	108.0	75.0	83.0	8.0	2.5
RRLGLRC631	6950622	408540	410	-54	119	108.0	86.0	92.0	6.0	0.5
RRLGLRC631	6950622	408540	410	-54	119	108.0	100.0	102.0	2.0	2.1

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC632	6950616	408540	409	-75	110	90.0	4.0	5.0	1.0	0.8
RRLGLRC632	6950616	408540	409	-75	110	90.0	8.0	10.0	2.0	1.8
RRLGLRC632	6950616	408540	409	-75	110	90.0	15.0	16.0	1.0	2.9
RRLGLRC632	6950616	408540	409	-75	110	90.0	19.0	20.0	1.0	0.8
RRLGLRC632	6950616	408540	409	-75	110	90.0	30.0	32.0	2.0	0.6
RRLGLRC632	6950616	408540	409	-75	110	90.0	36.0	43.0	7.0	1.1
RRLGLRC633	6950632	408522	410	-54	298	60.0	13.0	17.0	4.0	1.1
RRLGLRC633	6950632	408522	410	-54	298	60.0	21.0	23.0	2.0	1.7
RRLGLRC633	6950632	408522	410	-54	298	60.0	37.0	44.0	7.0	2.2
RRLGLRC633	6950632	408522	410	-54	298	60.0	53.0	54.0	1.0	0.6
RRLGLRC633	6950632	408522	410	-54	298	60.0	59.0	60.0	1.0	1.1
RRLGLRC634	6950779	408393	491	-54	231	108.0	67.0	73.0	6.0	0.5
RRLGLRC634	6950779	408393	491	-54	231	108.0	103.0	106.0	3.0	1.1
RRLGLRC635	6950766	408351	491	-60	242	96.0	48.0	53.0	5.0	0.4
RRLGLRC635	6950766	408351	491	-60	242	96.0	59.0	60.0	1.0	0.4
RRLGLRC635	6950766	408351	491	-60	242	96.0	68.0	71.0	3.0	1.1
RRLGLRC635	6950766	408351	491	-60	242	96.0	75.0	76.0	1.0	1.1
RRLGLRC635	6950766	408351	491	-60	242	96.0	84.0	85.0	1.0	1.3
RRLGLRC635	6950766	408351	491	-60	242	96.0	95.0	96.0	1.0	1.9
RRLGLRC636	6950667	408773	553	-51	247	294.0	60.0	61.0	1.0	0.5
RRLGLRC636	6950667	408773	553	-51	247	294.0	165.0	173.0	8.0	0.6
RRLGLRC636	6950667	408773	553	-51	247	294.0	244.0	246.0	2.0	2.9
RRLGLRC636	6950667	408773	553	-51	247	294.0	257.0	258.0	1.0	2.3
RRLGLRC636	6950667	408773	553	-51	247	294.0	270.0	273.0	3.0	0.8
RRLGLRC636	6950667	408773	553	-51	247	294.0	277.0	278.0	1.0	1.8
RRLGLRC636	6950667	408773	553	-51	247	294.0	286.0	287.0	1.0	0.7
RRLGLRC637	6950739	408779	553	-52	232	270.0	64.0	66.0	2.0	0.9
RRLGLRC637	6950739	408779	553	-52	232	270.0	134.0	136.0	2.0	3.7
RRLGLRC637	6950739	408779	553	-52	232	270.0	178.0	190.0	12.0	1.3
RRLGLRC637	6950739	408779	553	-52	232	270.0	216.0	221.0	5.0	2.1
RRLGLRC637	6950739	408779	553	-52	232	270.0	234.0	241.0	7.0	1.6
RRLGLRC638	6950743	408740	554	-50	265	120.0	111.0	112.0	1.0	0.9
RRLGLRC639	6950744	408735	554	-50	275	120.0	36.0	37.0	1.0	0.6
RRLGLRC639	6950744	408735	554	-50	275	120.0	50.0	51.0	1.0	0.5
RRLGLRC639	6950744	408735	554	-50	275	120.0	63.0	64.0	1.0	0.8
RRLGLRC640	6950306	408898	465	-90	65	42.0	1.0	2.0	1.0	0.5
RRLGLRC640	6950306	408898	465	-90	65	42.0	4.0	5.0	1.0	0.9
RRLGLRC640	6950306	408898	465	-90	65	42.0	12.0	16.0	4.0	1.0
RRLGLRC640	6950306	408898	465	-90	65	42.0	19.0	20.0	1.0	2.3
RRLGLRC640	6950306	408898	465	-90	65	42.0	36.0	39.0	3.0	1.9
RRLGLRC641	6950307	408900	465	-55	65	48.0	4.0	5.0	1.0	0.8
RRLGLRC641	6950307	408900	465	-55	65	48.0	9.0	11.0	2.0	3.1
RRLGLRC641	6950307	408900	465	-55	65	48.0	16.0	17.0	1.0	0.6
RRLGLRC641	6950307	408900	465	-55	65	48.0	23.0	31.0	8.0	1.1
RRLGLRC641	6950307	408900	465	-55	65	48.0	35.0	37.0	2.0	1.3
RRLGLRC641	6950307	408900	465	-55	65	48.0	41.0	44.0	3.0	1.5
RRLGLRC642	6950388	408784	460	-50	54	60.0	8.0	9.0	1.0	0.8

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC642	6950388	408784	460	-50	54	60.0	18.0	21.0	3.0	0.6
RRLGLRC642	6950388	408784	460	-50	54	60.0	36.0	37.0	1.0	0.6
RRLGLRC642	6950388	408784	460	-50	54	60.0	49.0	52.0	3.0	2.4
RRLGLRC642	6950388	408784	460	-50	54	60.0	57.0	58.0	1.0	1.5
RRLGLRC643	6950383	408787	460	-85	195	54.0	21.0	22.0	1.0	0.9
RRLGLRC643	6950383	408787	460	-85	195	54.0	44.0	47.0	3.0	0.8
RRLGLRC644	6950723	408731	554	-61	246	144.0	49.0	50.0	1.0	2.4
RRLGLRC644	6950723	408731	554	-61	246	144.0	53.0	54.0	1.0	0.7
RRLGLRC644	6950723	408731	554	-61	246	144.0	115.0	119.0	4.0	0.6
RRLGLRC645	6950240	408900	485	-60	242	78.0	36.0	37.0	1.0	0.6
RRLGLRC645	6950240	408900	485	-60	242	78.0	43.0	44.0	1.0	3.4
RRLGLRC646	6950288	408974	494	-70	242	114.0	16.0	17.0	1.0	0.6
RRLGLRC646	6950288	408974	494	-70	242	114.0	32.0	33.0	1.0	0.6
RRLGLRC646	6950288	408974	494	-70	242	114.0	50.0	51.0	1.0	0.4
RRLGLRC646	6950288	408974	494	-70	242	114.0	61.0	63.0	2.0	2.8
RRLGLRC646	6950288	408974	494	-70	242	114.0	73.0	78.0	5.0	0.7
RRLGLRC646	6950288	408974	494	-70	242	114.0	88.0	92.0	4.0	1.2
RRLGLRC646	6950288	408974	494	-70	242	114.0	98.0	104.0	6.0	2.3
RRLGLRC646	6950288	408974	494	-70	242	114.0	108.0	110.0	2.0	0.6
RRLGLRC646	6950288	408974	494	-70	242	114.0	111.0	112.0	1.0	0.5
RRLGLRC647	6950291	408891	465	-55	245	48.0	0.0	4.0	4.0	0.5
RRLGLRC647	6950291	408891	465	-55	245	48.0	16.0	17.0	1.0	2.6
RRLGLRC647	6950291	408891	465	-55	245	48.0	20.0	21.0	1.0	2.3
RRLGLRC648	6950321	408886	465	-50	65	54.0	6.0	8.0	2.0	2.2
RRLGLRC648	6950321	408886	465	-50	65	54.0	18.0	21.0	3.0	1.7
RRLGLRC648	6950321	408886	465	-50	65	54.0	34.0	35.0	1.0	1.6
RRLGLRC648	6950321	408886	465	-50	65	54.0	43.0	49.0	6.0	1.5
RRLGLRC649	6950313	408873	465	-55	245	48.0	1.0	5.0	4.0	1.4
RRLGLRC649	6950313	408873	465	-55	245	48.0	11.0	15.0	4.0	0.4
RRLGLRC649	6950313	408873	465	-55	245	48.0	23.0	24.0	1.0	0.4
RRLGLRC650	6950305	408855	465	-60	245	42.0	11.0	12.0	1.0	0.8
RRLGLRC651	6950289	408877	465	-50	245	48.0	12.0	13.0	1.0	0.6
RRLGLRC651	6950289	408877	465	-50	245	48.0	16.0	18.0	2.0	1.2
RRLGLRC651	6950289	408877	465	-50	245	48.0	26.0	28.0	2.0	0.4
RRLGLRC651	6950289	408877	465	-50	245	48.0	35.0	36.0	1.0	0.5
RRLGLRC652	6950268	408934	482	-60	242	90.0	6.0	7.0	1.0	0.4
RRLGLRC652	6950268	408934	482	-60	242	90.0	22.0	25.0	3.0	2.5
RRLGLRC652	6950268	408934	482	-60	242	90.0	34.0	37.0	3.0	0.9
RRLGLRC652	6950268	408934	482	-60	242	90.0	42.0	46.0	4.0	1.3
RRLGLRC652	6950268	408934	482	-60	242	90.0	56.0	57.0	1.0	1.7
RRLGLRC652	6950268	408934	482	-60	242	90.0	60.0	61.0	1.0	1.2
RRLGLRC653	6950530	408556	422	-52	325	78.0	0.0	3.0	3.0	0.8
RRLGLRC653	6950530	408556	422	-52	325	78.0	9.0	10.0	1.0	1.0
RRLGLRC653	6950530	408556	422	-52	325	78.0	16.0	25.0	9.0	1.5
RRLGLRC653	6950530	408556	422	-52	325	78.0	29.0	31.0	2.0	1.1
RRLGLRC653	6950530	408556	422	-52	325	78.0	41.0	42.0	1.0	3.3
RRLGLRC653	6950530	408556	422	-52	325	78.0	55.0	60.0	5.0	1.2

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC653	6950530	408556	422	-52	325	78.0	65.0	70.0	5.0	3.1
RRLGLRC654	6950415	408739	451	-56	268	66.0	10.0	11.0	1.0	1.1
RRLGLRC654	6950415	408739	451	-56	268	66.0	15.0	16.0	1.0	3.8
RRLGLRC655	6950416	408785	455	-87	307	54.0	17.0	18.0	1.0	1.4
RRLGLRC655	6950416	408785	455	-87	307	54.0	24.0	28.0	4.0	0.5
RRLGLRC656	6950716	408736	554	-52	247	240.0	99.0	100.0	1.0	1.6
RRLGLRC656	6950716	408736	554	-52	247	240.0	116.0	117.0	1.0	0.4
RRLGLRC656	6950716	408736	554	-52	247	240.0	122.0	123.0	1.0	0.8
RRLGLRC656	6950716	408736	554	-52	247	240.0	161.0	162.0	1.0	2.0
RRLGLRC656	6950716	408736	554	-52	247	240.0	178.0	186.0	8.0	1.9
RRLGLRC656	6950716	408736	554	-52	247	240.0	198.0	205.0	7.0	3.9
RRLGLRC656	6950716	408736	554	-52	247	240.0	208.0	214.0	6.0	0.8
RRLGLRC656	6950716	408736	554	-52	247	240.0	232.0	234.0	2.0	5.3
RRLGLRC657	6950763	408741	554	-52	259	264.0	31.0	33.0	2.0	1.1
RRLGLRC657	6950763	408741	554	-52	259	264.0	146.0	148.0	2.0	1.4
RRLGLRC657	6950763	408741	554	-52	259	264.0	193.0	206.0	13.0	0.9
RRLGLRC657	6950763	408741	554	-52	259	264.0	216.0	219.0	3.0	1.9
RRLGLRC657	6950763	408741	554	-52	259	264.0	237.0	240.0	3.0	0.8
RRLGLRC657	6950763	408741	554	-52	259	264.0	245.0	246.0	1.0	8.3
RRLGLRC657	6950763	408741	554	-52	259	264.0	249.0	256.0	7.0	2.9
RRLGLRC658	6950608	408392	488	-50	176	180.0	2.0	3.0	1.0	1.6
RRLGLRC658	6950608	408392	488	-50	176	180.0	7.0	8.0	1.0	0.5
RRLGLRC658	6950608	408392	488	-50	176	180.0	86.0	87.0	1.0	0.8
RRLGLRC658	6950608	408392	488	-50	176	180.0	94.0	95.0	1.0	0.5
RRLGLRC658	6950608	408392	488	-50	176	180.0	107.0	108.0	1.0	1.4
RRLGLRC658	6950608	408392	488	-50	176	180.0	121.0	122.0	1.0	0.8
RRLGLRC659	6950586	408799	553	-56	245	210.0	63.0	65.0	2.0	0.7
RRLGLRC659	6950586	408799	553	-56	245	210.0	84.0	85.0	1.0	1.5
RRLGLRC659	6950586	408799	553	-56	245	210.0	106.0	112.0	6.0	0.7
RRLGLRC659	6950586	408799	553	-56	245	210.0	145.0	148.0	3.0	0.6
RRLGLRC659	6950586	408799	553	-56	245	210.0	183.0	184.0	1.0	0.6
RRLGLRC659	6950586	408799	553	-56	245	210.0	197.0	198.0	1.0	1.7
RRLGLRC659	6950586	408799	553	-56	245	210.0	204.0	205.0	1.0	4.5
RRLGLRC660	6950716	408779	553	-55	251	180.0	117.0	118.0	1.0	2.6
RRLGLRC660	6950716	408779	553	-55	251	180.0	130.0	134.0	4.0	0.5
RRLGLRC660	6950716	408779	553	-55	251	180.0	166.0	176.0	10.0	0.7
RRLGLRC661	6950709	408785	553	-57	248	264.0	5.0	9.0	4.0	0.5
RRLGLRC661	6950709	408785	553	-57	248	264.0	44.0	45.0	1.0	0.5
RRLGLRC661	6950709	408785	553	-57	248	264.0	56.0	57.0	1.0	0.6
RRLGLRC661	6950709	408785	553	-57	248	264.0	109.0	112.0	3.0	0.4
RRLGLRC661	6950709	408785	553	-57	248	264.0	116.0	117.0	1.0	0.9
RRLGLRC661	6950709	408785	553	-57	248	264.0	119.0	120.0	1.0	0.4
RRLGLRC661	6950709	408785	553	-57	248	264.0	132.0	134.0	2.0	0.8
RRLGLRC661	6950709	408785	553	-57	248	264.0	143.0	145.0	2.0	0.6
RRLGLRC661	6950709	408785	553	-57	248	264.0	191.0	196.0	5.0	1.4
RRLGLRC661	6950709	408785	553	-57	248	264.0	204.0	205.0	1.0	1.4
	6950709	408785	553	-57	248	264.0	204.0	205.0	7.0	0.7

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC661	6950709	408785	553	-57	248	264.0	222.0	229.0	7.0	1.5
RRLGLRC661	6950709	408785	553	-57	248	264.0	234.0	246.0	12.0	1.0
RRLGLRC661	6950709	408785	553	-57	248	264.0	249.0	250.0	1.0	1.0
RRLGLRC661	6950709	408785	553	-57	248	264.0	257.0	258.0	1.0	15.1
RRLGLRC662	6950745	408707	554	-51	273	258.0	82.0	83.0	1.0	2.1
RRLGLRC662	6950745	408707	554	-51	273	258.0	97.0	98.0	1.0	1.1
RRLGLRC662	6950745	408707	554	-51	273	258.0	129.0	135.0	6.0	1.2
RRLGLRC662	6950745	408707	554	-51	273	258.0	192.0	194.0	2.0	2.1
RRLGLRC662	6950745	408707	554	-51	273	258.0	197.0	198.0	1.0	0.6
RRLGLRC662	6950745	408707	554	-51	273	258.0	204.0	206.0	2.0	3.6
RRLGLRC662	6950745	408707	554	-51	273	258.0	213.0	242.0	29.0	2.8
RRLGLRC662	6950745	408707	554	-51	273	258.0	246.0	249.0	3.0	0.9
RRLGLRC663	6950418	408894	510	-55	231	126.0	77.0	82.0	5.0	0.7
RRLGLRC663	6950418	408894	510	-55	231	126.0	91.0	92.0	1.0	0.8
RRLGLRC663	6950418	408894	510	-55	231	126.0	98.0	99.0	1.0	0.4
RRLGLRC663	6950418	408894	510	-55	231	126.0	105.0	108.0	3.0	2.9
RRLGLRC664	6950698	408748	553	-55	254	264.0	49.0	50.0	1.0	0.4
RRLGLRC664	6950698	408748	553	-55	254	264.0	53.0	54.0	1.0	2.8
RRLGLRC664	6950698	408748	553	-55	254	264.0	58.0	59.0	1.0	0.9
RRLGLRC664	6950698	408748	553	-55	254	264.0	90.0	91.0	1.0	1.6
RRLGLRC664	6950698	408748	553	-55	254	264.0	122.0	123.0	1.0	0.6
RRLGLRC664	6950698	408748	553	-55	254	264.0	134.0	135.0	1.0	1.3
RRLGLRC664	6950698	408748	553	-55	254	264.0	138.0	139.0	1.0	0.5
RRLGLRC664	6950698	408748	553	-55	254	264.0	152.0	155.0	3.0	4.0
RRLGLRC664	6950698	408748	553	-55	254	264.0	166.0	167.0	1.0	2.7
RRLGLRC664	6950698	408748	553	-55	254	264.0	174.0	175.0	1.0	0.5
RRLGLRC664	6950698	408748	553	-55	254	264.0	185.0	187.0	2.0	1.6
RRLGLRC664	6950698	408748	553	-55	254	264.0	201.0	204.0	3.0	4.6
RRLGLRC664	6950698	408748	553	-55	254	264.0	214.0	215.0	1.0	0.9
RRLGLRC664	6950698	408748	553	-55	254	264.0	241.0	242.0	1.0	1.3
RRLGLRC664	6950698	408748	553	-55	254	264.0	246.0	247.0	1.0	0.4
RRLGLRC665	6950755	408720	554	-59	271	276.0	32.0	33.0	1.0	0.9
RRLGLRC665	6950755	408720	554	-59	271	276.0	37.0	38.0	1.0	0.6
RRLGLRC665	6950755	408720	554	-59	271	276.0	57.0	61.0	4.0	1.0
RRLGLRC665	6950755	408720	554	-59	271	276.0	153.0	157.0	4.0	1.0
RRLGLRC665	6950755	408720	554	-59	271	276.0	186.0	197.0	11.0	1.9
RRLGLRC665	6950755	408720	554	-59	271	276.0	200.0	202.0	2.0	3.0
RRLGLRC665	6950755	408720	554	-59	271	276.0	222.0	228.0	6.0	1.1
RRLGLRC665	6950755	408720	554	-59	271	276.0	267.0	269.0	2.0	1.3
RRLGLRC665	6950755	408720	554	-59	271	276.0	273.0	274.0	1.0	0.7
RRLGLRC666	6950749	408716	554	-53	272	270.0	33.0	34.0	1.0	1.6
RRLGLRC666	6950749	408716	554	-53	272	270.0	39.0	40.0	1.0	2.6
RRLGLRC666	6950749	408716	554	-53	272	270.0	46.0	47.0	1.0	0.5
RRLGLRC666	6950749	408716	554	-53	272	270.0	129.0	131.0	2.0	1.0
RRLGLRC666	6950749	408716	554	-53	272	270.0	166.0	167.0	1.0	0.5
RRLGLRC666	6950749	408716	554	-53	272	270.0	197.0	199.0	2.0	1.0
RRLGLRC666	6950749	408716	554	-53	272	270.0	213.0	214.0	1.0	1.8

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC666	6950749	408716	554	-53	272	270.0	222.0	223.0	1.0	0.6
RRLGLRC666	6950749	408716	554	-53	272	270.0	229.0	230.0	1.0	0.5
RRLGLRC666	6950749	408716	554	-53	272	270.0	240.0	245.0	5.0	0.8
RRLGLRC666	6950749	408716	554	-53	272	270.0	251.0	252.0	1.0	0.4
RRLGLRC667	6950686	408761	553	-50	250	300.0	37.0	38.0	1.0	0.5
RRLGLRC667	6950686	408761	553	-50	250	300.0	90.0	91.0	1.0	0.7
RRLGLRC667	6950686	408761	553	-50	250	300.0	96.0	102.0	6.0	0.5
RRLGLRC667	6950686	408761	553	-50	250	300.0	126.0	127.0	1.0	0.9
RRLGLRC667	6950686	408761	553	-50	250	300.0	141.0	142.0	1.0	1.2
RRLGLRC667	6950686	408761	553	-50	250	300.0	146.0	148.0	2.0	1.6
RRLGLRC667	6950686	408761	553	-50	250	300.0	158.0	160.0	2.0	1.0
RRLGLRC667	6950686	408761	553	-50	250	300.0	165.0	171.0	6.0	2.1
RRLGLRC667	6950686	408761	553	-50	250	300.0	180.0	181.0	1.0	1.9
RRLGLRC667	6950686	408761	553	-50	250	300.0	196.0	199.0	3.0	1.8
RRLGLRC667	6950686	408761	553	-50	250	300.0	239.0	240.0	1.0	0.5
RRLGLRC667	6950686	408761	553	-50	250	300.0	245.0	250.0	5.0	1.6
RRLGLRC667	6950686	408761	553	-50	250	300.0	260.0	271.0	11.0	1.5
RRLGLRC667	6950686	408761	553	-50	250	300.0	277.0	279.0	2.0	0.9
RRLGLRC667	6950686	408761	553	-50	250	300.0	282.0	283.0	1.0	0.4
RRLGLRC667	6950686	408761	553	-50	250	300.0	298.0	299.0	1.0	0.6
RRLGLRC668	6950681	408768	553	-62	254	264.0	60.0	62.0	2.0	0.6
RRLGLRC668	6950681	408768	553	-62	254	264.0	152.0	154.0	2.0	1.2
RRLGLRC668	6950681	408768	553	-62	254	264.0	163.0	165.0	2.0	1.0
RRLGLRC668	6950681	408768	553	-62	254	264.0	174.0	178.0	4.0	0.9
RRLGLRC668	6950681	408768	553	-62	254	264.0	197.0	202.0	5.0	2.0
RRLGLRC668	6950681	408768	553	-62	254	264.0	212.0	213.0	1.0	1.3
RRLGLRC668	6950681	408768	553	-62	254	264.0	220.0	223.0	3.0	0.5
RRLGLRC668	6950681	408768	553	-62	254	264.0	249.0	250.0	1.0	0.5
RRLGLRC669	6950737	408723	554	-50	270	276.0	78.0	79.0	1.0	0.7
RRLGLRC669	6950737	408723	554	-50	270	276.0	107.0	108.0	1.0	12.1
RRLGLRC669	6950737	408723	554	-50	270	276.0	134.0	135.0	1.0	0.4
RRLGLRC669	6950737	408723	554	-50	270	276.0	179.0	181.0	2.0	5.8
RRLGLRC669	6950737	408723	554	-50	270	276.0	197.0	198.0	1.0	1.2
RRLGLRC669	6950737	408723	554	-50	270	276.0	201.0	202.0	1.0	4.5
RRLGLRC669	6950737	408723	554	-50	270	276.0	209.0	211.0	2.0	1.8
RRLGLRC669	6950737	408723	554	-50	270	276.0	223.0	224.0	1.0	0.5
RRLGLRC669	6950737	408723	554	-50	270	276.0	227.0	228.0	1.0	2.9
RRLGLRC669	6950737	408723	554	-50	270	276.0	233.0	234.0	1.0	0.5
RRLGLRC669	6950737	408723	554	-50	270	276.0	238.0	242.0	4.0	6.2
RRLGLRC669	6950737	408723	554	-50	270	276.0	253.0	254.0	1.0	1.2
RRLGLRC669	6950737	408723	554	-50	270	276.0	267.0	269.0	2.0	1.3
RRLGLRC670	6950737	408715	554	-52	258	258.0	104.0	106.0	2.0	1.4
RRLGLRC670	6950737	408715	554	-52	258	258.0	159.0	160.0	1.0	1.2
RRLGLRC670	6950737	408715	554	-52	258	258.0	178.0	194.0	16.0	0.9
RRLGLRC670	6950737	408715	554	-52	258	258.0	197.0	203.0	6.0	1.0
RRLGLRC670	6950737	408715	554	-52	258	258.0	215.0	216.0	1.0	4.9
RRLGLRC670	6950737	408715	554	-52	258	258.0	220.0	227.0	7.0	0.9

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC670	6950737	408715	554	-52	258	258.0	231.0	234.0	3.0	0.5
RRLGLRC670	6950737	408715	554	-52	258	258.0	238.0	240.0	2.0	0.5
RRLGLRC671	6950729	408721	554	-50	257	258.0	50.0	51.0	1.0	0.5
RRLGLRC671	6950729	408721	554	-50	257	258.0	91.0	92.0	1.0	5.4
RRLGLRC671	6950729	408721	554	-50	257	258.0	105.0	112.0	7.0	0.6
RRLGLRC671	6950729	408721	554	-50	257	258.0	186.0	201.0	15.0	1.6
RRLGLRC671	6950729	408721	554	-50	257	258.0	205.0	206.0	1.0	1.1
RRLGLRC671	6950729	408721	554	-50	257	258.0	219.0	222.0	3.0	0.9
RRLGLRC671	6950729	408721	554	-50	257	258.0	230.0	231.0	1.0	1.4
RRLGLRC671	6950729	408721	554	-50	257	258.0	235.0	239.0	4.0	0.8
RRLGLRC671	6950729	408721	554	-50	257	258.0	243.0	244.0	1.0	0.6
RRLGLRC672	6950787	408763	554	-50	246	300.0	33.0	34.0	1.0	1.0
RRLGLRC672	6950787	408763	554	-50	246	300.0	158.0	164.0	6.0	0.5
RRLGLRC672	6950787	408763	554	-50	246	300.0	170.0	171.0	1.0	2.8
RRLGLRC672	6950787	408763	554	-50	246	300.0	208.0	210.0	2.0	1.2
RRLGLRC672	6950787	408763	554	-50	246	300.0	214.0	227.0	13.0	0.9
RRLGLRC672	6950787	408763	554	-50	246	300.0	230.0	235.0	5.0	1.5
RRLGLRC672	6950787	408763	554	-50	246	300.0	261.0	270.0	9.0	1.6
RRLGLRC673	6950731	408729	554	-50	256	294.0	87.0	88.0	1.0	0.5
RRLGLRC673	6950731	408729	554	-50	256	294.0	112.0	121.0	9.0	1.1
RRLGLRC673	6950731	408729	554	-50	256	294.0	189.0	199.0	10.0	2.2
RRLGLRC673	6950731	408729	554	-50	256	294.0	204.0	207.0	3.0	4.8
RRLGLRC673	6950731	408729	554	-50	256	294.0	217.0	218.0	1.0	0.7
RRLGLRC673	6950731	408729	554	-50	256	294.0	222.0	241.0	19.0	1.3
RRLGLRC673	6950731	408729	554	-50	256	294.0	244.0	246.0	2.0	1.2
RRLGLRC673	6950731	408729	554	-50	256	294.0	283.0	294.0	11.0	1.1
RRLGLRC674	6950779	408769	554	-50	260	90.0	0.0	1.0	1.0	0.5
RRLGLRC674	6950779	408769	554	-50	260	90.0	41.0	42.0	1.0	0.4
RRLGLRC675	6950641	408781	553	-51	251	294.0	56.0	58.0	2.0	1.1
RRLGLRC675	6950641	408781	553	-51	251	294.0	136.0	139.0	3.0	1.7
RRLGLRC675	6950641	408781	553	-51	251	294.0	165.0	166.0	1.0	0.7
RRLGLRC675	6950641	408781	553	-51	251	294.0	169.0	170.0	1.0	0.6
RRLGLRC675	6950641	408781	553	-51	251	294.0	188.0	189.0	1.0	0.5
RRLGLRC675	6950641	408781	553	-51	251	294.0	219.0	220.0	1.0	1.6
RRLGLRC675	6950641	408781	553	-51	251	294.0	223.0	225.0	2.0	1.9
RRLGLRC675	6950641	408781	553	-51	251	294.0	251.0	253.0	2.0	3.2
RRLGLRC675	6950641	408781	553	-51	251	294.0	265.0	266.0	1.0	0.5
RRLGLRC675	6950641	408781	553	-51	251	294.0	274.0	276.0	2.0	2.9
RRLGLRC675	6950641	408781	553	-51	251	294.0	292.0	293.0	1.0	0.9
RRLGLRC676	6950775	408764	554	-50	246	288.0	37.0	38.0	1.0	0.4
RRLGLRC676	6950775	408764	554	-50	246	288.0	160.0	168.0	8.0	0.7
RRLGLRC676	6950775	408764	554	-50	246	288.0	205.0	206.0	1.0	2.1
RRLGLRC676	6950775	408764	554	-50	246	288.0	219.0	232.0	13.0	0.7
RRLGLRC676	6950775	408764	554	-50	246	288.0	237.0	238.0	1.0	0.5
RRLGLRC676	6950775	408764	554	-50	246	288.0	250.0	257.0	7.0	0.5
RRLGLRC676	6950775	408764	554	-50	246	288.0	260.0	264.0	4.0	1.9
RRLGLRC677	6950710	408358	485	-83	250	102.0	34.0	35.0	1.0	0.5

Hole_ID	AMG_North	AMG_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLGLRC677	6950710	408358	485	-83	250	102.0	50.0	51.0	1.0	0.7
RRLGLRC677	6950710	408358	485	-83	250	102.0	64.0	65.0	1.0	0.5
RRLGLRC677	6950710	408358	485	-83	250	102.0	67.0	69.0	2.0	0.5
RRLGLRC677	6950710	408358	485	-83	250	102.0	75.0	81.0	6.0	4.4
RRLGLRC678	6950717	408380	486	-82	242	96.0	57.0	58.0	1.0	5.0
RRLGLRC678	6950717	408380	486	-82	242	96.0	72.0	73.0	1.0	0.5
RRLGLRC678	6950717	408380	486	-82	242	96.0	77.0	80.0	3.0	1.5
RRLGLRC678	6950717	408380	486	-82	242	96.0	84.0	88.0	4.0	1.6
RRLGLRC678	6950717	408380	486	-82	242	96.0	93.0	94.0	1.0	0.6
RRLGLRC679	6950719	408429	486	-90	360	168.0	44.0	50.0	6.0	0.6
RRLGLRC679	6950719	408429	486	-90	360	168.0	58.0	59.0	1.0	0.5
RRLGLRC679	6950719	408429	486	-90	360	168.0	76.0	83.0	7.0	0.5
RRLGLRC679	6950719	408429	486	-90	360	168.0	91.0	92.0	1.0	1.5
RRLGLRC679	6950719	408429	486	-90	360	168.0	107.0	108.0	1.0	0.5
RRLGLRC679	6950719	408429	486	-90	360	168.0	113.0	117.0	4.0	0.7
RRLGLRC679	6950719	408429	486	-90	360	168.0	122.0	144.0	22.0	0.9
RRLGLRC679	6950719	408429	486	-90	360	168.0	149.0	152.0	3.0	2.7
RRLGLRC679	6950719	408429	486	-90	360	168.0	155.0	157.0	2.0	0.6
RRLGLRC679	6950719	408429	486	-90	360	168.0	160.0	161.0	1.0	0.8
RRLGLRC680	6950718	408430	486	-66	119	138.0	44.0	45.0	1.0	1.7
RRLGLRC680	6950718	408430	486	-66	119	138.0	65.0	66.0	1.0	0.4
RRLGLRC680	6950718	408430	486	-66	119	138.0	86.0	87.0	1.0	0.4
RRLGLRC680	6950718	408430	486	-66	119	138.0	89.0	90.0	1.0	0.8
RRLGLRC680	6950718	408430	486	-66	119	138.0	95.0	99.0	4.0	1.0
RRLGLRC680	6950718	408430	486	-66	119	138.0	102.0	103.0	1.0	0.6
RRLGLRC680	6950718	408430	486	-66	119	138.0	125.0	126.0	1.0	0.7
RRLGLRC680	6950718	408430	486	-66	119	138.0	129.0	130.0	1.0	0.5
RRLGLRC681	6950734	408437	486	-80	43	78.0	39.0	40.0	1.0	0.5
RRLGLRC681	6950734	408437	486	-80	43	78.0	71.0	75.0	4.0	0.4
RRLGLRC682	6950736	408455	486	-50	80	192.0	29.0	30.0	1.0	0.6
RRLGLRC682	6950736	408455	486	-50	80	192.0	38.0	40.0	2.0	1.5
RRLGLRC682	6950736	408455	486	-50	80	192.0	54.0	58.0	4.0	4.1
RRLGLRC682	6950736	408455	486	-50	80	192.0	107.0	113.0	6.0	0.7
RRLGLRC682	6950736	408455	486	-50	80	192.0	129.0	130.0	1.0	1.1
RRLGLRC682	6950736	408455	486	-50	80	192.0	145.0	147.0	2.0	2.1
RRLGLRC682	6950736	408455	486	-50	80	192.0	154.0	155.0	1.0	0.8
RRLGLRC682	6950736	408455	486	-50	80	192.0	158.0	176.0	18.0	1.0
RRLGLRC682	6950736	408455	486	-50	80	192.0	180.0	181.0	1.0	0.8
RRLGLRC682	6950736	408455	486	-50	80	192.0	188.0	189.0	1.0	0.5

Appendix 3-4: RC and diamond drilling at Kintyre 0.4 g/t Au lower cut, no upper cut, maximum 2m internal dilution.

Hole_ID	MGA_North			Dip		Max_Depth	mFrom	mTo	Interval	
RRLKIDD002	6915951	430389	491	-60	260	150.5	34.0	40.0	6.0	1.6
RRLKIDD002	6915951	430389	491	-60	260	150.5	51.4	53.0	1.6	1.4
RRLKIDD002	6915951	430389	491	-60	260	150.5	72.7	74.0	1.4	2.7
RRLKIDD002	6915951	430389	491	-60	260	150.5	84.0	85.0	1.0	0.5
RRLKIDD002	6915951	430389	491	-60	260	150.5	93.1	94.0	0.9	0.6
RRLKIDD003	6917898	429765	500	-67	242	401.2	251.0	252.0	1.0	0.7
RRLKIDD003	6917898	429765	500	-67	242	401.2	266.0	267.0	1.0	0.6
RRLKIDD004	6916052	430383	491	-60	260	213.5	28.0	29.5	1.5	1.4
RRLKIDD004	6916052	430383	491	-60	260	213.5	40.2	41.2	1.0	0.6
RRLKIDD004	6916052	430383	491	-60	260	213.5	54.7	56.5	1.8	8.7
RRLKIDD004	6916052	430383	491	-60	260	213.5	59.5	60.0	0.5	1.6
RRLKIDD004	6916052	430383	491	-60	260	213.5	83.1	83.5	0.4	12.0
RRLKIRC023	6915807	430456	490	-60	252	132.0	27.0	29.0	2.0	0.7
RRLKIRC023	6915807	430456	490	-60	252	132.0	61.0	66.0	5.0	0.6
RRLKIRC023	6915807	430456	490	-60	252	132.0	70.0	75.0	5.0	2.6
RRLKIRC023	6915807	430456	490	-60	252	132.0	89.0	94.0	5.0	0.8
RRLKIRC023	6915807	430456	490	-60	252	132.0	106.0	107.0	1.0	0.8
RRLKIRC023	6915807	430456	490	-60	252	132.0	110.0	111.0	1.0	0.5
RRLKIRC024	6915825	430357	490	-60	252	60.0	24.0	25.0	1.0	0.4
RRLKIRC025	6915836	430392	490	-60	252	78.0	10.0	11.0	1.0	1.0
RRLKIRC025	6915836	430392	490	-60	252	78.0	62.0	63.0	1.0	0.9
RRLKIRC026	6916080	430297	491	-60	252	60.0	10.0	11.0	1.0	0.5
RRLKIRC027	6915843	430413	490	-60	252	90.0	45.0	54.0	9.0	1.1
RRLKIRC027	6915843	430413	490	-60	252	90.0	66.0	77.0	11.0	1.9
RRLKIRC027	6915843	430413	490	-60	252	90.0	80.0	90.0	10.0	2.4
RRLKIRC028	6916082	430341	491	-60	260	102.0	34.0	37.0	3.0	1.7
RRLKIRC028	6916082	430341	491	-60	260	102.0	41.0	43.0	2.0	0.5
RRLKIRC028	6916082	430341	491	-60	260	102.0	50.0	59.0	9.0	1.2
RRLKIRC028	6916082	430341	491	-60	260	102.0	62.0	63.0	1.0	0.6
RRLKIRC029	6915837	430328	490	-60	252	60.0	55.0	58.0	3.0	0.7
RRLKIRC030	6916105	430386	491	-60	252	126.0	39.0	41.0	2.0	1.3
RRLKIRC030	6916105	430386	491	-60	252	126.0	44.0	58.0	14.0	4.7
RRLKIRC030	6916105	430386	491	-60	252	126.0	61.0	74.0	13.0	0.6
RRLKIRC031	6915848	430367	490	-60	252	78.0	0.0	0.0	0.0	0.0
RRLKIRC032	6916054	430313	491	-60	252	60.0	18.0	19.0	1.0	1.5
RRLKIRC033	6915859	430403	490	-60	252	90.0	29.0	30.0	1.0	0.7
RRLKIRC033	6915859	430403	490	-60	252	90.0	33.0	40.0	7.0	1.7
RRLKIRC033	6915859	430403	490	-60	252	90.0	45.0	46.0	1.0	0.4
RRLKIRC033	6915859	430403	490	-60	252	90.0	62.0	72.0	10.0	3.1
RRLKIRC033	6915859	430403	490	-60	252	90.0	76.0	85.0	9.0	2.6
RRLKIRC033	6915859	430403	490	-60	252	90.0	88.0	89.0	1.0	1.3
RRLKIRC034	6916061	430336	491	-60	252	78.0	32.0	34.0	2.0	0.5
RRLKIRC034	6916061	430336	491	-60	252	78.0	52.0	53.0	1.0	0.5
RRLKIRC035	6915872	430442	490	-60	252	144.0	22.0	24.0	2.0	0.4
RRLKIRC035	6915872	430442	490	-60	252	144.0	35.0	36.0	1.0	0.9
RRLKIRC035	6915872	430442	490	-60	252	144.0	87.0	88.0	1.0	4.8

Hole_ID	MGA_North	MGA_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLKIRC035	6915872	430442	490	-60	252	144.0	112.0	113.0	1.0	0.5
RRLKIRC035	6915872	430442	490	-60	252	144.0	127.0	128.0	1.0	0.5
RRLKIRC036	6916067	430355	491	-60	252	120.0	20.0	37.0	17.0	0.7
RRLKIRC036	6916067	430355	491	-60	252	120.0	43.0	46.0	3.0	1.6
RRLKIRC036	6916067	430355	491	-60	252	120.0	62.0	63.0	1.0	1.5
RRLKIRC036	6916067	430355	491	-60	252	120.0	67.0	68.0	1.0	0.7
RRLKIRC036	6916067	430355	491	-60	252	120.0	71.0	76.0	5.0	1.7
RRLKIRC036	6916067	430355	491	-60	252	120.0	83.0	88.0	5.0	1.6
RRLKIRC036	6916067	430355	491	-60	252	120.0	97.0	98.0	1.0	1.4
RRLKIRC037	6915851	430304	490	-60	252	78.0	72.0	73.0	1.0	0.7
RRLKIRC038	6916074	430373	491	-60	252	174.0	24.0	30.0	6.0	2.1
RRLKIRC038	6916074	430373	491	-60	252	174.0	36.0	37.0	1.0	0.9
RRLKIRC038	6916074	430373	491	-60	252	174.0	43.0	44.0	1.0	5.4
RRLKIRC038	6916074	430373	491	-60	252	174.0	52.0	55.0	3.0	1.0
RRLKIRC038	6916074	430373	491	-60	252	174.0	112.0	114.0	2.0	0.5
RRLKIRC038	6916074	430373	491	-60	252	174.0	117.0	118.0	1.0	0.7
RRLKIRC039	6915863	430341	490	-60	252	78.0	0.0	0.0	0.0	0.0
RRLKIRC040	6916080	430391	491	-60	252	102.0	29.0	30.0	1.0	0.9
RRLKIRC040	6916080	430391	491	-60	252	102.0	34.0	35.0	1.0	0.5
RRLKIRC040	6916080	430391	491	-60	252	102.0	54.0	56.0	2.0	4.7
RRLKIRC040	6916080	430391	491	-60	252	102.0	66.0	67.0	1.0	1.0
RRLKIRC040	6916080	430391	491	-60	252	102.0	70.0	82.0	12.0	2.1
RRLKIRC040	6916080	430391	491	-60	252	102.0	88.0	89.0	1.0	0.4
RRLKIRC041	6915869	430361	490	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC042	6916163	430390	491	-60	252	192.0	113.0	114.0	1.0	0.6
RRLKIRC042	6916163	430390	491	-60	252	192.0	138.0	140.0	2.0	2.2
RRLKIRC042	6916163	430390	491	-60	252	192.0	153.0	154.0	1.0	0.7
RRLKIRC042	6916163	430390	491	-60	252	192.0	168.0	173.0	5.0	0.9
RRLKIRC042	6916163	430390	491	-60	252	192.0	177.0	178.0	1.0	0.5
RRLKIRC043	6915875	430380	490	-60	252	78.0	68.0	69.0	1.0	2.0
RRLKIRC044	6916118	430342	491	-60	252	102.0	29.0	30.0	1.0	0.4
RRLKIRC044	6916118	430342	491	-60	252	102.0	34.0	41.0	7.0	1.9
RRLKIRC044	6916118	430342	491	-60	252	102.0	57.0	58.0	1.0	3.7
RRLKIRC044	6916118	430342	491	-60	252	102.0	66.0	72.0	6.0	1.1
RRLKIRC045	6915881	430398	490	-60	252	102.0	40.0	45.0	5.0	0.8
RRLKIRC045	6915881	430398	490	-60	252	102.0	53.0	54.0	1.0	0.5
RRLKIRC045	6915881	430398	490	-60	252	102.0	95.0	97.0	2.0	3.0
RRLKIRC046	6916123	430361	491	-60	252	162.0	34.0	38.0	4.0	0.9
RRLKIRC046	6916123	430361	491	-60	252	162.0	43.0	49.0	6.0	0.7
RRLKIRC046	6916123	430361	491	-60	252	162.0	106.0	108.0	2.0	4.4
RRLKIRC047	6915887	430417	490	-60	252	120.0	35.0	43.0	8.0	3.4
RRLKIRC047	6915887	430417	490	-60	252	120.0	47.0	50.0	3.0	1.2
RRLKIRC047	6915887	430417	490	-60	252	120.0	100.0	102.0	2.0	0.7
RRLKIRC047	6915887	430417	490	-60	252	120.0	111.0	112.0	1.0	0.9
RRLKIRC047	6915887	430417	490	-60	252	120.0	117.0	119.0	2.0	1.1
RRLKIRC048	6916020	430284	491	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC049	6915878	430324	491	-60	252	60.0	14.0	17.0	3.0	0.5

Hole_ID	MGA_North	MGA_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLKIRC050	6915885	430346	490	-60	252	60.0	18.0	19.0	1.0	0.5
RRLKIRC050	6915885	430346	490	-60	252	60.0	31.0	32.0	1.0	0.6
RRLKIRC051	6915891	430364	490	-60	252	60.0	3.0	4.0	1.0	0.9
RRLKIRC051	6915891	430364	490	-60	252	60.0	10.0	12.0	2.0	0.6
RRLKIRC051	6915891	430364	490	-60	252	60.0	25.0	26.0	1.0	0.5
RRLKIRC052	6915916	430435	490	-60	252	120.0	53.0	60.0	7.0	2.7
RRLKIRC052	6915916	430435	490	-60	252	120.0	101.0	102.0	1.0	0.6
RRLKIRC052	6915916	430435	490	-60	252	120.0	117.0	118.0	1.0	0.4
RRLKIRC053	6915898	430320	491	-60	252	60.0	12.0	14.0	2.0	4.0
RRLKIRC054	6915906	430346	490	-60	252	66.0	0.0	0.0	0.0	0.0
RRLKIRC055	6915911	430361	491	-60	252	78.0	0.0	0.0	0.0	0.0
RRLKIRC056	6915916	430379	490	-60	252	90.0	22.0	25.0	3.0	0.6
RRLKIRC056	6915916	430379	490	-60	252	90.0	52.0	57.0	5.0	2.1
RRLKIRC056	6915916	430379	490	-60	252	90.0	73.0	74.0	1.0	1.0
RRLKIRC057	6915923	430400	490	-60	252	72.0	6.0	7.0	1.0	0.5
RRLKIRC057	6915923	430400	490	-60	252	72.0	12.0	13.0	1.0	0.4
RRLKIRC057	6915923	430400	490	-60	252	72.0	22.0	34.0	12.0	1.2
RRLKIRC057	6915923	430400	490	-60	252	72.0	37.0	43.0	6.0	1.1
RRLKIRC058	6915916	430289	491	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC059	6915932	430337	490	-60	252	72.0	6.0	12.0	6.0	1.3
RRLKIRC059	6915932	430337	490	-60	252	72.0	15.0	16.0	1.0	0.4
RRLKIRC059	6915932	430337	490	-60	252	72.0	19.0	24.0	5.0	1.2
RRLKIRC059	6915932	430337	490	-60	252	72.0	27.0	28.0	1.0	0.6
RRLKIRC060	6915942	430315	491	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC061	6915948	430333	491	-60	252	66.0	2.0	3.0	1.0	0.5
RRLKIRC061	6915948	430333	491	-60	252	66.0	6.0	15.0	9.0	3.0
RRLKIRC061	6915948	430333	491	-60	252	66.0	20.0	21.0	1.0	1.6
RRLKIRC062	6915962	430371	490	-60	252	90.0	29.0	33.0	4.0	2.3
RRLKIRC062	6915962	430371	490	-60	252	90.0	51.0	52.0	1.0	0.8
RRLKIRC063	6915968	430389	491	-60	252	102.0	24.0	25.0	1.0	1.5
RRLKIRC063	6915968	430389	491	-60	252	102.0	35.0	36.0	1.0	0.7
RRLKIRC063	6915968	430389	491	-60	252	102.0	43.0	50.0	7.0	1.4
RRLKIRC063	6915968	430389	491	-60	252	102.0	64.0	65.0	1.0	1.5
RRLKIRC063	6915968	430389	491	-60	252	102.0	68.0	84.0	16.0	0.7
RRLKIRC063	6915968	430389	491	-60	252	102.0	88.0	93.0	5.0	2.1
RRLKIRC064	6915983	430326	491	-60	252	60.0	11.0	12.0	1.0	0.9
RRLKIRC064	6915983	430326	491	-60	252	60.0	18.0	19.0	1.0	0.9
RRLKIRC065	6916298	430345	493	-60	252	180.0	30.0	31.0	1.0	0.6
RRLKIRC065	6916298	430345	493	-60	252	180.0	179.0	180.0	1.0	1.1
RRLKIRC066	6916033	430320	491	-60	252	60.0	22.0	23.0	1.0	1.0
RRLKIRC067	6916267	430329	493	-60	252	150.0	46.0	47.0	1.0	2.1
RRLKIRC067	6916267	430329	493	-60	252	150.0	58.0	62.0	4.0	0.6
RRLKIRC067	6916267	430329	493	-60	252	150.0	65.0	69.0	4.0	1.5
RRLKIRC067	6916267	430329	493	-60	252	150.0	82.0	83.0	1.0	0.5
RRLKIRC067	6916267	430329	493	-60	252	150.0	86.0	87.0	1.0	0.5
RRLKIRC067	6916267	430329	493	-60	252	150.0	99.0	103.0	4.0	1.9
RRLKIRC067	6916267	430329	493	-60	252	150.0	107.0	108.0	1.0	1.3

Hole_ID	MGA_North	MGA_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppn
RRLKIRC067	6916267	430329	493	-60	252	150.0	141.0	142.0	1.0	2.2
RRLKIRC068	6916064	430411	491	-60	252	124.0	39.0	40.0	1.0	0.6
RRLKIRC068	6916064	430411	491	-60	252	124.0	47.0	48.0	1.0	3.1
RRLKIRC068	6916064	430411	491	-60	252	124.0	52.0	53.0	1.0	2.5
RRLKIRC068	6916064	430411	491	-60	252	124.0	64.0	65.0	1.0	0.8
RRLKIRC069	6916246	430333	493	-60	252	120.0	38.0	39.0	1.0	3.3
RRLKIRC069	6916246	430333	493	-60	252	120.0	46.0	47.0	1.0	0.8
RRLKIRC069	6916246	430333	493	-60	252	120.0	51.0	74.0	23.0	1.6
RRLKIRC069	6916246	430333	493	-60	252	120.0	97.0	98.0	1.0	0.5
RRLKIRC070	6916009	430327	491	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC071	6916215	430321	493	-60	252	96.0	33.0	39.0	6.0	0.7
RRLKIRC071	6916215	430321	493	-60	252	96.0	54.0	55.0	1.0	0.7
RRLKIRC071	6916215	430321	493	-60	252	96.0	62.0	63.0	1.0	1.9
RRLKIRC072	6916021	430365	491	-60	252	120.0	16.0	17.0	1.0	0.6
RRLKIRC072	6916021	430365	491	-60	252	120.0	20.0	28.0	8.0	0.8
RRLKIRC072	6916021	430365	491	-60	252	120.0	39.0	41.0	2.0	0.7
RRLKIRC072	6916021	430365	491	-60	252	120.0	44.0	45.0	1.0	0.4
RRLKIRC072	6916021	430365	491	-60	252	120.0	49.0	52.0	3.0	0.5
RRLKIRC072	6916021	430365	491	-60	252	120.0	57.0	68.0	11.0	2.7
RRLKIRC072	6916021	430365	491	-60	252	120.0	83.0	84.0	1.0	4.4
RRLKIRC073	6916229	430359	493	-60	252	162.0	92.0	95.0	3.0	0.4
RRLKIRC073	6916229	430359	493	-60	252	162.0	99.0	102.0	3.0	1.4
RRLKIRC074	6915997	430288	491	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC075	6916244	430272	494	-60	252	90.0	15.0	16.0	1.0	0.5
RRLKIRC075	6916244	430272	494	-60	252	90.0	22.0	28.0	6.0	2.5
RRLKIRC075	6916244	430272	494	-60	252	90.0	34.0	36.0	2.0	0.4
RRLKIRC076	6916003	430304	491	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC077	6916161	430308	492	-60	252	84.0	24.0	28.0	4.0	5.8
RRLKIRC077	6916161	430308	492	-60	252	84.0	33.0	34.0	1.0	1.1
RRLKIRC078	6916017	430346	491	-60	252	90.0	33.0	34.0	1.0	0.9
RRLKIRC079	6916167	430326	492	-60	252	96.0	34.0	39.0	5.0	1.2
RRLKIRC079	6916167	430326	492	-60	252	96.0	42.0	43.0	1.0	0.4
RRLKIRC079	6916167	430326	492	-60	252	96.0	52.0	53.0	1.0	0.5
RRLKIRC080	6916029	430383	491	-60	252	180.0	23.0	24.0	1.0	1.0
RRLKIRC080	6916029	430383	491	-60	252	180.0	61.0	62.0	1.0	0.7
RRLKIRC080	6916029	430383	491	-60	252	180.0	71.0	75.0	4.0	3.1
RRLKIRC080	6916029	430383	491	-60	252	180.0	96.0	97.0	1.0	0.5
RRLKIRC080	6916029	430383	491	-60	252	180.0	101.0	102.0	1.0	0.4
RRLKIRC080	6916029	430383	491	-60	252	180.0	118.0	119.0	1.0	1.5
RRLKIRC081	6916173	430343	492	-60	252	120.0	37.0	38.0	1.0	5.5
RRLKIRC081	6916173	430343	492	-60	252	120.0	63.0	64.0	1.0	0.5
RRLKIRC081	6916173	430343	492	-60	252	120.0	85.0	87.0	2.0	1.1
RRLKIRC082	6916129	430380	491	-60	252	198.0	49.0	50.0	1.0	0.5
RRLKIRC082	6916129	430380	491	-60	252	198.0	58.0	59.0	1.0	0.4
RRLKIRC082	6916129	430380	491	-60	252	198.0	80.0	81.0	1.0	0.5
RRLKIRC082	6916129	430380	491	-60	252	198.0	106.0	107.0	1.0	1.0
RRLKIRC082	6916129	430380	491	-60	252	198.0	126.0	128.0	2.0	2.4

Hole_ID	MGA_North	MGA_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	
RRLKIRC083	6916207	430374	493	-60	252	192.0	94.0	96.0	2.0	2.2
RRLKIRC083	6916207	430374	493	-60	252	192.0	121.0	125.0	4.0	1.8
RRLKIRC083	6916207	430374	493	-60	252	192.0	188.0	189.0	1.0	1.7
RRLKIRC084	6916251	430294	494	-60	252	81.0	33.0	34.0	1.0	1.3
RRLKIRC084	6916251	430294	494	-60	252	81.0	43.0	44.0	1.0	0.4
RRLKIRC085	6916259	430237	494	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC086	6916268	430262	494	-60	252	60.0	21.0	29.0	8.0	0.8
RRLKIRC086	6916268	430262	494	-60	252	60.0	33.0	34.0	1.0	2.6
RRLKIRC086	6916268	430262	494	-60	252	60.0	38.0	39.0	1.0	0.8
RRLKIRC087	6916322	430360	492	-60	252	180.0	157.0	158.0	1.0	1.2
RRLKIRC088	6916276	430210	494	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC089	6916288	430249	494	-60	252	78.0	1.0	2.0	1.0	0.9
RRLKIRC089	6916288	430249	494	-60	252	78.0	25.0	29.0	4.0	1.8
RRLKIRC090	6916300	430287	494	-60	252	120.0	53.0	54.0	1.0	1.9
RRLKIRC091	6916306	430302	493	-60	252	150.0	70.0	75.0	5.0	1.1
RRLKIRC092	6916311	430320	493	-60	252	150.0	94.0	97.0	3.0	1.3
RRLKIRC093	6916296	430205	494	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC094	6916308	430245	493	-60	252	78.0	26.0	29.0	3.0	0.6
RRLKIRC095	6916320	430280	493	-60	252	84.0	52.0	54.0	2.0	2.0
RRLKIRC096	6916334	430193	493	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC097	6916346	430231	493	-60	252	78.0	0.0	0.0	0.0	0.0
RRLKIRC098	6916359	430270	493	-60	252	120.0	0.0	0.0	0.0	0.0
RRLKIRC099	6916374	430303	493	-60	252	174.0	88.0	89.0	1.0	1.3
RRLKIRC099	6916374	430303	493	-60	252	174.0	95.0	100.0	5.0	1.7
RRLKIRC099	6916374	430303	493	-60	252	174.0	106.0	107.0	1.0	0.6
RRLKIRC099	6916374	430303	493	-60	252	174.0	110.0	113.0	3.0	1.1
RRLKIRC100	6916382	430216	493	-60	252	66.0	19.0	23.0	4.0	2.4
RRLKIRC101	6916397	430255	493	-60	252	102.0	99.0	100.0	1.0	0.4
RRLKIRC102	6916409	430292	493	-60	252	180.0	95.0	96.0	1.0	0.8
RRLKIRC102	6916409	430292	493	-60	252	180.0	104.0	105.0	1.0	0.7
RRLKIRC102	6916409	430292	493	-60	252	180.0	112.0	113.0	1.0	0.6
RRLKIRC102	6916409	430292	493	-60	252	180.0	117.0	120.0	3.0	1.3
RRLKIRC103	6916410	430170	493	-60	252	78.0	0.0	0.0	0.0	0.0
RRLKIRC104	6916423	430208	493	-60	252	90.0	19.0	24.0	5.0	0.7
RRLKIRC105	6916435	430245	493	-60	252	168.0	53.0	54.0	1.0	0.7
RRLKIRC106	6916258	430310	493	-60	252	108.0	16.0	18.0	2.0	0.6
RRLKIRC106	6916258	430310	493	-60	252	108.0	35.0	54.0	19.0	3.0
RRLKIRC106	6916258	430310	493	-60	252	108.0	69.0	70.0	1.0	2.7
RRLKIRC107	6916231	430234	493	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC108	6916218	430265	493	-60	252	66.0	0.0	0.0	0.0	0.0
RRLKIRC109	6916232	430305	493	-60	252	84.0	34.0	36.0	2.0	1.5
RRLKIRC109	6916232	430305	493	-60	252	84.0	47.0	48.0	1.0	0.6
RRLKIRC110	6916196	430264	493	-60	252	78.0	32.0	33.0	1.0	0.4
RRLKIRC111	6916202	430283	493	-60	252	78.0	0.0	0.0	0.0	0.0
RRLKIRC112	6916208	430303	493	-60	252	90.0	0.0	0.0	0.0	0.0
RRLKIRC113	6916211	430244	493	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC114	6916174	430265	493	-60	252	60.0	0.0	0.0	0.0	0.0

Hole_ID	MGA_North	MGA_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLKIRC115	6916147	430269	492	-60	252	60.0	0.0	0.0	0.0	0.0
RRLKIRC116	6916154	430288	492	-60	252	72.0	0.0	0.0	0.0	0.0
RRLKIRC117	6916186	430379	492	-60	252	198.0	140.0	143.0	3.0	1.4
RRLKIRC117	6916186	430379	492	-60	252	198.0	151.0	153.0	2.0	2.1
RRLKIRC117	6916186	430379	492	-60	252	198.0	159.0	160.0	1.0	0.4
RRLKIRC117	6916186	430379	492	-60	252	198.0	171.0	180.0	9.0	1.1
RRLKIRC118	6916128	430284	492	-60	252	66.0	0.0	0.0	0.0	0.0
RRLKIRC119	6916099	430286	491	-60	252	66.0	13.0	14.0	1.0	0.7
RRLKIRC120	6916105	430305	491	-60	252	72.0	13.0	16.0	3.0	1.6
RRLKIRC121	6916110	430323	491	-60	252	84.0	6.0	8.0	2.0	1.1
RRLKIRC121	6916110	430323	491	-60	252	84.0	29.0	45.0	16.0	2.7
RRLKIRC122	6916085	430412	491	-60	252	192.0	144.0	153.0	9.0	1.5
RRLKIRC123	6916036	430402	491	-60	252	174.0	21.0	22.0	1.0	0.7
RRLKIRC123	6916036	430402	491	-60	252	174.0	120.0	125.0	5.0	1.2
RRLKIRC124	6916043	430423	491	-60	252	162.0	46.0	47.0	1.0	0.5
RRLKIRC124	6916043	430423	491	-60	252	162.0	110.0	111.0	1.0	0.9
RRLKIRC124	6916043	430423	491	-60	252	162.0	161.0	162.0	1.0	2.9
RRLKIRC125	6915956	430353	491	-60	252	102.0	13.0	27.0	14.0	2.0
RRLKIRC125	6915956	430353	491	-60	252	102.0	43.0	44.0	1.0	0.6
RRLKIRC126	6915974	430408	491	-60	252	138.0	28.0	44.0	16.0	1.1
RRLKIRC126	6915974	430408	491	-60	252	138.0	48.0	49.0	1.0	1.0
RRLKIRC126	6915974	430408	491	-60	252	138.0	78.0	80.0	2.0	6.0
RRLKIRC126	6915974	430408	491	-60	252	138.0	84.0	85.0	1.0	1.0
RRLKIRC126	6915974	430408	491	-60	252	138.0	93.0	94.0	1.0	0.5
RRLKIRC126	6915974	430408	491	-60	252	138.0	96.0	97.0	1.0	0.4
RRLKIRC127	6915979	430422	491	-60	252	126.0	46.0	47.0	1.0	0.6
RRLKIRC127	6915979	430422	491	-60	252	126.0	124.0	126.0	2.0	1.7
RRLKIRC128	6916008	430436	491	-60	252	144.0	69.0	70.0	1.0	0.5
RRLKIRC128	6916008	430436	491	-60	252	144.0	77.0	78.0	1.0	0.5
RRLKIRC128	6916008	430436	491	-60	252	144.0	97.0	98.0	1.0	0.6
RRLKIRC129	6915932	430418	491	-60	252	120.0	28.0	29.0	1.0	2.9
RRLKIRC129	6915932	430418	491	-60	252	120.0	61.0	63.0	2.0	2.0
RRLKIRC129	6915932	430418	491	-60	252	120.0	79.0	80.0	1.0	2.5
RRLKIRC129	6915932	430418	491	-60	252	120.0	85.0	87.0	2.0	2.0
RRLKIRC129	6915932	430418	491	-60	252	120.0	99.0	100.0	1.0	0.5
RRLKIRC129	6915932	430418	491	-60	252	120.0	104.0	106.0	2.0	0.5
RRLKIRC130	6915943	430450	490	-60	252	120.0	38.0	39.0	1.0	0.7
RRLKIRC131	6915919	430454	490	-60	252	144.0	100.0	103.0	3.0	2.2
RRLKIRC131	6915919	430454	490	-60	252	144.0	126.0	129.0	3.0	0.8
RRLKIRC131	6915919	430454	490	-60	252	144.0	141.0	142.0	1.0	1.1
RRLKIRC132	6915891	430441	490	-60	252	114.0	28.0	34.0	6.0	1.0
RRLKIRC132	6915891	430441	490	-60	252	114.0	71.0	74.0	3.0	0.9
RRLKIRC132	6915891	430441	490	-60	252	114.0	108.0	110.0	2.0	0.7
RRLKIRC133	6915853	430449	490	-60	252	120.0	35.0	39.0	4.0	0.5
RRLKIRC133	6915853	430449	490	-60	252	120.0	90.0	91.0	1.0	1.4
RRLKIRC133	6915853	430449	490	-60	252	120.0	112.0	113.0	1.0	0.6
RRLKIRC134	6915771	430346	490	-60	252	66.0	0.0	0.0	0.0	0.0

Hole_ID	MGA_North	MGA_East	Collar_RL	Dip	MAG_Azi	Max_Depth	mFrom	mTo	Interval	Au_ppm
RRLKIRC135	6915940	430434	490	-60	252	132.0	74.0	75.0	1.0	0.7
RRLKIRC135	6915940	430434	490	-60	252	132.0	81.0	82.0	1.0	0.9
RRLKIRC135	6915940	430434	490	-60	252	132.0	88.0	90.0	2.0	0.8
RRLKIRC135	6915940	430434	490	-60	252	132.0	93.0	94.0	1.0	0.5
RRLKIRC135	6915940	430434	490	-60	252	132.0	121.0	123.0	2.0	0.4
RRLKIRC135	6915940	430434	490	-60	252	132.0	128.0	130.0	2.0	1.0
RRLKIRC136	6916110	430408	491	-60	252	126.0	0.0	0.0	0.0	0.0
RRLKIRC137	6915848	430431	490	-60	252	138.0	44.0	46.0	2.0	0.6
RRLKIRC137	6915848	430431	490	-60	252	138.0	73.0	74.0	1.0	1.1
RRLKIRC137	6915848	430431	490	-60	252	138.0	88.0	89.0	1.0	0.5
RRLKIRC137	6915848	430431	490	-60	252	138.0	99.0	103.0	4.0	0.7
RRLKIRC137	6915848	430431	490	-60	252	138.0	115.0	120.0	5.0	1.0
RRLKIRC137	6915848	430431	490	-60	252	138.0	125.0	126.0	1.0	0.8
RRLKIRC138	6915780	430381	490	-60	252	78.0	34.0	35.0	1.0	0.7
RRLKIRC139	6915793	430416	490	-60	252	120.0	25.0	31.0	6.0	8.6
RRLKIRC139	6915793	430416	490	-60	252	120.0	37.0	39.0	2.0	0.7
RRLKIRC140	6915799	430435	490	-60	252	126.0	13.0	14.0	1.0	0.6
RRLKIRC140	6915799	430435	490	-60	252	126.0	28.0	31.0	3.0	1.5
RRLKIRC140	6915799	430435	490	-60	252	126.0	34.0	37.0	3.0	0.6
RRLKIRC140	6915799	430435	490	-60	252	126.0	48.0	50.0	2.0	5.0
RRLKIRC140	6915799	430435	490	-60	252	126.0	55.0	58.0	3.0	3.3
RRLKIRC140	6915799	430435	490	-60	252	126.0	85.0	86.0	1.0	0.6
RRLKIRC140	6915799	430435	490	-60	252	126.0	102.0	103.0	1.0	4.4
RRLKIRC140	6915799	430435	490	-60	252	126.0	106.0	122.0	16.0	7.8
RRLKIRC141	6915812	430477	490	-60	252	120.0	41.0	43.0	2.0	1.2
RRLKIRC141	0045040	430477			050	120.0	49.0	50.0		5.4
UUEKINO141	6915812	430477	490	-60	252	120.0	49.0	50.0	1.0	5.4
RRLKIRC141	6915812 6915812	430477	490 490	-60 -60	252	120.0	54.0	55.0	1.0	0.5
		430477								
RRLKIRC141	6915812		490	-60	252	120.0	54.0	55.0	1.0	0.5
RRLKIRC141 RRLKIRC141	6915812 6915812	430477 430477	490 490	-60 -60	252 252	120.0 120.0	54.0 58.0	55.0 59.0	1.0 1.0	0.5 1.5
RRLKIRC141 RRLKIRC141 RRLKIRC142	6915812 6915812 6915736	430477 430477 430357	490 490 490	-60 -60 -60	252 252 252	120.0 120.0 78.0	54.0 58.0 0.0	55.0 59.0 0.0	1.0 1.0 0.0	0.5 1.5 0.0
RRLKIRC141 RRLKIRC141 RRLKIRC142 RRLKIRC143	6915812 6915812 6915736 6915749	430477 430477 430357 430396	490 490 490 490	-60 -60 -60	252 252 252 252 252	120.0 120.0 78.0 84.0	54.0 58.0 0.0 0.0	55.0 59.0 0.0 0.0	1.0 1.0 0.0 0.0	0.5 1.5 0.0 0.0
RRLKIRC141 RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144	6915812 6915812 6915736 6915749 6915763	430477 430477 430357 430396 430437	490 490 490 490 490	-60 -60 -60 -60	252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0	54.0 58.0 0.0 0.0 35.0	55.0 59.0 0.0 0.0 41.0	1.0 1.0 0.0 0.0 6.0	0.5 1.5 0.0 0.0 1.0
RRLKIRC141 RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144	6915812 6915812 6915736 6915749 6915763 6915763	430477 430477 430357 430396 430437 430437	490 490 490 490 490 490 490	-60 -60 -60 -60 -60	252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0	54.0 58.0 0.0 0.0 35.0 49.0	55.0 59.0 0.0 0.0 41.0 50.0	1.0 1.0 0.0 0.0 6.0 1.0	0.5 1.5 0.0 0.0 1.0 0.5
RRLKIRC141 RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144	6915812 6915812 6915736 6915749 6915763 6915763 6915763	430477 430377 430357 430396 430437 430437 430437	490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 126.0	54.0 58.0 0.0 35.0 49.0 116.0	55.0 59.0 0.0 41.0 50.0 117.0	1.0 1.0 0.0 6.0 1.0 1.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5
RRLKIRC141 RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC145	6915812 6915812 6915736 6915749 6915763 6915763 6915763 6915774	430477 430357 430396 430437 430437 430437 430474	490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 126.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0	1.0 1.0 0.0 6.0 1.0 1.0 1.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2
RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC145 RRLKIRC145 RRLKIRC145	6915812 6915812 6915736 6915749 6915763 6915763 6915763 6915774	430477 430357 430396 430437 430437 430437 430474	490 490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 126.0 228.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0 41.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0 42.0	1.0 1.0 0.0 6.0 1.0 1.0 1.0 1.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2 0.5
RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC144 RRLKIRC145 RRLKIRC145	6915812 6915812 6915736 6915749 6915763 6915763 6915774 6915774 6915774	430477 430357 430396 430437 430437 430437 430474 430474	490 490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 126.0 228.0 228.0 228.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0 41.0 48.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0 42.0 49.0	1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2 0.5 5.1
RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC144 RRLKIRC145 RRLKIRC145 RRLKIRC145	6915812 6915812 6915736 6915749 6915763 6915763 6915773 6915774 6915774 6915774 6915774 6915774	430477 430357 430357 430437 430437 430437 430474 430474 430474	490 490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 126.0 228.0 228.0 228.0 228.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0 41.0 48.0 53.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0 42.0 49.0 62.0	1.0 1.0 0.0 0.0 6.0 1.0 1.0 1.0 1.0 9.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2 0.5 5.1 1.1
RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC144 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145	6915812 6915736 6915736 6915763 6915763 6915763 6915774 6915774 6915774 6915774	430477 430357 430396 430437 430437 430437 430474 430474 430474 430474	490 490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0 41.0 48.0 53.0 69.0 73.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0 42.0 49.0 62.0 70.0	1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2 0.5 5.1 1.1 1.2
RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC144 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145	6915812 6915812 6915736 6915749 6915763 6915763 6915763 6915774 6915774 6915774 6915774 6915774	430477 430357 430396 430437 430437 430437 430474 430474 430474 430474 430474	490 490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0 41.0 48.0 53.0 69.0 73.0 85.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0 42.0 49.0 62.0 70.0 74.0 87.0	1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2 0.5 5.1 1.1 1.2 1.3 34.6
RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC144 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145	6915812 6915812 6915736 6915749 6915763 6915763 6915773 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774	430477 430357 430357 430437 430437 430437 430474 430474 430474 430474 430474 430474	490 490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0 41.0 48.0 53.0 69.0 73.0 85.0 123.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0 42.0 49.0 62.0 70.0 74.0 87.0 124.0	1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2 0.5 5.1 1.1 1.2 1.3
RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145	6915812 6915736 6915736 6915763 6915763 6915763 6915763 6915774 6915774 6915774 6915774 6915774 6915774 6915774	430477 430357 430396 430437 430437 430437 430474 430474 430474 430474 430474 430474 430474	490 490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0 41.0 48.0 53.0 69.0 73.0 85.0 123.0 146.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0 42.0 49.0 62.0 70.0 74.0 87.0 124.0 162.0	1.0 1.0 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2 0.5 5.1 1.1 1.2 1.3 34.6 1.3 1.0
RRLKIRC141 RRLKIRC142 RRLKIRC143 RRLKIRC144 RRLKIRC144 RRLKIRC144 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145 RRLKIRC145	6915812 6915812 6915736 6915749 6915763 6915763 6915773 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774 6915774	430477 430357 430357 430437 430437 430437 430474 430474 430474 430474 430474 430474	490 490 490 490 490 490 490 490 490 490	-60 -60 -60 -60 -60 -60 -60 -60 -60 -60	252 252 252 252 252 252 252 252 252 252	120.0 120.0 78.0 84.0 126.0 126.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0	54.0 58.0 0.0 35.0 49.0 116.0 26.0 41.0 48.0 53.0 69.0 73.0 85.0 123.0	55.0 59.0 0.0 41.0 50.0 117.0 27.0 42.0 49.0 62.0 70.0 74.0 87.0 124.0	1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.5 1.5 0.0 0.0 1.0 0.5 0.5 2.2 0.5 5.1 1.1 1.2 1.3 34.6 1.3

Appendix 3-5 – Diamond drilling at Boston Shaker - 1.6 g/t Au lower cut, no upper cut, maximum 4m internal dilution.

Hole_ID	mFrom	mTo	Width (m)	Au ppm	East	North	RL	Max Depth	Dip	Azimuth
BSD355W4A	857.0	868.0	11.0	5.1	50018	145200	2348	954.6	-64	258
BSD376W1	1001.0	1051.0	50.0	2.0	50421	144598	2346	1116.3	-69	272
BSD381W2	963.0	975.0	12.0	1.6	50186	145499	2344	1056.5	-61	240
BSD381W3	948.0	958.0	10.0	2.6	50186	145499	2344	1026.5	-61	240
BSD381W5	973.0	984.0	11.0	3.1	50186	145499	2344	1050.4	-61	240
BSUGD0169	307.0	328.0	21.0	4.9	49416	144794	1853	385.0	-56	35
BSUGD0173	299.0	234.0	35.0	4.0	49417	144794	1852	384.7	-57	42
BSUGD0174	282.0	320.0	38.0	1.9	49417	144794	1852	385.0	-59	48
BSUGD0177	227.0	275.0	48.0	2.8	49417	144794	1852	325.0	-64	50
BSUGD0178	282.0	336.0	54.0	1.9	49417	144794	1852	400.0	-59	57
BSUGD0179	191.0	204.0	13.0	4.0	49417	144794	1851	245.0	-82	75
BSUGD0180	211.0	220.0	9.0	3.4	49419	144790	1851	275.0	-72	72
BSUGD0181	224.0	252.0	28.0	2.5	49420	144790	1851	340.0	-64	73
BSUGD0182	241.0	296.0	55.0	2.5	49420	144790	1851	400.0	-60	73
BSUGD0183	246.0	282.0	36.0	2.4	49428	144771	1850	390.0	-61	75
BSUGD0184	163.0	187.0	24.0	5.1	49436	144748	1850	220.0	-87	75
BSUGD0185	191.0	216.0	25.0	3.3	49428	144771	1850	245.8	-73	97
BSUGD0186	236.0	252.0	16.0	3.4	49428	144771	1850	350.0	-65	88
BSUGD0186	262.0	266.0	4.0	2.0	49428	144771	1850	350.0	-65	88
BSUGD0187	261.0	301.0	40.0	2.7	49428	144771	1850	390.0	-59	84
BSUGD0188	177.5	186.0	8.5	2.0	49447	144699	1852	220.0	-84	75
BSUGD0189	202.0	214.0	12.0	3.3	49447	144699	1852	250.0	-72	75
BSUGD0190	232.0	267.0	35.0	5.0	49447	144699	1852	315.0	-64	75
BSUGD0193	196.0	201.0	5.0	4.8	49469	144653	1853	260.0	-69	75
BSUGD0193	205.0	209.0	4.0	1.7	49469	144653	1853	260.0	-69	75
BSUGD0194	213.0	254.0	41.0	2.3	49469	144653	1853	300.0	-61	75
BSUGD0195	215.0	251.1	36.1	2.6	49469	144652	1853	340.0	-56	75
BSUGD0196	156.0	187.0	31.0	1.8	49478	144629	1853	225.0	-77	111
BSUGD0197	176.0	212.0	36.0	2.3	49478	144629	1853	255.0	-67	92
BSUGD0198	200.0	228.0	28.0	1.9	49478	144629	1853	290.0	-60	87
BSUGD0202	236.0	244.0	8.0	2.6	49478	144629	1853	280.0	-59	116
BSUGD0203	250.0	265.0	15.0	2.2	49478	144629	1853	310.0	-54	105
BSUGD0206	251.0	262.0	11.0	2.0	49478	144629	1853	299.0	-53	123
BSUGD0207	280.0	297.0	17.0	1.6	49478	144629	1853	345.0	-50	111
BSUGD0256	78.0	94.0	16.0	5.3	49212	145133	1892	112.0	-62	251
BSUGD0257	93.0	100.0	7.0	4.9	49217	145134	1892	122.0	-86	75
BSUGD0259	84.0	88.0	4.0	2.1	49199	145155	1893	116.0	-48	252
BSUGD0260	81.0	85.0	4.0	3.7	49201	145155	1893	112.0	-83	253
BSUGD0262	109.0	130.0	21.0	3.8	49187	145155	1893	168.0	-13	253
BSUGD0263	77.0	89.0	12.0	3.7	49187	145177	1894	122.2	-35	252

Hole_ID	mFrom	mTo	Width (m)	Au ppm	East	North	RL	Max Depth	Dip	Azimuth
BSUGD0264	65.0	72.0	7.0	6.1	49188	145177	1894	102.0	-69	253
BSUGD0265	73.0	87.0	14.0	3.8	49192	145179	1894	126.8	-77	71
BSUGD0266	79.0	85.0	6.0	2.3	49175	145198	1895	127.0	-23	252
BSUGD0267	55.8	65.0	9.2	3.7	49175	145198	1894	107.0	-54	253
BSUGD0269	77.0	87.0	10.0	2.0	49179	145202	1894	142.0	-61	71
BSUGD0270	87.0	96.0	9.0	1.7	49162	145222	1896	138.0	-13	253
BSUGD0271	53.0	57.0	4.0	1.7	49162	145222	1895	107.0	-40	254
BSUGD0272	66.0	77.0	11.0	3.0	49167	145223	1895	123.0	-69	69
BSUGD0279	79.0	87.0	8.0	1.8	49139	145264	1895	162.0	-57	295
BSUGD0280	91.0	95.0	4.0	1.9	49140	145265	1895	198.0	-69	12
BSUGD0282	107.0	112.0	5.0	1.8	49140	145265	1895	147.0	-55	333
BSUGD0283	118.0	124.0	6.0	1.9	49140	145265	1895	147.0	-49	352

Appendix 3-6 – Diamond drilling at Tropicana - 0.5 g/t Au lower cut, no upper cut, maximum 2m internal dilution.

Hole ID	From (m)	To (m)	Width (m)	Au (g/t)	East	North	RL	Max_Depth	Dip	Azimuth
HDD425W1	1166.0	1170.0	4.0	1.0	651646	6761388	352.95	1258.9	-56	274
HDD426W1A	1284.0	1288.0	4.0	1.0	6515482	6760943	350.98	1380	-55	276
TPD588W1	1156.0	1163.0	7.0	1.5	49239	143663	1605	1245.4	-50	260
TPD588W2	1168.0	1172.0	4.0	3.4	49219	143702	1637	1242.4	-50	260
TPD588W4	1119.0	1122.0	3.0	2.1	49302	143741	1594	1239	-50	260
TPD589	743.0	747.0	4.0	1.6	49150	143622	1686	867.2	-75	269
TPD589W2	719.0	723.0	4.0	5.6	49131	143688	1724	792.2	-75	269

Appendix 3-7 – Diamond drilling at Tropicana – 2.1 g/t Au lower cut, no upper cut, maximum 4m internal dilution.

Hole ID	From (m)	To (m)	Width (m)	Au (g/t)	East	North	RL	Max Depth	Dip	Azimuth
		. ,	. ,						· ·	260
TPUGD0236	293.0	304.0	11.0	2.6	48307	143160	2123	396	9	
TPUGD0236	307.0	322.0	15.0	2.5	48291	143159	2125	396	9	260
TPUGD0237	315.0	329.0	14.0	2.2	48283	143212	2132	386	10	270
TPUGD0238	267.0	283.0	16.0	2.1	48329	143155	2100	356	5	259
TPUGD0239	254.0	266.0	12.0	2.8	48342	143208	2102	339	5	270
TPUGD0241	236.0	244.0	8.0	2.5	48361	143207	2084	291	1	270
TPUGD0243	209.0	213.0	4.0	2.1	48402	143128	2060	288	-5	249
TPUGD0244	178.0	197.0	19.0	2.4	48423	143147	2046	261	-9	253
TPUGD0245	192.0	201.0	9.0	2.5	48408	143199	2038	253	-10	270
TPUGD0246	175.0	183.0	8.0	2.6	48442	143130	2029	251	-14	244
TPUGD0247	152.0	167.0	15.0	2.6	48464	143145	2012	228	-24	248
TPUGD0249	144.0	153.0	9.0	2.3	48487	143170	1988	203	-37	256
TPUGD0250	142.0	146.0	4.0	2.2	48529	143122	1979	203	-44	225
TPUGD0251	102.0	106.0	4.0	3.2	48524	143220	2017	207	-37	284
TPUGD0252	294.0	304.0	10.0	2.8	48284	142911	2118	338	3	239
TPUGD0253	237.0	243.0	6.0	3.0	48327	142961	2089	283	-4	245
TPUGD0255	147.0	151.0	4.0	2.1	48423	143004	2043	190	-24	250
TPUGD0258	110.0	115.0	5.0	3.0	48507	143048	2002	147	-67	271
TPUGD0263	265.0	281.0	16.0	2.4	48289	142973	2125	319	2	249
TPUGD0267	233.0	237.0	4.0	2.3	48319	143013	2090	270	-4	257
TPUGD0268	167.0	179.0	12.0	2.4	48386	143013	2065	228	-12	255
TPUGD0269	336.0	343.0	7.0	2.2	48218	143064	2173	395	12	269
TPUGD0271	265.0	270.0	5.0	11.5	48284	143062	2115	309	3	269
TPUGD0272	211.0	221.0	10.0	2.3	48335	143054	2093	262	-3	269
TPUGD0273	171.0	177.0	6.0	3.9	48381	143052	2067	214	-12	269
TPUGD0274	143.0	151.0	8.0	4.6	48420	143052	2040	181	-25	269
TPUGD0275	122.0	128.0	6.0	2.2	48461	143049	2018	155	-44	270

Appendix 3-8 – Diamond and RC exploration drilling regional to Tropicana - 0.5 g/t Au lower cut, no upper cut, maximum 2m internal dilution.

Hole ID	MGA_North	MGA_East	Collar_RL	Max Depth	Dip	Azimuth	From (m)	To (m)	Width (m)	Au (g/t)
AED018	6772394	657212	316	492	-61	252	390.0	395.0	5.0	0.6
NCRC001	6770679	655407	318	146	-62	289	108.0	112.0	4.0	1.5
NCRC001	6770679	655407	318	146	-62	289	108.0	111.0	3.0	1.9
NCRC011	6770323	656370	317	120	-62	292	46.0	50.0	4.0	0.6
NCRC023D	6770028	656427	318	156	-63	297	114.0	117.0	3.0	1.3
NCRC025	6769748	655085	323	150	-61	290	136.0	140.0	4.0	0.6
NCRC054	6769144	655510	322	150	-60	292	120.0	124.0	4.0	0.6
NCRC063	6768842	655132	325	150	-60	299	120.0	124.0	4.0	0.7
NCRC064	6768800	655223	325	150	-61	300	52.0	56.0	4.0	30.5
NCRC064	6768800	655223	325	150	-61	300	53.0	55.0	2.0	50.4
NCRC064	6768800	655223	325	150	-61	300	116.0	120.0	4.0	0.7
NCRC076	6768252	654842	331	186	-61	307	12.0	16.0	4.0	0.5
NCRC078	6768139	655005	329	142	-61	308	108.0	110.0	2.0	1.0
NCRC079	6768083	655088	329	156	-60	306	148.0	150.0	2.0	17.0
NCRC083	6768177	654299	330	150	-61	307	61.0	64.0	3.0	14.0
NCRC084	6768120	654384	330	168	-60	309	112.0	116.0	4.0	0.6
NCRC084	6768120	654384	330	168	-60	309	116.0	119.0	3.0	1.7
NCRC085	6768064	654463	330	174	-61	305	164.0	168.0	4.0	0.6
ROD019	6772383	656941	316	246	-61	292	110.0	113.0	3.0	6.0
ROD020	6772348	657038	315	346	-61	289	288.0	291.0	3.0	1.3
ROD020	6772348	657038	315	346	-61	289	312.0	319.0	7.0	0.9
RORC001	6772709	656636	317	150	-61	290	43.0	45.0	2.0	0.8
RORC002	6772675	656730	317	171	-61	291	81.0	91.0	10.0	1.6
RORC005	6772614	656602	316	168	-60	290	56.0	58.0	2.0	0.7
RORC006	6772581	656696	316	150	-60	292	100.0	103.0	3.0	0.9
RORC007	6772543	656792	316	198	-61	294	142.0	154.0	12.0	1.6
RORC007	6772543	656792	316	198	-61	294	161.0	164.0	3.0	0.8
RORC010	6772477	656659	315	174	-60	294	140.0	162.0	22.0	1.9
ZBRC115	6759680	647804	349	144	-61	321	40.0	42.0	2.0	1.0
ZBRC115	6759680	647804	349	144	-61	321	40.0	44.0	4.0	0.5
ZBRC116	6759599	647870	350	168	-60	317	68.0	80.0	12.0	0.2
ZBRC116	6759599	647870	350	168	-60	317	140.0	144.0	4.0	0.4
ZBRC116	6759599	647870	350	168	-60	317	142.0	144.0	2.0	0.6
ZBRC117	6759533	647935	351	150	-61	315	60.0	64.0	4.0	0.2
ZBRC117	6759533	647935	351	150	-61	315	120.0	124.0	4.0	0.1
ZBRC120	6759496	647398	354	150	-61	319	44.0	56.0	12.0	0.2
ZBRC120	6759496	647398	354	150	-61	319	51.0	53.0	2.0	1.7
ZBRC123	6759279	647588	359	150	-60	317	32.0	52.0	20.0	0.1
ZBRC124	6759216	647665	359	150	-61	316	96.0	100.0	4.0	0.1
HTRC051	6767701	655659	333	156	-60	273	135.0	138.0	3.0	1.1
HTRC099	6766695	654164	339	150	-60	278	26.0	28.0	2.0	2.4