

QUARTERLY EXPLORATION UPDATE

Highlights

Mt Gibson Gold Project (MGGP)

- Ongoing drilling at the MGGP delivered a significant increase of 758,000 ounces (41%) in the Ore Reserve Estimate (ORE) to 2.59 million ounces which was underpinned by the updated Mineral Resource Estimate (MRE) of 150.4 Mt at 0.8g/t for 3,991,000 ounces, an increase of 686,000 ounces from the April 2024 MRE (refer ASX announcement dated 15 November 2024).
- A further 30,627 metres (302 holes) of resource extension, regional exploration and mine development drilling were completed across the MGGP during the December 2024 quarter (Q2).
- Assays received from 57 resource definition holes (12,284 metres) since the last update in October 2024 continue to return exceptional results, both within and extensional to the resource including:
 - 19 metres @ 4.40g/t from 11 to 30m
 - 4 metres @ 12.95g/t from 70 to 74m
 - 22 metres @ 1.92g/t from 281 to 303m*
 - * intercept is outside of current resource pit shell

- 36 metres @ 1.54g/t from 300 to 336m*
- 20 metres @ 2.27g/t from 121 to 241m
- 10 metres @ 4.16g/t from 132 to 142m
- A total of 1,445 metres (6 holes) diamond drilling was completed for a project total of 7,063 metres (27 holes) under the Orion and Lexington pits. Broad, high-grade gold intercepts demonstrated that mineralisation extends significantly at depth, continuing to highlight the potential for an underground mining operation. Encouraging results were returned including:
 - 4.70 metres @ 24.88g/t from 412 to 416.7m*
 - 16.23 metres @ 3.16g/t from 393 to 409.23m*
 - 1.53 metres @ 22.75g/t from 427 to 428.53m*
 - 9.05 metres @ 3.66g/t from 332.19 to 341.24m*
 * intercept is outside of current resource pit shell
- 9.57 metres @ 5.97g/t from 281 to 290.57m
- 17.18 metres @ 2.88g/t from 276 to 293.18m
- 9.66 metres @ 3.50g/t from 335.34 to 345m*
- 6.51 metres @ 4.52g/t from 327.9 to 333.7m*

A 10,000m follow up diamond drill programme has commenced with two diamond drill rigs in Q3 targeting the underground mine potential and a maiden underground MRE.

- Maiden ORE at the Aries deposit of 29koz (included in Nov24 updated ORE) was delivered from Q1 and historic drilling. A further 5,044 metres of reverse circulation (RC) drilling (26 holes) was completed at Aries during Q2. Significant results have been received, both within and extensional to the current resource, with mineralisation remaining open down dip and along strike. Best results including:
 - 19 metres @ 3.07g/t from 185 to 204m*
 - 18 metres @ 2.69g/t from 145 to 163m
 - 8 metres @ 4.25g/t from 163 to 171m*
- 11 metres @ 5.05g/t from 90 to 101m*
- 13 metres @ 2.80g/t from 78 to 91m
- 2 metres @ 11.56g/t from 23 to 25m

Further extensional drilling is planned and will form the basis of future ORE and MRE updates at Aries.

- A total of 199 AC holes (10,963 metres) and 24 RC holes (3,402 metres) of near mine exploration drilling
 was completed in Q2 across a number of targets, including the Mexicola, Sundance, and Big Whiskey
 prospects. Approvals for additional drilling were received in Q2, with follow-up drilling to commence in Q3,
 facilitating the inclusion of some of these targets in the next MRE update. The best near mine results for
 the quarter included:
 - 7 metres @ 15.04g/t from 60 to 67m
 - 4 metres @ 4.37g/t from 60 to 64m*
 - * Regional 4m Aircore composite

- 4 metres @ 4.38g/t from 44 to 48m
- 15 metres @ 0.92g/t from 40m to 55m (EOH)

^{*} intercept is outside of current resource pit shell

Karlawinda Gold Project (KGP)

- An RC drilling programme completed in Q1 across the Bibra and Berwick deposits, targeting near-surface zones, returned significant results including:
 - 3 metres @ 5.24g/t from 79 to 82m
 - 3 metres @ 3.02g/t from 72 to 75m
- 4 metres @ 3.56g/t from 86 to 90m
- 6 metres @ 1.21g/t from 96 to 102m
- RC drilling continued along the Central Lode within the Mumbakine Well project area with a total of 8,974 metres (71 holes) of RC drilling completed, best results for Q2 include:
 - 2 metres @ 24.66g/t from 5 to 7m
 - 3 metres @ 7.09g/t from 74 to 77m
- 4 metres @ 11.91g/t from 50 to 54m
- 12 metres @ 1.48g/t from 42 to 54m
- 3,035 metres (101 holes) of broad spaced AC drilling was completed at the Mission Road and Badlands prospects, both located less than 20 kilometres from the Bibra open pit.
- Acquisition of the prospective Sylvania Project tenements located contiguous to KGP tenure, consolidating the Company's holding of Pilbara craton greenstones in proximity to the highly prospective Pilbara-Yilgarn craton margin.

Mt Gibson Gold Project

Exploration activities at the MGGP during Q2 focused on progressing extensional and infill resource drilling which commenced in January 2022, along with near-mine exploration drilling at prospects immediately adjacent to the Mt Gibson trend. A total of 302 holes, covering 30,627 metres, were drilled for resource extension, regional exploration, and mine development during Q2. Capricorn has drilled a total of 3,398 holes for 351,809 metres since early 2022 as shown in *Figure 1* below.

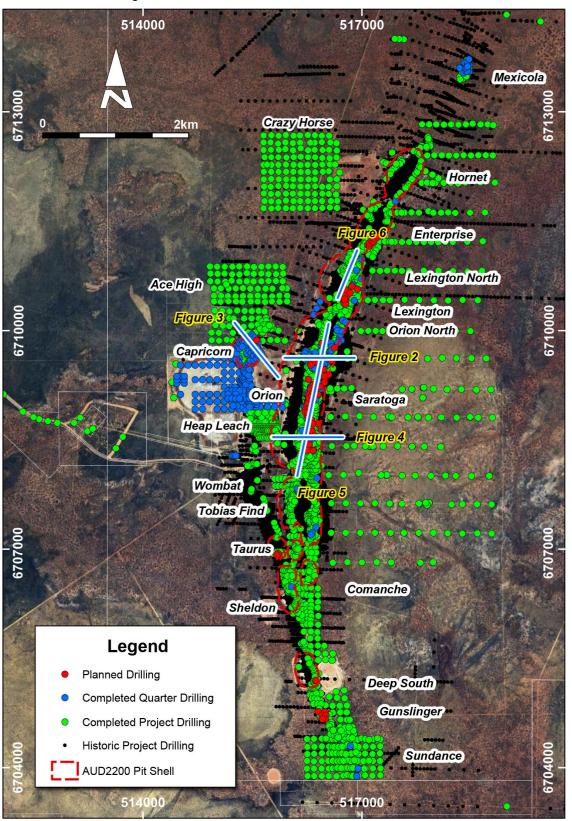


Figure 1: Completed drilling over the MGGP 8km long mine trend with MRE pit crests.

Assays received since the last update continue to return very encouraging results, including:

Hole ID	Easting	Northing	From	То	Width	Grade
		•	(m)	(m)	(m)	(g/t)
CMRC1520D*	516203	6709206	427	437	10	6.59
CMRC1521D	516071	6708613	307	333.7	26.7	2.65
CMRC1526D	516326	6709478	36	63	27	1.40
CMRC1526D	516213	6709490	251	261	10	3.37
CMRC1526D	516199	6709495	280	290.57	10.57	5.48
CMRC1527D	516070	6708625	273	301.65	28.65	2.49
CMRC1529	516341	6709126	37	49	12	2.53
CMRC1530D	516263	6709228	52	71	19	5.31
CMRC1530D*	516155	6709226	301.36	345	43.64	1.78
CMRC1531D*	516096	6708528	393	423.87	30.87	5.58
CMRC1532D*	516097	6708369	430.64	448.27	17.63	2.18
CMRC1534	516199	6709656	221	241	20	2.27
CMRC1535	516495	6709672	132	142	10	4.16
CMRC1537*	516229	6709593	300	336	36	1.54
CMRC1539*	516781	6710906	281	303	22	1.92
CMRC1544	516351	6709047	11	30	19	4.40
CMRC1544	516326	6709045	70	74	4	12.95
CMRC1545D	516718	6710714	332.19	341.24	9.05	3.66
CMRC1551*	516053	6707780	146	148	2	18.44
CMRC1553	516066	6707829	96	113	17	2.30
CMRC1557*	516258	6709760	262	279	17	1.80
CMRC1559	516101	6708802	243	246	3	12.53
CMRC1559	516085	6708806	268	282	14	2.64
CMRC1568	515442	6709836	78	91	13	2.8
CMRC1576*	515441	6709827	163	171	8	4.25
CMRC1578*	515511	6709745	145	163	18	2.69
CMRC1579*	515526	6709747	185	204	19	3.07
CMRC1584*	515539	6709783	90	101	11	5.05
CMRC1585*	515413	6709317	60	67	7	15.04

^{*}Outside of current resource pit shell

A comprehensive table of significant results is included in Appendix 1.

During the quarter, an updated Ore Reserve Estimate (ORE) and Mineral Resource Estimate (MRE) for the MGGP was completed and announced to the ASX (refer ASX announcement dated 15 November 2024). The ORE increased by 758,000 ounces (41%) rising from 1.83 million ounces to 2.59 million ounces. This significant increase was underpinned by the updated Mineral Resource Estimate of 150.4 Mt at 0.8g/t for 3,991,000 ounces, an increase of 686,000 ounces (21%) from the April 2024 MRE of 3,305,000 ounces. Drilling completed since this update will form the basis of future ORE and MRE updates.

An expansive drilling programme, comprising 18,000 metres of Aircore, 30,000 metres of RC and 5,000 metres of diamond drilling (DD), continued in Q2. The programme was aimed at resource expansion, underground definition, and regional prospect development.

Resource Definition Drilling

Resource definition drilling at the MGGP during Q2 focused on:

- · extensional and infill resource drilling under the Orion and Lexington pits; and
- the unmined areas across the Mt Gibson and Taurus trends, including the Saratoga, Tobias find and Capricorn deposits.

The primary objective of this drilling was to extend the resource envelope and increase data density in areas classified as Inferred Resources, particularly at Orion and Lexington, where open pit optimisations have demonstrated potential for Reserve growth. Some of the best results from the main Mt Gibson mine trend include:

- 19 metres @ 4.40g/t from 11 to 30m
- 4 metres @ 12.95g/t from 70 to 74m
- 22 metres @ 1.92g/t from 281 to 303m*
- 36 metres @ 1.54g/t from 300 to 336m*
- 20 metres @ 2.27g/t from 121 to 241m
- 10 metres @ 4.16g/t from 132 to 142m

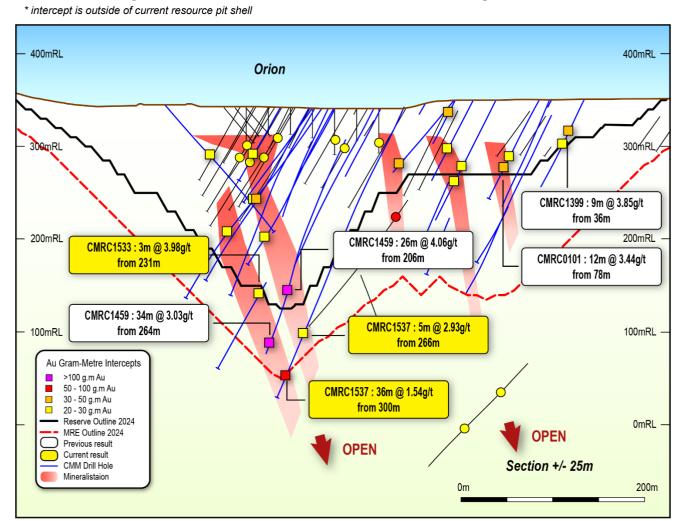


Figure 2: Orion section with completed RC resource drilling with significant open broad mineralisation outside of the current A\$2,200/oz reserve outline and A\$2,400/oz resource outline.

Aries Deposit

Drilling was successfully completed at the unmined Aries deposit, with significant results continuing to validate and extend historical data. Drilling completed in Q1 helped form the basis for the deposit's maiden ORE of 29koz, which was included in the November ORE update.

During Q2, a further 5,044 metres (26 holes) of RC drilling was completed along strike from the previously mined Wombat open pit and underground deposit. Located 1.5 kilometres from Aries, the Wombat deposit has historically proven to be a high-grade source. The open pit mine produced 129,174 tonnes @ 5.75g/t Au, while the underground operation delivered 116,537 tonnes @ 9.34 g/t Au, for a combined production of 245,711 tonnes @ 7.60g/t Au.

Encouragingly, significant results received during the quarter were predominantly extensional to the current resource. Notably, two clear parallel lodes have been identified, extending into fresh rock, with mineralisation remaining open down dip and along strike. Some of the best results include:

- 19 metres @ 3.07g/t from 185 to 204m*
- 18 metres @ 2.69g/t from 145 to 163m
- 8 metres @ 4.25q/t from 163 to 171m*
- * intercept is outside of current resource pit shell

- 11 metres @ 5.05g/t from 90 to 101m*
- 13 metres @ 2.80g/t from 78 to 91m
- 2 metres @ 11.56g/t from 23 to 25m

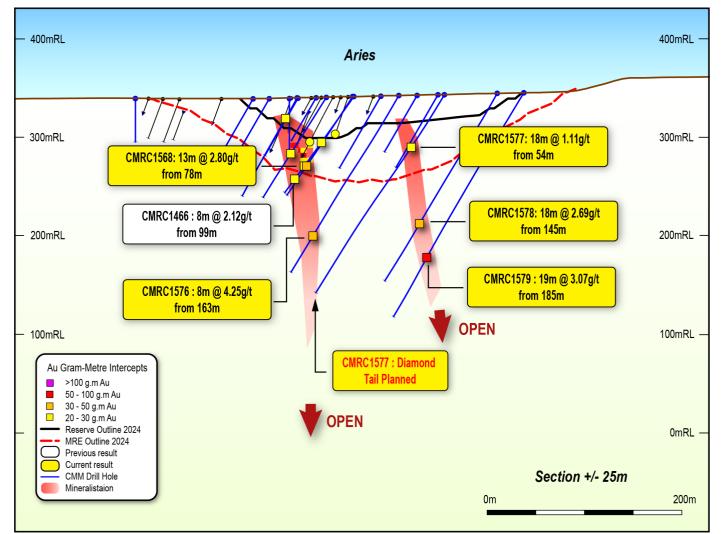


Figure 3: Aries long section with completed RC resource drilling with significant open broad mineralisation outside of the current A\$2,200/oz reserve outline and A\$2,400/oz resource outline.

Underground Potential

Drilling under the Orion and Lexington pits continued to return broad, high-grade gold intercepts, demonstrating that mineralisation extends significantly at depth. Encouragingly, all areas drilled continue to illustrate continuity and indicate the potential for underground resources.

During Q2, a total of 1,445 metres (6 holes) of diamond drilling was completed for a project total of 7,063 metres (27 holes). This work followed up on deeper diamond and RC drilling conducted in FY24, which had previously delivered promising results.

All assays have now been received, with multiple intercepts exceeding 30 gram-metres outside the current resource and reserve pit outlines. At both target locations, mineralisation has been extended over significant strike and depths, remaining open in all directions. The best results for the quarter included:

- 4.70 metres @ 24.88g/t from 412 to 416.7m*
- 16.23 metres @ 3.16g/t from 393 to 409.23m*
- 1.53 metres @ 22.75g/t from 427 to 428.53m*
- 9.05 metres @ 3.66g/t from 332.19 to 341.24m*
- * intercept is outside of current resource pit shell

- 9.57 metres @ 5.97g/t from 281 to 290.57m
- 17.18 metres @ 2.88g/t from 276 to 293.18m
- 9.66 metres @ 3.50g/t from 335.34 to 345m*
- 6.51 metres @ 4.52g/t from 327.9 to 333.7m*

Assay and lithological information will assist Capricorn in further studies of the structure, geometry and extent of high-grade zones. These studies aim to support the development of an underground model to evaluate the project's underground economic potential. Two diamond drill rigs are now on site for a follow-up 10,000m diamond drilling programme, that commenced in Q3, drilling incrementally deeper and along strike from current intercepts. Results from both current and future drilling will underpin updates to the project's exisiting ORE and MRE, including a maiden underground MRE.

The cross and long sections on the following pages (*Figures 4-6*) illustrate the high-grade zones defined by drilling beneath the Orion and Lexington pits.

Underground targeted drilling at the Orion open pit looking North.

^{**} Above intercepts for underground include a minimum of 1g/t Au value over a minimum length of 1m with a maximum 2m length of consecutive internal waste. No upper cuts have been applied.

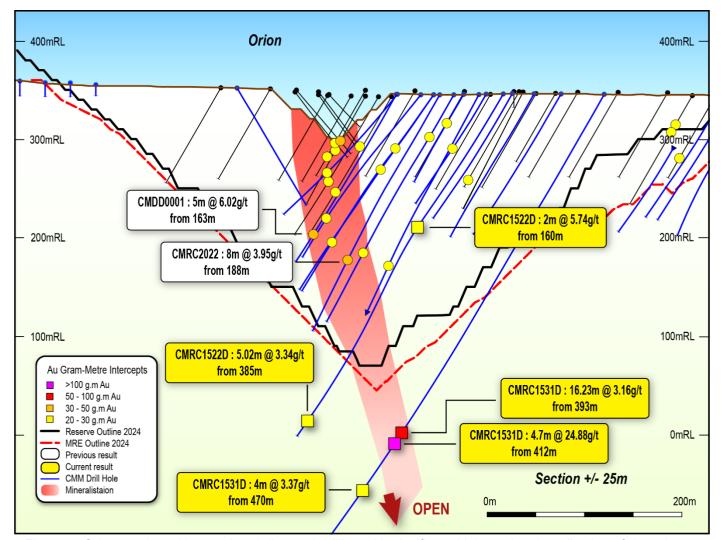


Figure 4: Orion section with completed diamond drilling with significant high grade mineralisation of the primary orebody outside of the current A\$2,200/oz reserve outline and A\$2,400/oz resource outline.

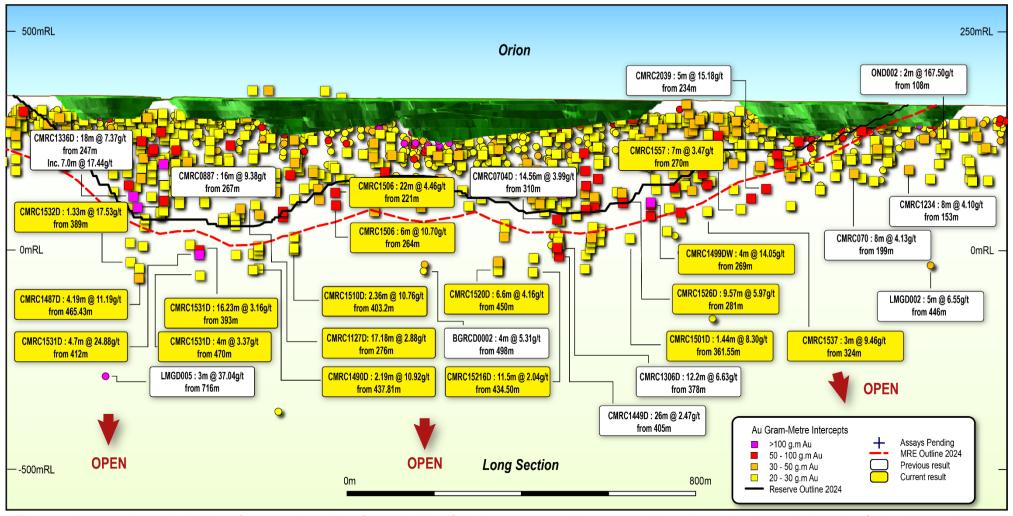


Figure 5: Long section with +1600m of prospective strike of recently identified +25 gram metre intercepts and pending assays located along the Orion mine tend looking west, with significant high grade mineralisation outside of the current A\$2,200/oz reserve outline and A\$2,400/oz resource outline.

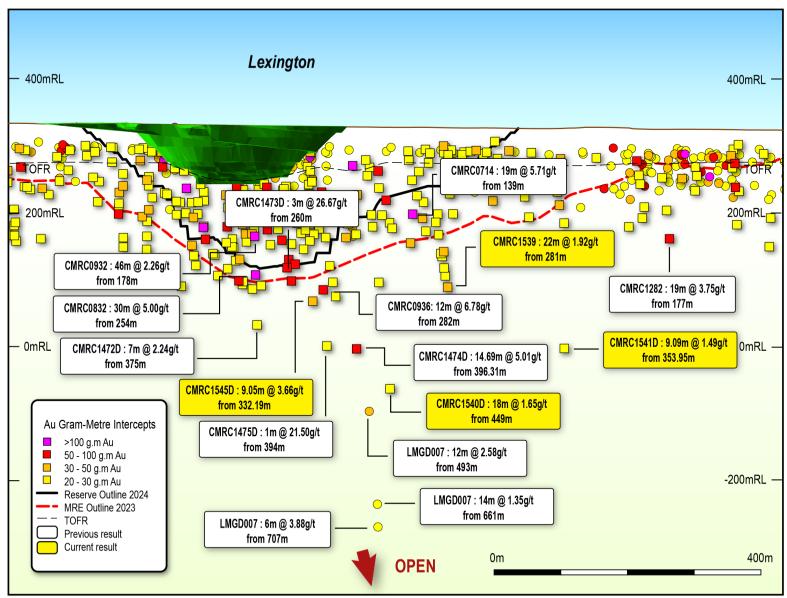


Figure 6: Long section with +1000m of prospective strike of recently identified +10 gram metre intercepts and pending assays located under the Lexington pit looking west, with significant high grade mineralisation outside of the current A\$2,200/oz reserve outline and A\$2,400/oz resource outline.

Near Mine Exploration

A total of 199 AC holes (10,963 metres) and 24 RC holes (3,402 metres) of near mine drilling were completed in Q2 across several targets, including the Mexicola, Sundance, and Big Whiskey prospects. Results continue to return highly encouraging 4-metre composite and 1-metre re-split gold results throughout the project areas underscoring the high prospectivity to host additional near-surface satellite resources as well as major gold discoveries. Approvals for additional drilling were received in Q2, with follow-up drilling scheduled to commence in Q3, facilitating the inclusion of some of these targets in the planned MRE update. The best near mine results for the quarter included:

- 7 metres @ 15.04g/t from 60 to 67m
- 4 metres @ 4.37g/t from 60 to 64m*
- * Regional 4m Aircore composite

- 4 metres @ 4.38g/t from 44 to 48m
- 15 metres @ 0.92g/t from 40m to 55m (EOH)

Karlawinda Gold Project

Regional Drilling

An extensive regional drilling programme, comprising 25,000 metres of AC and 18,000 metres of RC drilling, continued in Q2. The programme is targeting prospects in proximity to the highly prospective Pilbara-Yilgarn craton margin, an area interpreted to host geological settings conducive to Bibra-style and intrusion-related mineralisation. This region encompasses multiple gravity-high and surface sample anomalies along magnetic corridors with known gold occurrences (refer to Figure 7).

Capricorn's exploration efforts have identified highly prospective, camp scale gold targets within a proven world-class geological setting. The project features a number of high-quality, under-explored prospect areas with significant gold mineralisation, all in proximity to the operating +2Moz Bibra Mine.

During Q2, significant RC results were returned from drilling completed at regional Mumbakine Well project and resource drilling at Bibra and Berwick deposits. The project areas are proximal to the existing KGP operation and indicate high prospectivity to host further near-surface satellite resources, as well as major gold discoveries.

A comprehensive table of significant results is included in Appendix 1.

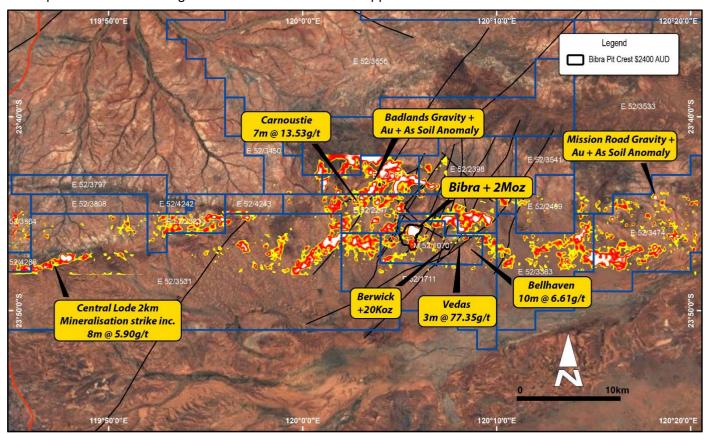


Figure 7: Gravity anomalies and major fault structures with Q2 & H2 FY25 high priority drilling locations along the largely untested interpreted craton margin zone.

Resource Drilling

Based on drilling reported in FY24, an updated ORE for the KGP was announced to the ASX on 1 August 2024. The ORE increased to 1,428,000 ounces of gold from 1,247,000 ounces, an increase of 333,000 ounces (27%) after accounting for mining depletion.

The KGP JORC compliant MRE is 98.6 million tonnes at 0.7g/t gold for 2,252,000 ounces, up from the March 2023 estimate of 97.4 million tonnes at 0.7g/t gold for 2,228,000 ounces. This represents a 24,000 ounce (1%) increase before accounting for depletion, and a 176,000 ounce (8%) increase after depletion.

In Q1, RC drilling programme was completed across the Bibra and Berwick deposits, totalling 1,380 metres (11 holes) (refer to Figure 8). This programme targeted encouraging near-surface areas intersected in FY24 and will help inform future updates to both the current MRE and ORE. Drilling successfully intersected the target lithologies that host the Bibra and Berwick deposits, all assays have been received, best results for the quarter include:

- 3 metres @ 5.24g/t from 79 to 82m
- 3 metres @ 3.02g/t from 72 to 75m
- 4 metres @ 3.56g/t from 86 to 90m
- 6 metres @ 1.21g/t from 96 to 102m

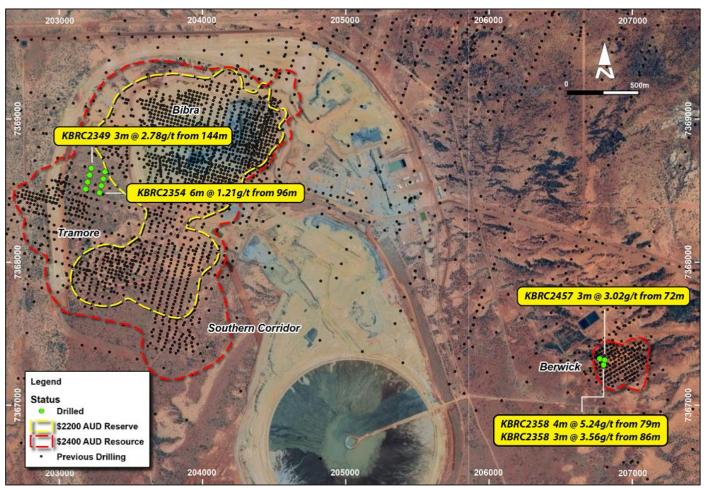


Figure 8: Completed resource drilling with the recently updated A\$2,200/oz ORE and A\$2,400/oz MRE pit crests.

Regional Exploration

Mumbakine Well

RC drilling continued along the Central Lode within the Mumbakine Well project area with a total of 8,974 metres (71 holes) completed during Q2, targeting extensions to the shallow significant mineralisation reported in FY24 and the previous quarter, both along strike and down dip (*refer to Figure 9*). All assays have been received with best results quarter including:

- 2 metres @ 24.66g/t from 5 to 7m
- 3 metres @ 7.09g/t from 74 to 77m
- 4 metres @ 11.91g/t from 50 to 54m
- 12 metres @ 1.48g/t from 42 to 54m

Drilling to date has intersected mineralisation throughout the drill area with only +2km of strike tested along the identified 10km prospective trend. The host unit is a folded sulphidic shale, with mineralisation associated with brecciated quartz and carbonate veining. In Q3 Capricorn will commence studies of the structure, geometry and extent of mineralised zones. Heritage surveys during Q2 have progressed in the project area unlocking further drill areas along the remaining untested strike with drilling scheduled to recommence late in Q3.

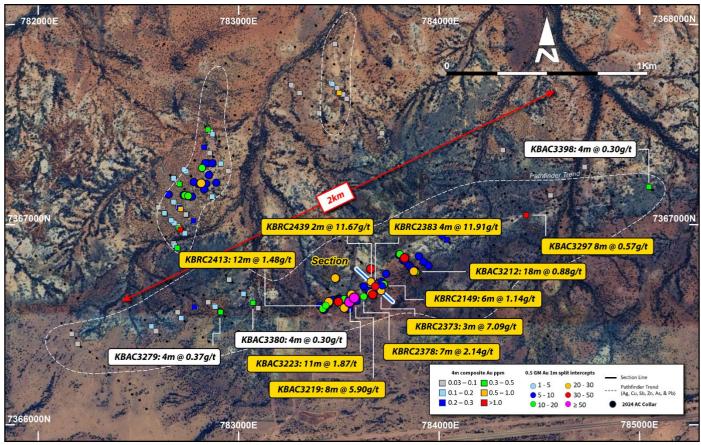


Figure 9: Completed Central Lode drilling with previous and current intercepts demonstrating 2km strike of significant gold mineralisation and recent AC results showing gold trend intersected across a thrust zone.

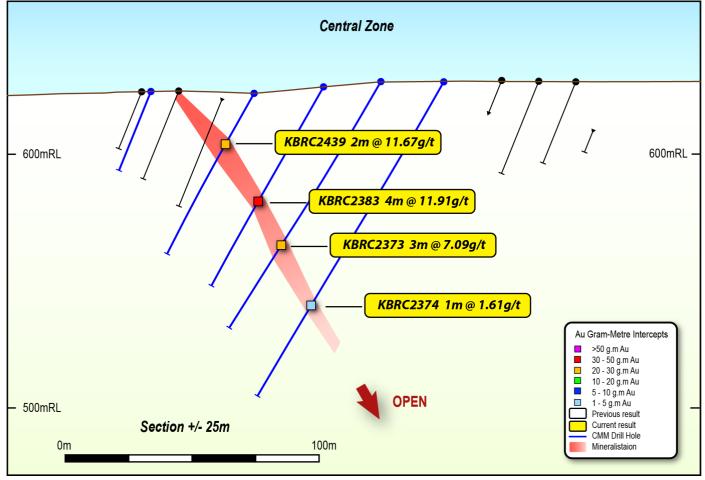


Figure 10: Central Lode cross-section with intercepts received in Q2.

Regional Aircore

During Q2, 3,035 metres (101 holes) of broad spaced AC drilling was completed at the Mission Road and Badlands prospects, both located less than 20 kilometres from the Bibra open pit (*refer to Figure 11*). The current AC drilling programmes are targeted areas identified from recently acquired gravity imagery data, which identified geological settings indicative of intrusion-related mineralisation. Multiple gravity-high anomalies have been identified along magnetic corridors in proximity to known gold occurrences. The current drilling completed is part of 25,000m regional AC programme which will recommence in Q3. All assays are pending.

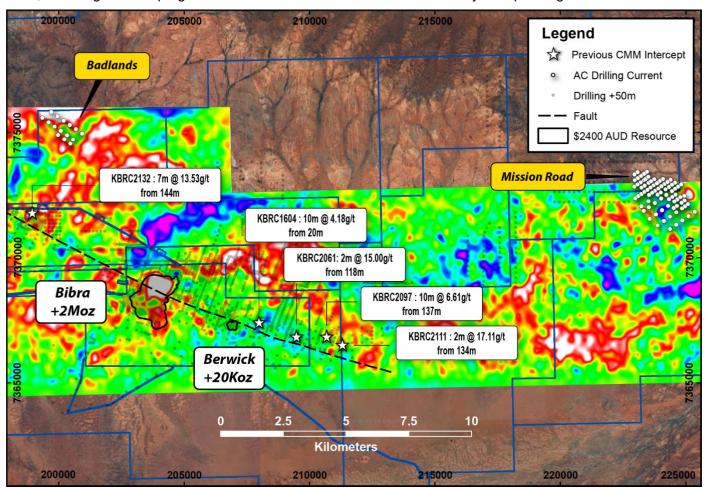


Figure 11: Current Mission Road and Badlands drilling locations over airborne gravity survey imagery showing multiple gravity-high anomalies along magnetic corridors in proximity to known gold occurrences including the +2Moz Bibra deposit.

Regional Tenement Consolidation

During Q2, Capricorn entered into an agreement with Latitude 66 Ltd (ASX:LAT) to acquire the prospective Sylvania Project tenements located contiguous to the Company's KPG tenure in the Pilbara region of WA (refer to Figure 12). The Sylvania Project is located on exploration licenses contiguous to Capricorn's existing KGP tenure and consolidates the Company's holding of Pilbara craton greenstones in proximity to the highly prospective Pilbara-Yilgarn craton margin.

The Sylvania Project covers approximately 1,740 square kilometres and increases Capricorn's KGP tenement holding to approximately 3,800 square kilometres. Situated on the southern extents of Capricorn's tenure, the project area sits in proximity to Sylvania Inlier and Pilbara-Yilgarn craton margin. This location is considered a high strain zone with high prospectivity for mineralising fluids with origins from igneous intrusions formed from partial melting of a mantle wedge or enriched fluid remobilisation through regional metamorphism. This craton boundary is interpreted to play a significant role in the placement of ore forming fluids at the +2Moz Bibra gold deposit.

Exploration for gold in the region has generally been limited with only early-stage work conducted, mostly during the mid-1990's. There has been little serious focus on gold and very few drillholes completed outside of the Prairie Downs base metals prospect despite there being substantial evidence for widespread gold mineralisation in the region. In Q3 Capricorn will commence broad scale geological and regolith mapping, and geochemical sampling in currently defined target areas.

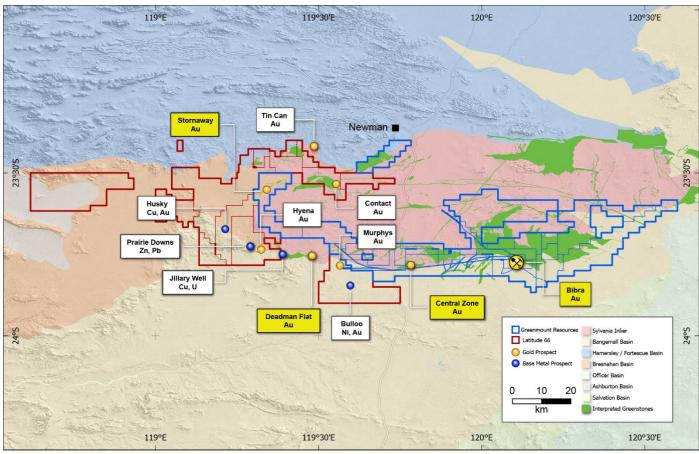


Figure 12: Sylvania Project tenements (red) alongside existing KGP tenements

Heritage Surveys

Multiple archaeological heritage surveys were completed during Q2, clearing a number of high priority targets for drilling and infrastructure. The survey areas were centred around the Bibra open pit and in proximity to the highly prospective Pilbara-Yilgarn craton margin. The geological setting of these areas are interpreted to be similar to that of Bibra-style and intrusion-related mineralisation. These regions also exhibit multiple gravity-high and surface sample anomalies along magnetic corridors with known gold occurrences.

This announcement has been authorised for release by the Capricorn Metals Ltd board.

For further information, please contact:

Mr Mark Clark Executive Chairman

E: enquiries@capmet.com.au

T: +61 8 9212 4600

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation of belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. The detailed reasons for that conclusion are outlined throughout this announcement and all material assumptions are disclosed.

However, forward looking statements are subject to risks, uncertainties, assumptions and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements.

Such risks include, but are not limited to resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as governmental regulation and judicial outcomes.

For a more detailed discussion of such risks and other factors, see the Company's Annual Reports, as well as the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr. William Higgins who is a full-time employee of the Company. Mr. Higgins is a current Member of the Australian Institute of Geoscientists and has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Higgins consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The detailed information relating to the Ore Reserves and Mineral Resources for the Karlawinda Gold Project was contained in the Company's ASX announcement dated 1 August 2024 entitled "KGP Ore Reserve Increases to 1.43Moz's". The information relating to the Ore Reserves and Mineral Resources for the Mt Gibson Gold Project Gold Project was contained in the Company's ASX announcement dated 15 November 2024 entitled "MGGP Ore Reserve Grows to 2.59 Million Ounces".

The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcements dated 19 April 2024, 1 August 2024, 25 October 2024 and 15 November 2024 and all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.capmetals.com.au

The Competent Person's consents remain in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by subsequent report and accompanying consent.

APPENDIX 1 – SIGINIFICANT RESULTS

Mt Gibson

Reported intercepts include a minimum of 0.5g/t Au value over a minimum length of 1m with a maximum 2m length of consecutive internal waste. No upper cuts have been applied.

Hole_ID	NAT_East	NAT_North	NAT_RL	Max_Depth	Dip/Azi	Depth_From	Depth_To	Width	Grade
CMAC1000	514514	6709324	358	35	-60/270	28	32	4	0.55
CMAC1010	515217	6709125	356	63	-60/270	24	28	4	1.2
CMAC1010	515217	6709125	356	63	-60/270	60	63	3	0.71
CMAC1013	515421	6709023	352	69	-60/270	0	8	8	0.78
CMAC1014	515504	6709024	352.11	64	-60/270	44	48	4	2.18
CMAC1014	515504	6709024	352.11	64	-60/270	56	60	4	4.21
CMAC1019	515498	6708961	353	60	-60/270	52	56	4	1.02
CMAC1028	515318	6709632	341.76	62	-60/270	48	52	4	0.54
CMAC1056	515212	6709022	356.95	66	-60/270	4	8	4	1
CMAC1057	515301	6709024	358	72	-60/270	24	28	4	0.53
CMAC1057	515301	6709024	358	72	-60/270	44	52	8	0.93
CMAC1057	515301	6709024	358	72	-60/270	64	68	4	2.52
CMAC1063	515316	6709224	356.7	70	-60/270	8	12	4	0.53
CMAC1071	515420.68	6709425.9	344.43	68	-60/320	28	32	4	1.25
CMAC1071	515420.68	6709425.9	344.43	68	-60/320	40	52	12	0.8
CMAC1078	515446.65	6709555.1	344.49	55	-60/320	32	36	4	0.55
CMAC1083	515348.95	6709316.21	356.98	53	-60/330	8	12	4	0.54
CMAC1083	515348.95	6709316.21	356.98	53	-60/330	48	53	5	0.58
CMAC1085	515320.9	6709753.93	340.58	54	-60/320	40	44	4	0.94
CMAC1088	515344.45	6709801.57	340.3	48	-60/320	20	24	4	0.88
CMAC1094	515448.73	6709829.51	340.77	50	-60/320	40	44	4	0.6
CMAC1096	515514.69	6709751.16	343.15	66	-60/320	32	36	4	0.75
CMAC1096	515514.69	6709751.16	343.15	66	-60/320	40	48	8	0.94
CMAC1097	515530.6	6709736.79	343.83	85	-60/320	76	83	7	0.75
CMAC1102	515547.18	6709790.84	343.15	63	-60/320	40	44	4	1
CMAC1107	515569.13	6709845.79	342.64	69	-60/320	40	44	4	1.16
CMAC1107	515569.13	6709845.79	342.64	69	-60/320	60	64	4	2.45
CMAC1110	515360.97	6709294.99	357.46	48	-60/320	8	12	4	0.54
CMAC1111	515372.92	6709273.19	358.38	59	-60/320	48	52	4	1.24
CMAC1112	515385.59	6709251.69	358.07	63	-60/320	52	56	4	1
CMAC1117	515407.76	6709178.1	351.49	53	-60/320	44	48	4	0.53
CMAC1124	515417.35	6709297.56	351.66	69	-60/320	56	60	4	1
CMAC1125	515428.69	6709275.19	348.83	67	-60/320	48	56	8	0.85
CMAC1125	515428.69	6709275.19	348.83	67	-60/320	64	66	2	0.6
CMAC1128	515401.16	6709370.57	350.06	84	-60/320	36	40	4	0.56
CMAC1130	515427.52	6709330.45	346.37	85	-60/320	56	60	4	1.57
CMAC1130	515427.52	6709330.45	346.37	85	-60/320	76	80	4	0.82
CMAC1131	515440.43	6709308.23	346.31	78	-60/320	64	68	4	0.84
CMAC1135	515353	6709260.13	357.04	41	-60/320	0	8	8	1.17

CMAC1135	515353	6709260.13	357.04	41	-60/320	12	16	4	0.69
CMAC1135	515353	6709260.13	357.04	41	-60/320	38	41	3	0.03
CMAC1140	515383.99	6709305.61	358.64	53	· .	44	48	4	0.95
CMAC1140	515395.27	6709284.59	358.46	63	-60/320 -60/320	48	52	4	1
				42	, ·				
CMAC1147 CMAC1150	515344	6708963 6708986	351.85 352.79	68	-60/270 -60/270	0 44	48	4	0.74
CMAC1150	515483 515483	6708986	352.79	68	-60/270	60	64	4	2.32
CMAC1151	515549	6708994	353	63	-60/270	48	52	4	0.79
CMAC1151	515503	6708993	353	62	-60/270	20	24	4	1.03
CMAC1154	515362	6709015	351	36	-60/270	16	20	4	0.59
CMAC1157	515524	6709023	353	59	-60/270	56	59	3	0.33
CMAC1160	515324	6709023	352	48	-60/270	0	4	4	0.88
CMAC1162	515510	6709070	356.09	74	-60/270	60	64	4	4.37
CMAC1165	515466	6709124	356.87	77	-60/270	52	56	4	0.79
CMAC1168	515264	6709224	353.6	50	-60/270	48	50	2	1
CMAC1171	515267	6709224	356	55	-60/270	48	55	7	1.06
CMAC1171	515259	6709127	356.46	55	-60/270	40	55	15	0.92
CMAC1174	515217.9	6709069.35	357.17	66	-60/270	48	52	4	0.92
CMAC1177	515261	6709069	357.17	51	-60/270	36	40	4	1
CMAC1177	515227	6708286	360	33	-60/270	8	12	4	1.59
CMAC1181	515248	6708288	361	42	-60/270	8	12	4	0.59
CMAC1181	515248	6708283	361	39	-60/270	4	12	8	0.85
CMAC1183	515415	6709475	344.24	54	-60/320	48	54	6	0.67
CMAC1184	515423	6709454	344.87	60	-60/320	36	40	4	0.84
CMAC1184	515423	6709454	344.87	60	-60/320	48	52	4	0.73
CMAC1192	515439.56	6709431.44	345.08	58	-60/320	44	48	4	4.38
CMAC1192	515439.56	6709431.44	345.08	58	-60/320	55	58	3	1
CMAC1196	516924	6703889	332.9	58	-90/0	44	52	8	0.7
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	3	8	5	0.48
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	32	39	7	0.49
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	55	57	2	0.78
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	80	81	1	0.6
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	92	93	1	0.52
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	99	101	2	1.19
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	109	110	1	1.89
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	118	120	2	1.2
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	134	135	1	0.88
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	156	157	1	0.8
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	182	183	1	1
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	222	224	2	0.9
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	291	292	1	0.5
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	296	297	1	0.65
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	301	303	2	3.17
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	307	333.7	26.7	2.65
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	337	338.14	1.14	4.31

CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	347.12	353	5.88	1.15
		6708606.11			·				
CMRC1521D	516228.51		345.88	450.1	-60/270	369	370	1	3.95
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	378.6	381	2.4	1.34
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	390	391	1	0.91
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	405.42	411.49	6.07	2.14
CMRC1521D	516228.51	6708606.11	345.88	450.1	-60/270	419	424.76	5.76	1.24
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	0	1	1	0.73
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	6	7	1	1.28
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	47	48	1	3.4
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	54	56	2	1.22
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	61	62	1	1.68
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	72	73	1	1.34
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	100	101	1	2.11
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	122	123	1	0.78
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	145	147	2	0.75
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	160	162	2	5.74
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	192	194	2	0.66
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	261	272	11	1.16
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	276	282	6	0.9
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	289	290	1	0.67
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	300.39	305	4.61	0.28
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	349	352	3	0.63
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	355.16	366.08	10.92	1.23
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	380	381.19	1.19	0.68
CMRC1522D	516203.5	6708504.6	345.87	406	-60/271	385	390.48	5.48	3.13
CMRC1523	516324.83	6709478.27	348.21	224	-61/269	32	41	9	1.18
CMRC1523	516324.83	6709478.27	348.21	224	-61/269	49	54	5	1.91
CMRC1523	516324.83	6709478.27	348.21	224	-61/269	59	66	7	1.71
CMRC1523	516324.83	6709478.27	348.21	224	-61/269	206	207	1	0.51
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	8	10	2	1.98
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	16	17	1	0.71
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	42	43	1	3.48
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	63	64	1	1.46
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	72	73	1	0.64
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	90	93	3	2.01
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	142	143	1	1.06
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	160	161	1	0.81
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	167	170	3	0.6
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	179	180	1	6.17
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	192	198	6	1.01
CMRC1524	516557.2	6709710.47	349.92	234	-60/301	213	214	1	1.27
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	64	65		1.25
CMRC1525	516434.31	6709500.1	350.57	216		69	72	2	1.18
					-60/270			3	
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	81	83	12	1.75
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	90	102	12	2.16

CMBC4535	F46424.24	6700500.4	250.57	246	60/270	422	422	_	0.6
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	122	123	1	0.6
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	130	131	1	0.63
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	145	147	2	1.81
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	151	154	3	0.73
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	159	164	5	0.57
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	168	175	7	0.95
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	182	183	1	2.66
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	191	196	5	1.28
CMRC1525	516434.31	6709500.1	350.57	216	-60/270	206	208	2	1.91
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	13	14	1	0.58
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	36	63	27	1.4
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	75	76	1	0.73
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	81	85	4	0.68
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	93	94	1	0.73
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	98	102	4	1.75
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	128	129	1	2.01
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	181	183	2	2.5
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	251	261	10	3.37
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	266	273	7	2.13
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	280	290.57	10.57	5.48
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	295	300	5	1.17
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	304	314.47	10.47	0.52
CMRC1526D	516351.74	6709478.23	349.9	347.3	-61/269	319	320	1	0.76
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	6	7	1	0.7
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	28	32	4	0.82
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	41	42	1	0.62
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	51	52	1	0.57
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	71	76	5	0.67
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	89	99	10	1.78
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	111	112	1	1.02
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	176	177	1	1.13
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	189	190	1	0.75
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	207	208	1	1.05
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	229	233	4	0.6
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	273	301.65	28.65	2.49
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	307	308.7	1.7	8.48
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	312.6	322	9.4	0.86
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	355.48	356.61	1.13	0.73
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	377.06	381.05	3.99	0.38
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	387.26	388.63	1.37	4.19
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	394.63	397	2.37	2.34
CMRC1527D	516209.85	6708626.86	345.01	413.73	-60/270	400.37	402.6	2.23	3.05
CMRC1528	516263.3	6709150.62	339	204	-60/270	0	1	1	0.54
CMRC1528	516263.3	6709150.62	339	204	-60/270	7	8	1	1.37
CMRC1528	516263.3	6709150.62	339	204	-60/270	16	24	8	0.54
CIVITICETO	310203.3	0.03130.02	333	204	00/2/0	10	L 44		0.54

CMRC1528	516263.3	6709150.62	339	204	-60/270	43	46	3	1.04
CMRC1528	516263.3	6709150.62	339	204	-60/270	59	61	2	6.54
	516263.3	6709150.62		204		68	69		
CMRC1528			339	204	-60/270	87	88	1	0.74
CMRC1528	516263.3	6709150.62	339		-60/270				
CMRC1528	516263.3	6709150.62	339	204	-60/270	97	100	3	0.6
CMRC1528	516263.3	6709150.62	339	204	-60/270	105	106	1	1.01
CMRC1528	516263.3	6709150.62	339	204	-60/270	116	120	4	0.55
CMRC1528	516263.3	6709150.62	339	204	-60/270	143	144	1	0.79
CMRC1528	516263.3 516263.3	6709150.62	339	204	-60/270	155	156	1	3.39
CMRC1528		6709150.62	339	204	-60/270	171	172	1	0.81
CMRC1528	516263.3	6709150.62	339	204	-60/270	180	181	1	4.74
CMRC1529	516362.24	6709125.93	338.83 338.83	228	-61/271	25	26	1 12	1.19
CMRC1529	516362.24	6709125.93		228	-61/271	37	49	12	2.53
CMRC1529	516362.24	6709125.93	338.83 338.83	228	-61/271	55	62	7	0.48
CMRC1529	516362.24	6709125.93		228	-61/271	93	96	3	0.98
CMRC1529	516362.24	6709125.93	338.83	228	-61/271	101	102	1	0.51
CMRC1529	516362.24	6709125.93	338.83	228	-61/271	110	111	1	2.02
CMRC1529	516362.24	6709125.93	338.83	228	-61/271	134	135	1	1.45
CMRC1529	516362.24	6709125.93	338.83	228	-61/271	159	162	3	1.16
CMRC1529	516362.24	6709125.93	338.83	228	-61/271	172	177	5	0.37
CMRC1529	516362.24	6709125.93	338.83	228	-61/271	181	182	1	0.63
CMRC1529	516362.24	6709125.93	338.83	228	-61/271	210	211	1	0.59
CMRC1529	516362.24	6709125.93	338.83	228	-61/271	220	225	5	0.52
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	40	45	5	1.29
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	52	71	19	5.31
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	81	82	1	0.75
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	104	105	1	1.47
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	117	118	1	1.07
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	153	157	4	0.44
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	169	177	8	0.72
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	200	201	1	0.59
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	207	208	1	1.69
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	236	238	2	0.69
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	260.52	276	15.48	0.8
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	279.66	287.48	7.82	0.74
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	301.36	345	43.64	1.78
CMRC1530D	516292.49	6709229.1	339.23	387.2	-61/269	350	351	1	0.51
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	5	8	3	1.64
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	46	47	1	0.94
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	61	67	6	1
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	78	79	1	0.55
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	114	118	4	1.65
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	122	125	3	0.55
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	151	152	1	0.52
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	178	182	4	1.07

CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	188	189	1	0.65
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	225	226	1	0.62
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	288	289	1	0.68
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	338	340	2	1.63
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	345	346	1	0.53
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	393	423.87	30.87	5.58
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	431	435.57	4.57	0.55
CMRC1531D		6708509.42	345.46			439	446	7	0.93
CMRC1531D	516305.81 516305.81	6708509.42	345.46	558.35 558.35	-61/271 -61/271	453	454	1	1.02
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	466	474	8	2.09
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	483	487	4	0.52
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	494	511	17	0.52
CMRC1531D	516305.81	6708509.42	345.46	558.35	-61/271	515	516	1	0.92
CMRC1532D	516334.75	6708354.5	343.40	628.75	-61/266	2	8		0.73
CMRC1532D			348.5	628.75	-61/266	42	65	6	0.73
CMRC1532D	516334.75 516334.75	6708354.5 6708354.5	348.5	628.75	-61/266	108	109	23	0.65
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	116	117	1	1.14
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	127	128	1	0.5
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	191	192	1	0.79
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	202	203	12	0.87
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	211	223	12	0.45
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	232	233	1	0.66
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	240	241	1	1.89
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	259	261	2	1.37
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	268	269	1	0.51
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	363	364	1	2.65
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	389	404	15	1.22
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	411	412	1	4.43
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	418	423	5	0.67
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	430.64	448.27	17.63	2.18
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	471	473	2	0.78
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	479.76	483	3.24	0.86
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	499	500	1	0.79
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	519.05	522.23	3.18	0.86
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	529	530	1	0.57
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	543	544	1	0.53
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	550	554	4	0.86
CMRC1532D	516334.75	6708354.5	348.5	628.75	-61/266	558	559	1	0.53
CMRC1533	516315.58	6709557.35	341.52	324	-60/272	2	3	1	0.59
CMRC1533	516315.58	6709557.35	341.52	324	-60/272	61	62	1	3.46
CMRC1533	516315.58	6709557.35	341.52	324	-60/272	70	76	6	2.02
CMRC1533	516315.58	6709557.35	341.52	324	-60/272	189	190	1	0.77
CMRC1533	516315.58	6709557.35	341.52	324	-60/272	200	226	26	0.99
CMRC1533	516315.58	6709557.35	341.52	324	-60/272	231	234	3	3.98
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	35	36	1	0.52

CMRC1534	516275.1	6709595.73	341.1	248	-60/301	82	85	3	3.06
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	123	124	1	1.57
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	141	142	1	0.6
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	152	157	5	0.71
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	161	162	1	0.71
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	166	174	8	0.54
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	185	195	10	0.97
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	199	203	4	0.47
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	210	216	6	0.47
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	221	241	20	2.27
CMRC1534	516275.1	6709595.73	341.1	248	-60/301	246	248	2	0.94
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	17	22	5	0.39
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	37	43	6	1.13
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	66	67	1	0.53
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	87	88	1	0.5
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	124	125	1	1.65
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	132	142	10	4.16
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	168	174	6	0.9
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	185	186	1	1.55
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	196	199	3	1.42
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	204	213	9	1.55
CMRC1535	516552.02	6709638.44	351.02	258	-60/299	251	252	1	0.97
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	2	5	3	0.64
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	17	18	1	0.63
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	34	35	1	0.82
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	59	61	2	1.71
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	123	124	1	1.23
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	184	204	20	1.16
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	216	226	10	1.12
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	230	231	1	0.66
CMRC1536	516578.53	6709727.28	347.9	258	-60/300	239	243	4	2.06
CMRC1537	516356.56	6709608.41	342.42	342	-60/270	46	51	5	0.56
CMRC1537	516356.56	6709608.41	342.42	342	-60/270	187	188	1	1.49
CMRC1537	516356.56	6709608.41	342.42	342	-60/270	194	197	3	2.1
CMRC1537	516356.56	6709608.41	342.42	342	-60/270	216	217	1	1.65
CMRC1537	516356.56	6709608.41	342.42	342	-60/270	266	271	5	2.93
CMRC1537	516356.56	6709608.41	342.42	342	-60/270	300	336	36	1.54
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	1	2	1	0.71
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	29	31	2	1.03
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	92	105	13	1.31
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	133	135	2	1.2
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	141	142	1	0.64
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	163	164	1	0.66
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	173	174	1	1.06
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	225	227	2	0.77

CMRC1538	516391.48	6709124.8	338.01	252	-60/270	232	233	1	0.56
CMRC1538	516391.48	6709124.8	338.01	252	-60/270	242	244	2	1.86
CMRC1539	516922.24	6710823.21	329.2	342		6		1	
			329.2	342	-55/297	78	7 79		0.65 1.2
CMRC1539	516922.24	6710823.21			-55/297			1	
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	83	86	3	1.38
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	122	123	3	0.57
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	153	156		1.36
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	163	164	1 12	4.65
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	168	181	13	1.61
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	201	202	1	0.5
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	227	233	6	4.95
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	266	276	10	1.24
CMRC1539	516922.24	6710823.21	329.2	342	-55/297	281	303	22	1.92
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	3	8	5	1.51
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	217	222	5	0.37
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	239	240	1	0.78
CMRC1540D	516988.82 516988.82	6710711.92	335.87	529.21	-60/297	244	246	2	1.22
CMRC1540D		6710711.92	335.87	529.21	-60/297	255.5	257.9	2.4	2.45
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	270.79	275	4.21	2.21
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	293	298	5	1.45
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	304	306	2	0.55
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	311	312	1	0.93
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	318	322.66	4.66	1.65
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	331	332.75	1.75	0.73
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	365.33	367.58	2.25	1.34
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	443	445	2	0.65
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	449	467	18	1.65
CMRC1540D	516988.82	6710711.92	335.87	529.21	-60/297	472	480	8	1.08
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	1	3	2	0.69
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	44	48	4	0.96
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	100	101	1	0.55
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	134	135	1	0.8
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	144	145	1	2.64
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	149	150	1	0.85
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	186	189	3	3.62
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	197	198	1	5.24
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	208	209	1	1.32
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	222	224	2	1.47
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	227.6	230	2.4	2.93
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	256.5	258	1.5	0.73
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	264	265	1	0.52
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	274.51	279	4.49	0.69
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	326	327	1	1.62
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	333	334	1	3.13
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	342	344.13	2.13	4.37

CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	353.95	363.04	9.09	1.49
CMRC1541D	516994.5	6710982.45	326.94	418.7	-60/297	412	416	4	0.59
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	0	2	2	0.82
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	41	42	1	0.59
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	56	64	8	0.47
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	93	109	16	0.81
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	115	116	1	0.68
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	130	133	3	0.73
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	139	141	2	1.4
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	155	169	14	0.67
CMRC1542	516383.29	6709094.38	338.37	246	-55/297	232	240	8	1.27
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	0	2	2	0.59
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	20	25	5	0.96
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	36	38	2	0.83
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	53	69	16	0.65
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	95	99	4	0.72
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	104	107	3	0.63
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	131	133	2	0.62
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	149	150	1	0.64
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	155	162	7	0.44
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	179	185	6	0.48
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	195	198	3	1.32
CMRC1543	516332.8	6709051.67	339.24	228	-60/270	206	207	1	0.5
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	0	1	1	0.64
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	11	30	19	4.4
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	35	37	2	0.62
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	41	42	1	0.67
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	50	61	11	0.65
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	70	74	4	12.95
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	78	80	2	0.66
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	87	103	16	0.7
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	112	117	5	0.38
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	127	129	2	1.01
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	136	137	1	0.75
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	156	166	10	0.87
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	176	178	2	0.8
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	182	183	1	0.97
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	194	197	3	0.74
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	214	215	1	0.72
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	234	235	1	4.88
CMRC1544	516361.78	6709048.35	338.65	258	-60/270	245	246	1	1.2
CMRC1545D	516877.63	6710631.15	351.6	384.1	/	7	8	1	0.75
CMRC1545D	516877.63	6710631.15	351.6	384.1	/	13	15	2	1.15
CMRC1545D	516877.63	6710631.15	351.6	384.1	/	29	30	1	1.27
CMRC1545D	516877.63	6710631.15	351.6	384.1	/	56	58	2	0.67

CMRC15450 516877.63 6710631.15 351.6 384.1 / 105 113 8 1.2	CMDC1E4ED	F16977 63	6710621 15	251.6	204.1	,	ec	67	1	0.50
CMRCISASD \$16877.63 6710631.15 335.16 384.1 / 127 128 1 1.13 CMRCISASD 516877.63 6710631.15 335.6 384.1 / 135 138 3 0.88 CMRCISASD 516877.63 6710631.15 335.16 384.1 / 158 160 2 2.96 CMRCISASD 516877.63 6710631.15 335.16 384.1 / 176 177 1 1.92 CMRCISASD 516877.63 6710631.15 351.6 384.1 / 176 177 1 1.92 CMRCISASD 516877.63 6710631.15 351.6 384.1 / 230 231 1 1.54 CMRCISASD 516877.63 6710631.15 351.6 384.1 / 230 231 1 1.54 CMRCISASD 516877.63 6710631.15 351.6 384.1 / 260 289 3 0.72 CMRCISASD 5	CMRC1545D	516877.63	6710631.15	351.6	384.1	,	66	67	1	0.58
CMRCISADD \$16877.63 6710631.15 351.6 384.1 / 135 138 3 0.88 CMRCISASD \$16877.63 6710631.15 351.6 384.1 / 166 148 2 1.71 CMRCISASD \$16877.63 6710631.15 351.6 384.1 / 158 160 2 2.96 CMRCISASD \$16877.63 6710631.15 351.6 384.1 / 187 193 6 1.12 CMRCISASD \$16877.63 6710631.15 351.6 384.1 / 235 226 1 1.05 CMRCISASD \$16877.63 6710631.15 351.6 384.1 / 230 231 1 1.55 CMRCISASD \$16877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRCISASD \$16877.63 6710631.15 351.6 384.1 / 236 289 3 0.72 CMRCISASD \$168						/				
CMRC1545D S16877.63 6710631.15 351.6 384.1 // 146 148 2 1.71 CMRC1545D S16877.63 6710631.15 351.6 384.1 // 158 160 2 2.96 CMRC1545D S16877.63 6710631.15 351.6 384.1 // 187 193 6 1.12 CMRC1545D S16877.63 6710631.15 351.6 384.1 // 230 231 1 1.54 CMRC1545D S16877.63 6710631.15 351.6 384.1 // 263 267 4 0.48 CMRC1545D S16877.63 6710631.15 351.6 384.1 // 263 267 4 0.48 CMRC1545D S16877.63 6710631.15 351.6 384.1 // 286 289 3 0.72 CMRC1545D S16877.63 6710631.15 351.6 384.1 // 326 322 1 1.71 CMRC1545D						/				
CMRCIS4SD 516877.63 6710631.15 351.6 384.1 / 158 160 2 2.96 CMRCIS4SD 516877.63 6710631.15 351.6 384.1 / 176 177 1 1.92 CMRCIS4SD 516877.63 6710631.15 351.6 384.1 / 187 193 6 1.12 CMRCIS4SD 516877.63 6710631.15 351.6 384.1 / 230 231 1 1.54 CMRCIS4SD 516877.63 6710631.15 351.6 384.1 / 280 281 1 1.01 CMRCIS4SD 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRCIS4SD 516877.63 6710631.15 351.6 384.1 / 326 327 1 1.71 CMRCIS4SD 516877.63 6710631.15 351.6 384.1 / 32.6 327 1 1.71 CMRCIS4SD 516						,				
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 176 177 1 192 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 187 193 6 112 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 230 231 1 1.54 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 263 267 4 0.48 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 317 320 3 264 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 332.19 341.24 9.05 3.66 CMRC1545D <t< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td></t<>						,				
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 187 193 6 1.12 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 230 231 1 1.56 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 230 231 1 1.56 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 280 281 1 101 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 332.9 341.24 9.05 3.66 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 332.9 341.24 9.05 3.66 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D						/				
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 215 216 1 1.05 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 230 231 1 1.54 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 260 281 1 1.01 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 326 327 1 1.71 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 326 327 1 1.71 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.52 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.52 CMRC1546 51689	CMRC1545D			351.6		/	176	177	1	1.92
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 230 231 1 1.54 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 263 267 4 0.48 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 317 320 3 2.64 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 326 327 1 1.71 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 332.19 341.24 9.05 3.66 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 364 347 1 0.85 CMRC1545D 516876.3 6710631.15 351.6 384.1 / 361 362 1 0.5 CMRC1545D <		516877.63	6710631.15			/			6	
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 263 267 4 0.48 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 280 281 1 1.01 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 326 327 1 1.71 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 32.6 327 1 1.71 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 15 18 3 0.7 CMRC1546 516893 <td>CMRC1545D</td> <td></td> <td></td> <td>351.6</td> <td>384.1</td> <td>/</td> <td>215</td> <td>216</td> <td>1</td> <td>1.05</td>	CMRC1545D			351.6	384.1	/	215	216	1	1.05
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 280 281 1 1.01 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 317 320 3 2.64 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 32.6 327 1 7.11 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 361 362 1 0.52 CMRC1546 516893 6710413 337.53 330 -60/297 15 18 3 0.7 CMRC1546 516893 6710413 337.53 330 -60/297 163 164 1 0.85 CMRC1546 516893	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	230	231	1	1.54
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 286 289 3 0.72 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 317 320 3 2.64 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 332.19 341.24 9.05 3.66 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.52 CMRC1546 516893 6710413 337.53 330 -60/297 15 18 3 0.7 CMRC1546 516893 6710413 337.53 330 -60/297 147 148 1 0.82 CMRC1546 516893 6710413 337.53 330 -60/297 171 172 1 1.73 CMRC1546 51689	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	263	267	4	0.48
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 317 320 3 2.64 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 326 327 1 1.71 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D 516877.63 67106413 337.53 330 -60/297 15 18 3 0.7 CMRC1546 516893 6710413 337.53 330 -60/297 147 148 1 0.82 CMRC1546 516893 6710413 337.53 330 -60/297 163 164 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1546 516893 <td>CMRC1545D</td> <td>516877.63</td> <td>6710631.15</td> <td>351.6</td> <td>384.1</td> <td>/</td> <td>280</td> <td>281</td> <td>1</td> <td>1.01</td>	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	280	281	1	1.01
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 326 327 1 1.71 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 332.19 341.24 9.05 3.66 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D 516877.63 6710413 337.53 330 -60/297 15 18 3 0.72 CMRC1546 516893 6710413 337.53 330 -60/297 147 148 1 0.82 CMRC1546 516893 6710413 337.53 330 -60/297 163 164 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 171 172 1 1.73 CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1546 5168	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	286	289	3	0.72
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 332.19 341.24 9.05 3.66 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D 516877.63 6710413 337.53 330 -60/297 15 18 3 0.7 CMRC1546 516893 6710413 337.53 330 -60/297 147 148 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 163 164 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 171 172 1 1,73 CMRC1546 516893 6710413 337.53 330 -60/297 171 172 1 1,73 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1547 516722 </td <td>CMRC1545D</td> <td>516877.63</td> <td>6710631.15</td> <td>351.6</td> <td>384.1</td> <td>/</td> <td>317</td> <td>320</td> <td>3</td> <td>2.64</td>	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	317	320	3	2.64
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 346 347 1 0.85 CMRC1545D 516877.63 6710631.15 351.6 384.1 / 361 362 1 0.52 CMRC1546 516893 6710413 337.53 330 -60/297 15 18 3 0.7 CMRC1546 516893 6710413 337.53 330 -60/297 147 148 1 0.82 CMRC1546 516893 6710413 337.53 330 -60/297 163 164 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 171 172 1 1.73 CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1547 516722 6710433 337.53 330 -60/297 315 319 4 0.46 CMRC1547 516722	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	326	327	1	1.71
CMRC1545D 516877.63 6710631.15 351.6 384.1 / 361 362 1 0.52 CMRC1546 516893 6710413 337.53 330 -60/297 15 18 3 0.7 CMRC1546 516893 6710413 337.53 330 -60/297 147 148 1 0.82 CMRC1546 516893 6710413 337.53 330 -60/297 163 164 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1547 516722 6710492 333.2 252 -60/297 315 319 4 0.46 CMRC1547 516722 6	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	332.19	341.24	9.05	3.66
CMRC1546 516893 6710413 337.53 330 -60/297 15 18 3 0.7 CMRC1546 516893 6710413 337.53 330 -60/297 147 148 1 0.82 CMRC1546 516893 6710413 337.53 330 -60/297 171 172 1 1.73 CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 315 319 4 0.6 CMRC1547 516722 6710492 333.2 252 -60/297 4 9 5 0.44 CMRC1547 516722 6710492	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	346	347	1	0.85
CMRC1546 516893 6710413 337.53 330 -60/297 147 148 1 0.82 CMRC1546 516893 6710413 337.53 330 -60/297 163 164 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1547 516722 6710492 333.2 252 -60/297 4 9 5 0.44 CMRC1547 516722 6710492 333.2 252 -60/297 18 23 5 0.36 CMRC1547 516722 6710492<	CMRC1545D	516877.63	6710631.15	351.6	384.1	/	361	362	1	0.52
CMRC1546 516893 6710413 337.53 330 -60/297 163 164 1 0.85 CMRC1546 516893 6710413 337.53 330 -60/297 171 172 1 1.73 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1547 516722 6710492 333.2 252 -60/297 4 9 5 0.44 CMRC1547 516722 6710492 333.2 252 -60/297 18 23 5 0.36 CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 </td <td>CMRC1546</td> <td>516893</td> <td>6710413</td> <td>337.53</td> <td>330</td> <td>-60/297</td> <td>15</td> <td>18</td> <td>3</td> <td>0.7</td>	CMRC1546	516893	6710413	337.53	330	-60/297	15	18	3	0.7
CMRC1546 516893 6710413 337.53 330 -60/297 171 172 1 1.73 CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 315 319 4 0.46 CMRC1547 516722 6710492 333.2 252 -60/297 4 9 5 0.44 CMRC1547 516722 6710492 333.2 252 -60/297 18 23 5 0.36 CMRC1547 516722 6710492 333.2 252 -60/297 72 74 2 0.73 CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 <td>CMRC1546</td> <td>516893</td> <td>6710413</td> <td>337.53</td> <td>330</td> <td>-60/297</td> <td>147</td> <td>148</td> <td>1</td> <td>0.82</td>	CMRC1546	516893	6710413	337.53	330	-60/297	147	148	1	0.82
CMRC1546 516893 6710413 337.53 330 -60/297 267 269 2 6.12 CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 315 319 4 0.46 CMRC1547 516722 6710492 333.2 252 -60/297 4 9 5 0.44 CMRC1547 516722 6710492 333.2 252 -60/297 18 23 5 0.36 CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 333.2 252 -60/297 112 123 1 0.52 CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492<	CMRC1546	516893	6710413	337.53	330	-60/297	163	164	1	0.85
CMRC1546 516893 6710413 337.53 330 -60/297 297 301 4 0.6 CMRC1546 516893 6710413 337.53 330 -60/297 315 319 4 0.46 CMRC1547 516722 6710492 333.2 252 -60/297 4 9 5 0.44 CMRC1547 516722 6710492 333.2 252 -60/297 18 23 5 0.36 CMRC1547 516722 6710492 333.2 252 -60/297 72 74 2 0.73 CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 333.2 252 -60/297 122 123 1 0.52 CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492 <td>CMRC1546</td> <td>516893</td> <td>6710413</td> <td>337.53</td> <td>330</td> <td>-60/297</td> <td>171</td> <td>172</td> <td>1</td> <td>1.73</td>	CMRC1546	516893	6710413	337.53	330	-60/297	171	172	1	1.73
CMRC1546 516893 6710413 337.53 330 -60/297 315 319 4 0.46 CMRC1547 516722 6710492 333.2 252 -60/297 4 9 5 0.44 CMRC1547 516722 6710492 333.2 252 -60/297 18 23 5 0.36 CMRC1547 516722 6710492 333.2 252 -60/297 72 74 2 0.73 CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 333.2 252 -60/297 122 123 1 0.52 CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 <td>CMRC1546</td> <td>516893</td> <td>6710413</td> <td>337.53</td> <td>330</td> <td>-60/297</td> <td>267</td> <td>269</td> <td>2</td> <td>6.12</td>	CMRC1546	516893	6710413	337.53	330	-60/297	267	269	2	6.12
CMRC1547 516722 6710492 333.2 252 -60/297 4 9 5 0.44 CMRC1547 516722 6710492 333.2 252 -60/297 18 23 5 0.36 CMRC1547 516722 6710492 333.2 252 -60/297 72 74 2 0.73 CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 333.2 252 -60/297 122 123 1 0.52 CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492	CMRC1546	516893	6710413	337.53	330	-60/297	297	301	4	0.6
CMRC1547 516722 6710492 333.2 252 -60/297 18 23 5 0.36 CMRC1547 516722 6710492 333.2 252 -60/297 72 74 2 0.73 CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 333.2 252 -60/297 122 123 1 0.52 CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492 333.2 252 -60/297 166 175 9 0.99 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1548 517458 6711772<	CMRC1546	516893	6710413	337.53	330	-60/297	315	319	4	0.46
CMRC1547 516722 6710492 333.2 252 -60/297 72 74 2 0.73 CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 333.2 252 -60/297 122 123 1 0.52 CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492 333.2 252 -60/297 166 175 9 0.99 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772 </td <td>CMRC1547</td> <td>516722</td> <td>6710492</td> <td>333.2</td> <td>252</td> <td>-60/297</td> <td>4</td> <td>9</td> <td>5</td> <td>0.44</td>	CMRC1547	516722	6710492	333.2	252	-60/297	4	9	5	0.44
CMRC1547 516722 6710492 333.2 252 -60/297 106 107 1 0.83 CMRC1547 516722 6710492 333.2 252 -60/297 122 123 1 0.52 CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492 333.2 252 -60/297 166 175 9 0.99 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 195 201 6 0.97 CMRC1548 517458 6711	CMRC1547	516722	6710492	333.2	252	-60/297	18	23	5	0.36
CMRC1547 516722 6710492 333.2 252 -60/297 122 123 1 0.52 CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492 333.2 252 -60/297 166 175 9 0.99 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772	CMRC1547	516722	6710492	333.2	252	-60/297	72	74	2	0.73
CMRC1547 516722 6710492 333.2 252 -60/297 131 141 10 1.13 CMRC1547 516722 6710492 333.2 252 -60/297 166 175 9 0.99 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 195 201 6 0.97 CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 516178 670832	CMRC1547	516722	6710492	333.2	252	-60/297	106	107	1	0.83
CMRC1547 516722 6710492 333.2 252 -60/297 166 175 9 0.99 CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 195 201 6 0.97 CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772 321.86 186 -60/297 12 13 1 0.51 CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329	CMRC1547	516722	6710492	333.2	252	-60/297	122	123	1	0.52
CMRC1547 516722 6710492 333.2 252 -60/297 181 184 3 0.97 CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 195 201 6 0.97 CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772 321.86 186 -60/297 12 13 1 0.51 CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 <td>CMRC1547</td> <td>516722</td> <td>6710492</td> <td>333.2</td> <td>252</td> <td>-60/297</td> <td>131</td> <td>141</td> <td>10</td> <td>1.13</td>	CMRC1547	516722	6710492	333.2	252	-60/297	131	141	10	1.13
CMRC1547 516722 6710492 333.2 252 -60/297 188 189 1 1.14 CMRC1547 516722 6710492 333.2 252 -60/297 195 201 6 0.97 CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772 321.86 186 -60/297 12 13 1 0.51 CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 <td>CMRC1547</td> <td>516722</td> <td>6710492</td> <td>333.2</td> <td>252</td> <td>-60/297</td> <td>166</td> <td>175</td> <td>9</td> <td>0.99</td>	CMRC1547	516722	6710492	333.2	252	-60/297	166	175	9	0.99
CMRC1547 516722 6710492 333.2 252 -60/297 195 201 6 0.97 CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772 321.86 186 -60/297 12 13 1 0.51 CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 <td>CMRC1547</td> <td>516722</td> <td>6710492</td> <td>333.2</td> <td>252</td> <td>-60/297</td> <td>181</td> <td>184</td> <td>3</td> <td>0.97</td>	CMRC1547	516722	6710492	333.2	252	-60/297	181	184	3	0.97
CMRC1547 516722 6710492 333.2 252 -60/297 195 201 6 0.97 CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772 321.86 186 -60/297 12 13 1 0.51 CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 <td>CMRC1547</td> <td>516722</td> <td>6710492</td> <td>333.2</td> <td>252</td> <td>-60/297</td> <td>188</td> <td>189</td> <td>1</td> <td>1.14</td>	CMRC1547	516722	6710492	333.2	252	-60/297	188	189	1	1.14
CMRC1548 517458 6711772 321.86 186 -60/297 1 2 1 2.46 CMRC1548 517458 6711772 321.86 186 -60/297 12 13 1 0.51 CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 349.17 324 -60/270 144 147 3 0.49 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 </td <td>CMRC1547</td> <td>516722</td> <td>6710492</td> <td></td> <td>252</td> <td>-60/297</td> <td>195</td> <td>201</td> <td>6</td> <td>0.97</td>	CMRC1547	516722	6710492		252	-60/297	195	201	6	0.97
CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 349.17 324 -60/270 144 147 3 0.49 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 349.17 324 -60/270 208 215 7 0.41	CMRC1548	517458	6711772		186	-60/297	1	2	1	2.46
CMRC1548 517458 6711772 321.86 186 -60/297 110 115 5 5.86 CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 349.17 324 -60/270 144 147 3 0.49 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 349.17 324 -60/270 208 215 7 0.41				321.86						
CMRC1548 517458 6711772 321.86 186 -60/297 159 160 1 2.78 CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 349.17 324 -60/270 144 147 3 0.49 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 349.17 324 -60/270 208 215 7 0.41						-60/297				
CMRC1549 516178 6708329 349.17 324 -60/270 6 7 1 0.63 CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 349.17 324 -60/270 144 147 3 0.49 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 349.17 324 -60/270 208 215 7 0.41										
CMRC1549 516178 6708329 349.17 324 -60/270 75 77 2 1.41 CMRC1549 516178 6708329 349.17 324 -60/270 144 147 3 0.49 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 349.17 324 -60/270 208 215 7 0.41										
CMRC1549 516178 6708329 349.17 324 -60/270 144 147 3 0.49 CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 349.17 324 -60/270 208 215 7 0.41						·				
CMRC1549 516178 6708329 349.17 324 -60/270 163 164 1 1.89 CMRC1549 516178 6708329 349.17 324 -60/270 208 215 7 0.41										
CMRC1549 516178 6708329 349.17 324 -60/270 208 215 7 0.41										
						·				
CBMOCLUSEZ JUDITO U/U03/7 347 374 "DU//U 774 775 1 1 1 1 1 1 1 1 1	CMRC1549	516178	6708329	349.17	324	-60/270	224	225	1	0.65

CMRC1549	516178	6708329	349.17	324	-60/270	231	235	4	0.35
CMRC1549	516178	6708329	349.17	324	-60/270	239	240	1	13.3
CMRC1549	516178	6708329	349.17	324	-60/270	253	256	3	2.53
CMRC1549	516178	6708329	349.17	324	-60/270	262	270	8	0.61
CMRC1549	516178	6708329	349.17	324	-60/270	280	287	7	1.2
CMRC1549	516178	6708329	349.17	324	-60/270	291	296	5	0.94
CMRC1549	516386	6707973	349.86	180		6	7	1	0.94
					-60/270	40			
CMRC1550	516386	6707973	349.86	180	-60/270	59	41	1	0.88
CMRC1550	516386	6707973	349.86	180	-60/270		60	1	0.7
CMRC1550	516386	6707973	349.86	180	-60/270	64	65	1	1.44
CMRC1550	516386	6707973	349.86	180	-60/270	86	90	4	0.51
CMRC1550	516386	6707973	349.86	180	-60/270	109	110	1	1.03
CMRC1550	516386	6707973	349.86	180	-60/270	120	128	8	0.9
CMRC1550	516386	6707973	349.86	180	-60/270	136	137	1	0.65
CMRC1550	516386	6707973	349.86	180	-60/270	168	169	1	0.52
CMRC1551	516127	6707778	356.04	162	-60/270	51	52	1	6.16
CMRC1551	516127	6707778	356.04	162	-60/270	75	84	9	2.06
CMRC1551	516127	6707778	356.04	162	-60/270	93	94	1	0.84
CMRC1551	516127	6707778	356.04	162	-60/270	101	108	7	1.82
CMRC1551	516127	6707778	356.04	162	-60/270	121	122	1	0.53
CMRC1551	516127	6707778	356.04	162	-60/270	146	148	2	18.44
CMRC1552	516126	6707806	355.82	150	-60/270	147	148	1	0.9
CMRC1553	516119	6707830	356.13	156	-60/270	51	52	1	0.59
CMRC1553	516119	6707830	356.13	156	-60/270	77	80	3	1.24
CMRC1553	516119	6707830	356.13	156	-60/270	96	113	17	2.3
CMRC1553	516119	6707830	356.13	156	-60/270	123	125	2	0.91
CMRC1553	516119	6707830	356.13	156	-60/270	137	138	1	0.72
CMRC1554	516370	6707299	352.76	192	-60/270	0	1	1	0.59
CMRC1554	516370	6707299	352.76	192	-60/270	58	60	2	2.45
CMRC1554	516370	6707299	352.76	192	-60/270	75	76	1	0.8
CMRC1554	516370	6707299	352.76	192	-60/270	84	87	3	1.92
CMRC1554	516370	6707299	352.76	192	-60/270	110	117	7	2.6
CMRC1554	516370	6707299	352.76	192	-60/270	138	142	4	0.44
CMRC1554	516370	6707299	352.76	192	-60/270	152	153	1	7.61
CMRC1554	516370	6707299	352.76	192	-60/270	158	159	1	1.29
CMRC1554	516370	6707299	352.76	192	-60/270	165	166	1	0.51
CMRC1554	516370	6707299	352.76	192	-60/270	186	187	1	1.38
CMRC1555	516306	6707228	352.66	108	-60/270	0	1	1	0.78
CMRC1555	516306	6707228	352.66	108	-60/270	12	13	1	0.5
CMRC1555	516306	6707228	352.66	108	-60/270	52	73	21	0.58
CMRC1555	516306	6707228	352.66	108	-60/270	81	87	6	0.95
CMRC1555	516306	6707228	352.66	108	-60/270	96	97	1	0.61
CMRC1555	516306	6707228	352.66	108	-60/270	104	105	1	0.76
CMRC1556	516294	6707191	352.81	114	-60/270	0	1	1	2.12
CMRC1556	516294	6707191	352.81	114	-60/270	34	35	1	0.68

CMRC1556	516294	6707191	352.81	114	-60/270	54	56	2	2.14
CMRC1557	516356.07	6709698.87	341.88	294	-60/270	198	202	4	2.14
	516356.07	6709698.87		294		206	202	1	0.6
CMRC1557	516356.07		341.88	294	-60/270	218		3	0.6
CMRC1557		6709698.87	341.88		-60/270		221		
CMRC1557	516356.07	6709698.87	341.88	294	-60/270	227	228	1	1.07
CMRC1557	516356.07	6709698.87	341.88	294	-60/270	238	241	3	0.51
CMRC1557	516356.07	6709698.87	341.88	294	-60/270	246	255	9	0.79
CMRC1557	516356.07	6709698.87	341.88	294	-60/270	262	279	17	1.8
CMRC1558	516459.48	6709467.06	350.54	186	-60/300	69	70	1	0.6
CMRC1558	516459.48	6709467.06	350.54	186	-60/300	78	79	1	0.58
CMRC1558	516459.48	6709467.06	350.54	186	-60/300	108	109	1	1.44
CMRC1558	516459.48	6709467.06	350.54	186	-60/300	116	117	1	1.58
CMRC1558	516459.48	6709467.06	350.54	186	-60/300	122	124	2	1.09
CMRC1558	516459.48	6709467.06 6709467.06	350.54	186	-60/300	140	155	15	1.75
CMRC1558	516459.48		350.54	186	-60/300	181	182	1	8.43
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	1	2	1	0.69
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	37	42	5	1.59
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	57	58	1	0.76
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	85	87	2	0.85
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	101	102	1	0.71
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	107	108	1	1.11
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	143	144	1	2.01
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	195	196	1	0.54
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	202	203	1	0.67
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	211	212	1	1.36
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	233	239	6	1.76
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	243	246	3	12.53
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	262	264	2	0.86
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	268	282	14	2.64
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	286	291	5	0.69
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	295	296	1	0.94
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	310	317	7	0.72
CMRC1559	516246.22	6708788.78	338.64	342	-55/270	325	338	13	0.58
CMRC1560	516033.26	6706479.56	345.34	168	-57/270	52	53	1	1.31
CMRC1560	516033.26	6706479.56	345.34	168	-57/270	101	102	1	11.9
CMRC1560	516033.26	6706479.56	345.34	168	-57/270	132	133	1	0.73
CMRC1560	516033.26	6706479.56	345.34	168	-57/270	139	140	1	0.81
CMRC1561	515617.05	6709694.62	346.85	288	-60/320	65	66	1	3.21
CMRC1561	515617.05	6709694.62	346.85	288	-60/320	174	177	3	1.04
CMRC1561	515617.05	6709694.62	346.85	288	-60/320	257	258	1	5.16
CMRC1561	515617.05	6709694.62	346.85	288	-60/320	272	273	1	0.52
CMRC1561	515617.05	6709694.62	346.85	288	-60/320	277	279	2	1.36
CMRC1562	515592.67	6709721.47	345.4	250	-60/320	160	162	2	5.17
CMRC1562	515592.67	6709721.47	345.4	250	-60/320	227	231	4	0.43
CMRC1562	515592.67	6709721.47	345.4	250	-60/320	240	244	4	4.74

CNAPCAECS	F45242.70	6700642.45	244.27	430	F7/220	24	25	,	0.57
CMRC1563	515243.78	6709642.45	341.27	120	-57/320	24	25	1	0.57
CMRC1563	515243.78	6709642.45	341.27	120	-57/320	57	58	1	0.87
CMRC1563	515243.78	6709642.45	341.27	120	-57/320	77	78	1	0.54
CMRC1564	515279.44	6709674.51	341.22	138	-57/320	39	41	2	2.13
CMRC1564	515279.44	6709674.51	341.22	138	-57/320	79	80	1	1.84
CMRC1565	515272.19	6709604.24	341.72	180	-57/320	154	156	2	1.33
CMRC1566	515356.98	6709773.88	340.29	138	-57/320	23	24	1	1.45
CMRC1566	515356.98	6709773.88	340.29	138	-57/320	86	87	1	0.62
CMRC1567	515433.89	6709804.44	341.14	120	-57/320	35	44	9	0.77
CMRC1567	515433.89	6709804.44	341.14	120	-57/320	48	49	1	0.74
CMRC1567	515433.89	6709804.44	341.14	120	-57/320	55	56	1	0.92
CMRC1567	515433.89	6709804.44	341.14	120	-57/320	63	72	9	1.45
CMRC1568	515471	6709800	342	120	-57/320	53	57	4	1.83
CMRC1568	515471	6709800	342	120	-57/320	61	62	1	1.08
CMRC1568	515471	6709800	342	120	-57/320	71	72	1	3.37
CMRC1568	515471	6709800	342	120	-57/320	78	91	13	2.8
CMRC1568	515471	6709800	342	120	-57/320	103	105	2	1.24
CMRC1568	515471	6709800	342	120	-57/320	112	113	1	1.41
CMRC1568	515471	6709800	342	120	-57/320	118	119	1	0.87
CMRC1569	515426	6709836	340.67	114	-60/320	23	25	2	11.56
CMRC1569	515426	6709836	340.67	114	-60/320	34	35	1	1.67
CMRC1570	515426	6709685	343	240	-60/320	1	2	1	0.68
CMRC1570	515426	6709685	343	240	-60/320	37	54	17	0.9
CMRC1570	515426	6709685	343	240	-60/320	76	77	1	1.1
CMRC1570	515426	6709685	343	240	-60/320	81	85	4	0.4
CMRC1570	515426	6709685	343	240	-60/320	97	98	1	0.92
CMRC1570	515426	6709685	343	240	-60/320	140	141	1	0.54
CMRC1570	515426	6709685	343	240	-60/320	149	153	4	1.18
CMRC1570	515426	6709685	343	240	-60/320	157	160	3	1
CMRC1570	515426	6709685	343	240	-60/320	173	175	2	0.71
CMRC1570	515426	6709685	343	240	-60/320	180	186	6	1.79
CMRC1570	515426	6709685	343	240	-60/320	222	223	1	0.8
CMRC1571	515515.26	6709597	346	270	-60/320	100	101	1	1.73
CMRC1571	515515.26	6709597	346	270	-60/320	158	159	1	1.28
CMRC1571	515515.26	6709597	346	270	-60/320	179	180	1	1.79
CMRC1571	515515.26	6709597	346	270	-60/320	187	197	10	1.23
CMRC1571	515515.26	6709597	346	270	-60/320	203	210	7	0.99
CMRC1571	515515.26	6709597	346	270	-60/320	217	224	7	1.5
CMRC1571	515515.26	6709597	346	270	-60/320	241	242	1	0.61
CMRC1572	515453.98	6709724.42	342.78	210	-60/320	38	43	5	0.5
CMRC1572	515453.98	6709724.42	342.78	210	-60/320	49	50	1	0.58
CMRC1572	515453.98	6709724.42	342.78	210	-60/320	54	56	2	0.99
CMRC1572	515453.98	6709724.42	342.78	210	-60/320	86	87	1	0.58
CMRC1572	515453.98	6709724.42	342.78	210	-60/320	102	103	1	1.08
CMRC1572	515453.98	6709724.42	342.78	210	-60/320	166	167	1	2.38

CMDC1E73	F1F470	6700697	242.00	210	-60/320	42	46	4	0.72
CMRC1573	515478	6709687	343.88	210	, , , , ,	42	46	4	0.73
CMRC1573	515478	6709687	343.88	210	-60/320	55	57	2	1.75
CMRC1573	515478	6709687	343.88	210	-60/320	73	75	2	0.74
CMRC1573	515478	6709687	343.88	210	-60/320	88	89	1	0.69
CMRC1573	515478	6709687	343.88	210	-60/320	110	112	2	1.86
CMRC1573	515478	6709687	343.88	210	-60/320	165	170	5	0.79
CMRC1573	515478	6709687	343.88	210	-60/320	176	177	1	0.55
CMRC1573	515478	6709687	343.88	210	-60/320	187	188	1	0.9
CMRC1573	515478	6709687	343.88	210	-60/320	208	209	1	1.31
CMRC1574	515512	6709659	345	270	-60/320	43	44	1	1.06
CMRC1574	515512	6709659	345	270	-60/320	54	55	1	9.2
CMRC1574	515512	6709659	345	270	-60/320	68	72	4	0.58
CMRC1574	515512	6709659	345	270	-60/320	97	98	1	1.13
CMRC1574	515512	6709659	345	270	-60/320	103	111	8	0.71
CMRC1574	515512	6709659	345	270	-60/320	138	140	2	5.28
CMRC1574	515512	6709659	345	270	-60/320	156	159	3	0.44
CMRC1574	515512	6709659	345	270	-60/320	192	193	1	0.56
CMRC1574	515512	6709659	345	270	-60/320	210	211	1	1.16
CMRC1574	515512	6709659	345	270	-60/320	218	219	1	4.27
CMRC1574	515512	6709659	345	270	-60/320	228	232	4	1.71
CMRC1575	515558	6709609	346.53	222	-60/320	47	48	1	0.54
CMRC1575	515558	6709609	346.53	222	-60/320	54	55	1	0.56
CMRC1575	515558	6709609	346.53	222	-60/320	80	81	1	1.26
CMRC1575	515558	6709609	346.53	222	-60/320	91	92	1	0.81
CMRC1575	515558	6709609	346.53	222	-60/320	124	125	1	0.64
CMRC1575	515558	6709609	346.53	222	-60/320	130	131	1	1.31
CMRC1575	515558	6709609	346.53	222	-60/320	175	176	1	0.63
CMRC1575	515558	6709609	346.53	222	-60/320	186	190	4	0.78
CMRC1575	515558	6709609	346.53	222	-60/320	202	203	1	2.27
CMRC1576	515496	6709760	343.03	210	-60/320	41	42	1	0.7
CMRC1576	515496	6709760	343.03	210	-60/320	54	57	3	0.45
CMRC1576	515496	6709760	343.03	210	-60/320	68	73	5	1.39
CMRC1576	515496	6709760	343.03	210	-60/320	84	93	9	0.98
CMRC1576	515496	6709760	343.03	210	-60/320	102	103	1	0.53
CMRC1576	515496	6709760	343.03	210	-60/320	107	109	2	0.78
CMRC1576	515496	6709760	343.03	210	-60/320	128	129	1	2.71
CMRC1576	515496	6709760	343.03	210	-60/320	133	134	1	3.02
CMRC1576	515496	6709760	343.03	210	-60/320	152	153	1	0.8
CMRC1576	515496	6709760	343.03	210	-60/320	163	171	8	4.25
CMRC1576	515496	6709760	343.03	210	-60/320	176	180	4	1.7
CMRC1577	515520	6709720	343.86	240	-60/320	45	47	2	0.81
CMRC1577	515520	6709720	343.86	240	-60/320	54	72	18	1.11
CMRC1577	515520	6709720	343.86	240	-60/320	84	85	1	0.74
CMRC1577	515520	6709720	343.86	240	-60/320	96	97	1	1.33
CMRC1577	515520	6709720	343.86	240	-60/320	193	195	2	2.79

CMRC1577	515520	6709720	343.86	240	-60/320	201	202	1	0.54
			İ		,-				
CMRC1577	515520	6709720	343.86	240	-60/320	211	212	1	1.39
CMRC1578	515557	6709681	345.28	222	-60/320	113	115	2	1.71
CMRC1578	515557	6709681	345.28	222	-60/320	120	121	1	0.52
CMRC1578	515557	6709681	345.28	222	-60/320	145	163	18	2.69
CMRC1578	515557	6709681	345.28	222	-60/320	188	189	1	0.78
CMRC1578	515557	6709681	345.28	222	-60/320	194	195	1	0.65
CMRC1579	515579	6709664	345.84	264	-60/320	107	108	1	0.51
CMRC1579	515579	6709664	345.84	264	-60/320	167	168	1	0.82
CMRC1579	515579	6709664	345.84	264	-60/320	185	204	19	3.07
CMRC1579	515579	6709664	345.84	264	-60/320	221	225	4	0.5
CMRC1579	515579	6709664	345.84	264	-60/320	239	240	1	1.25
CMRC1580	515457	6708947	352.99	162	-60/270	2	4	2	1.56
CMRC1580	515457	6708947	352.99	162	-60/270	32	36	4	0.57
CMRC1580	515457	6708947	352.99	162	-60/270	49	50	1	0.55
CMRC1580	515457	6708947	352.99	162	-60/270	149	152	3	1.81
CMRC1581	515496	6709822	342.13	162	-60/320	25	26	1	1.65
CMRC1581	515496	6709822	342.13	162	-60/320	34	41	7	0.45
CMRC1581	515496	6709822	342.13	162	-60/320	49	50	1	0.64
CMRC1581	515496	6709822	342.13	162	-60/320	107	108	1	0.56
CMRC1581	515496	6709822	342.13	162	-60/320	120	122	2	2.37
CMRC1581	515496	6709822	342.13	162	-60/320	146	148	2	1.82
CMRC1582	515467	6709867	341	114	-60/320	40	42	2	3.15
CMRC1583	515528	6709795	343.15	132	-60/320	40	43	3	1.02
CMRC1583	515528	6709795	343.15	132	-60/320	95	96	1	0.72
CMRC1583	515528	6709795	343.15	132	-60/320	113	116	3	5.67
CMRC1583	515528	6709795	343.15	132	-60/320	122	123	1	0.61
CMRC1583	515528	6709795	343.15	132	-60/320	127	128	1	0.52
CMRC1584	515569	6709745	344.65	180	-60/320	60	61	1	3.67
CMRC1584	515569	6709745	344.65	180	-60/320	84	86	2	2.4
CMRC1584	515569	6709745	344.65	180	-60/320	90	101	11	5.05
CMRC1584	515569	6709745	344.65	180	-60/320	108	110	2	2.87
CMRC1584	515569	6709745	344.65	180	-60/320	122	128	6	0.99
CMRC1584	515569	6709745	344.65	180	-60/320	169	173	4	1.37
CMRC1585	515449	6709315	347	120	-60/270	60	67	7	15.04
CMRC1585	515449	6709315	347	120	-60/270	73	74	1	0.83
CMRC1585	515449	6709315	347	120	-60/270	89	90	1	2.26
CMRC1585	515449	6709315	347	120	-60/270	98	100	2	0.88
CMRC1585	515449	6709315	347	120	-60/270	118	120	2	1.35
CMRC1586	515469	6709335	347	144	-60/270	59	60	1	0.67
CMRC1586	515469	6709335	347	144	-60/270	70	75	5	0.46
CMRC1586	515469	6709335	347	144	-60/270	87	88	1	0.71
CMRC1586	515469	6709335	347	144	-60/270	121	122	1	0.78
CMRC1586	515469	6709335	347	144	-60/270	134	138	4	0.65
CMRC1587	515447	6709378	345.43	90	-60/270	48	49	1	0.84

CMRC1587	515447	6709378	345.43	90	-60/270	54	55	1	1.15
CMRC1589	518396	6713538	316	150	-60/300	52	53	1	0.58
CMRC1589	518396	6713538	316	150	-60/300	57	59	2	0.88
CMRC1592	518444	6713560	316	162	-60/300	98	100	2	1.06
CMRC1592	518444	6713560	316	162	-60/300	109	110	1	0.56
CMRC1593	518422	6713609	316	120	-60/300	62	63	1	1.27
CMRC1593	518422	6713609	316	120	-60/300	72	77	5	1.54
CMRC1594	518342	6713604	316	108	-60/120	58	65	7	1.57
CMRC1594	518342	6713604	316	108	-60/120	74	75	1	6.94
CMRC1594	518342	6713604	316	108	-60/120	84	90	6	1.92

Karlawinda

Hole_ID	NAT_East	NAT_North	NAT_RL	Max_Depth	Dip/Azi	Depth_From	Depth_To	Width	Grade
KBAC3184	171362.502	7366281.18	615.905	115	-60.02/132	1	2	1	3.81
KBAC3186	171322.687	7366319.35	614.095	112	-59.83/134	14	15	1	7.65
KBAC3189	171331.713	7366218.39	617.163	112	-59.15/134	28	29	1	1.34
KBAC3190	171310.463	7366237.15	615.962	112	-60.08/134	8	9	1	0.84
KBAC3198	171220.325	7366113.01	618.488	118	-60.01/134	24	25	1	0.51
KBAC3200	171224.214	7366010.19	617.102	112	-60.86/133	23	24	1	1.14
KBAC3209	172339.414	7365910.04	631.815	112	-60.86/314	35	36	1	0.54
KBAC3210	172368.808	7365878.32	630.956	112	-60.45/312	51	52	1	0.73
KBAC3211	172405.497	7365846.06	630.895	115	-59.88/313	31	33	2	0.72
KBAC3211	172405.497	7365846.06	630.895	115	-59.88/313	86	87	1	1
KBAC3212	172442.344	7365808.31	627.595	118	-59.8/314	90	108	18	0.88
KBAC3214	172192.264	7365824.55	622.241	112	-60.28/314	72	76	4	1.04
KBAC3216	172262.911	7365769.04	629.989	112	-59.72/314	42	43	1	0.63
KBAC3217	172052.811	7365757.67	622.048	121	-59.42/314	102	103	1	18.16
KBAC3219	172125.195	7365686.98	624.485	115	-60.44/314	27	35	8	5.9
KBAC3219	172125.195	7365686.98	624.485	115	-60.44/314	42	43	1	1.25
KBAC3220	172161.796	7365651.35	623.78	115	-60.42/315	97	98	1	0.56
KBAC3223	172048.771	7365662.08	629.83	124	-59.9/315	30	41	11	1.87
KBAC3223	172048.771	7365662.08	629.83	124	-59.9/315	50	55	5	0.29
KBAC3224	172084.02	7365625.44	629.191	124	-60.64/315	77	87	10	0.82
KBAC3224	172084.02	7365625.44	629.191	124	-60.64/315	105	106	1	0.58
KBAC3227	172542.731	7366024.85	622.868	115	-59.49/313	1	4	3	0.49
KBAC3249	171983.366	7366729.12	610.4	40	-60/134	32	36	4	0.64
KBAC3441	199771	7371053	597.142	72	-90/0	56	60	4	0.54
KBRC2149	172280.994	7365749.9	629.592	156	-60.27/317	57	63	6	1.14
KBRC2151	172176.853	7365743.04	621.901	120	-59.71/312	45	46	1	1.25
KBRC2152	172199.303	7365722.51	622.958	144	-60.03/313	38	42	4	0.51
KBRC2348	203318.904	7368629.13	588.605	114	-60.05/104	57	60	3	0.93
KBRC2349	203222.901	7368655.33	588.407	156	-60.28/106	91	93	2	0.63
KBRC2349	203222.901	7368655.33	588.407	156	-60.28/106	138	140	2	0.6
KBRC2349	203222.901	7368655.33	588.407	156	-60.28/106	144	147	3	2.78

I			 		İ		_	I	I
KBRC2350	203306.24	7368581.43	588.578	114	-60.74/104	19	20	1	0.64
KBRC2350	203306.24	7368581.43	588.578	114	-60.74/104	50	56	6	0.74
KBRC2351	203210.818	7368607.69	588.147	144	-60.88/105	59	60	1	1.44
KBRC2351	203210.818	7368607.69	588.147	144	-60.88/105	68	69	1	1.48
KBRC2351	203210.818	7368607.69	588.147	144	-60.88/105	86	87	1	0.65
KBRC2352	203296.053	7368532.3	588.448	114	-60.94/105	19	21	2	1.07
KBRC2352	203296.053	7368532.3	588.448	114	-60.94/105	35	36	1	0.78
KBRC2353	203198.207	7368558.27	588.163	150	-60.56/106	48	49	1	1
KBRC2354	203281.865	7368484.37	588.229	114	-60.64/104	49	50	1	1.83
KBRC2354	203281.865	7368484.37	588.229	114	-60.64/104	96	102	6	1.21
KBRC2355	203186.078	7368510.46	588.034	144	-59.97/104	22	23	1	0.58
KBRC2355	203186.078	7368510.46	588.034	144	-59.97/104	79	83	4	0.31
KBRC2355	203186.078	7368510.46	588.034	144	-59.97/104	98	100	2	0.73
KBRC2356	206770.767	7367323.36	585.271	114	-62.94/56	83	84	1	0.93
KBRC2356	206770.767	7367323.36	585.271	114	-62.94/56	91	92	1	0.72
KBRC2357	206806.584	7367315.84	585.333	108	-60.85/59	72	75	3	3.02
KBRC2357	206806.584	7367315.84	585.333	108	-60.85/59	88	89	1	0.57
KBRC2358	206799.975	7367281.77	585.331	108	-59.46/60	79	82	3	5.24
KBRC2358	206799.975	7367281.77	585.331	108	-59.46/60	86	90	4	3.56
KBRC2359	172360.745	7365917.02	631.47	72	-60/314	5	7	2	24.66
KBRC2359	172360.745	7365917.02	631.47	72	-60/314	50	51	1	0.74
KBRC2361	172472.035	7365812.35	625.412	162	-60.21/313	117	118	1	1.01
KBRC2362	172388.15	7365862.69	631.08	84	-59.97/313	44	45	1	1.72
KBRC2362	172388.15	7365862.69	631.08	84	-59.97/313	67	68	1	0.55
KBRC2363	172427.322	7365822.13	629.495	132	-59.17/313	114	115	1	0.77
KBRC2364	172387.928	7365823.07	629.864	114	-59.96/313	55	56	1	0.58
KBRC2367	172440.616	7365771.18	625.249	180	-60.19/312	136	137	1	0.53
KBRC2367	172440.616	7365771.18	625.249	180	-60.19/312	160	161	1	1.54
KBRC2369	172301.994	7365766.04	629.733	108	-60.31/312	59	63	4	1.05
KBRC2370	172319.773	7365749.31	629.071	126	-59.64/314	79	82	3	0.53
KBRC2371	172300.488	7365735.18	629.171	120	-60.09/315	82	83	1	0.76
KBRC2373	172250.671	7365713.19	628.781	114	-60.07/316	74	77	3	7.09
KBRC2374	172267.697	7365695.17	628.69	144	-60.51/313	102	103	1	1.61
KBRC2375	172259.447	7365667.31	628.384	156	-60.31/314	117	120	3	1.64
KBRC2375	172259.447	7365667.31	628.384	156	-60.31/314	124	125	1	0.61
KBRC2376	172179.996	7365707.98	622.587	78	-59.82/314	43	44	1	0.97
KBRC2378	172217.947	7365672.92	627.68	120	-60.2/313	91	98	7	2.14
KBRC2379	172236.676	7365655.59	628.092	150	-60.34/317	124	125	1	0.52
KBRC2380	172256.748	7365638.27	627.708	168	-60.25/314	146	149	3	0.79
KBRC2383	172236.964	7365731.45	626.706	90	-60.36/315	50	54	4	11.91
KBRC2403	172972.334	7366131.9	618.985	96	-60.02/315	25	27	2	8.59
KBRC2409	172414.554	7365892.45	625.881	90	-55.31/283.8	45	46	1	1.25
KBRC2410	172023.445	7365678.46	626.253	60	-73.47/315.4	1	13	12	0.76
KBRC2410	172023.445	7365678.46	626.253	60	-73.47/315.4	30	31	1	0.7
KBRC2411	172055.266	7365620.8	630	126	-60.02/314.88	91	96	5	0.68

					1	1	i	i	
KBRC2412	172094.103	7365584.41	629.197	180	-60.31/315.06	111	112	1	0.83
KBRC2413	172000.226	7365635.91	631.083	120	-60.04/314.23	42	54	12	1.48
KBRC2413	172000.226	7365635.91	631.083	120	-60.04/314.23	71	72	1	0.54
KBRC2414	172020.305	7365618.29	631.097	144	-59.89/315.08	87	98	11	0.56
KBRC2416	172008.813	7365595.44	631.296	150	-59.48/316.62	75	76	1	0.62
KBRC2416	172008.813	7365595.44	631.296	150	-59.48/316.62	87	88	1	0.54
KBRC2416	172008.813	7365595.44	631.296	150	-59.48/316.62	107	110	3	0.46
KBRC2416	172008.813	7365595.44	631.296	150	-59.48/316.62	114	118	4	1.13
KBRC2417	172046.713	7365560.29	630.272	192	-60.21/316.97	102	103	1	0.57
KBRC2417	172046.713	7365560.29	630.272	192	-60.21/316.97	162	165	3	0.69
KBRC2417	172046.713	7365560.29	630.272	192	-60.21/316.97	169	170	1	0.6
KBRC2418	171969.652	7365597.19	631.483	132	-60.36/313.22	110	111	1	0.54
KBRC2419	171985.424	7365582.5	631.399	150	-59.29/314.79	107	108	1	1.21
KBRC2429	172079.31	7365696.96	623.583	60	-60.95/312.54	11	15	4	0.55
KBRC2430	172120.185	7365660.98	626.947	120	-59.75/315.14	58	59	1	1.02
KBRC2433	172025.649	7365648.86	629.685	90	-55.63/315.76	41	56	15	0.66
KBRC2433	172025.649	7365648.86	629.685	90	-55.63/315.76	60	61	1	0.55
KBRC2436	171452.757	7365594.17	629.753	78	-60.32/315.7	46	47	1	0.51
KBRC2437	171489.746	7365560.03	624.103	108	-59.78/314.07	78	79	1	0.54
KBRC2439	172211.84	7365744.92	624.143	72	-60.42/313.85	22	24	2	11.67

Appendix 2 JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria JORC Code explanation

Sampling techniques

- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.
- Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

Commentary

RC drilling at KGP and MGGP completed by Topdrill with the same techniques and process at both. For Reverse Circulation (RC) drilling 2kg - 3kg samples are split from dry 1m bulk samples. The sample was collected through a cyclone and cone splitter. DD samples were collected at 0.3-1m intervals with half sawn 2kg - 3kg core samples sent to for Au analysis.

For regional first pass RC drilling 1m sample was collected in a bucket and then tipped in neat lines on the ground. The piles were then sampled by using a spear to collect a field composite (4m RC) 2.0kg to 3.0kg sample which was then placed in a calico bag. Field duplicates were not collected for the regional RC drilling. CRM were inserted at a ratio of 1:30 composites for regional RC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. +100-200ppb then have their corresponding 1m rig split samples sent for fire assay with the below 1m QAQC applied appropriate for use in JORC resource reporting.

1m RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.

Samples were sent to the laboratory where they were pulverised to produce a 50 g charge for fire assay.

For regional aircore exploration (AC) drilling a primary sample was collected from the drill rig. The sample was collected in a bucket and then tipped in neat lines on the ground. The piles were then sampled by using a spear to collect a field composite (4m AC) 2.0kg to 3.0kg sample which was then placed in a calico bag. The last 1m interval for each regional AC hole (EOH) was sampled separately for multi element analysis. +100-200ppb then have their corresponding 1m rig split samples sent for fire assay with the below 1m OAOC applied appropriate for use in JORC resource reporting.

Field duplicates were not collected for the regional AC drilling. CRM were inserted at a ratio of 1:30 composites for regional AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.

Regional AC samples were sent to ALS laboratory where they were pulverised to produce a 25 g charge for aqua regia 51 elements including Au and element multielement analysis for the field composites using ALS code AuME-TL43analysis.

Rock chip samples were taken in the field by CMM geologists during field inspection. Rock samples were collected from surface outcrop. Outcrop samples are considered to be in situ resistant portions of the geology. Samples weighing between 0.5kg and 3kg were collected All sample locations were

Criteria	JORC Code explanation	Commentary
		collected using a hand-held GPS with +/-5m accuracy using MGA zone 51 (GDA94) coordinate system.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC: Topdrill Drilling drill rig was used to drill the RC drill holes: Hole diameter was 140mm. AC: Prospect Drilling was used for AC drilling using an 89mm blade bit. DD: Topdrill RC and DD drill rig was used with RC pre-collars averaging 190m depth, then NQ2 coring to EOH. All core oriented by reflex instrument.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	RC: Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney. At the end of each metre the bit was lifted off the bottom to separate each metre drilled. The majority of samples were of good quality with ground water having minimal effect on sample quality or recovery. There is no obvious relationship between sample recovery and grade. DD: Diamond Core recoveries are very high due to the competent ground. Any core recovery issues are noted on core blocks and logged. There is no known relationship between sample recovery and grade. AC: Visual recovery information was collected at the time of the AC drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Reverse circulation chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chip trays were stored on site in a sealed container. Chips were visually inspected and logged by an on-site geologist to record lithology (including rock type, oxidation state, weathering, grain size, colour, mineralogy, and texture), alteration, mineralisation, veining, structure, sample quality (dry/wet, contamination) and approximate water flow down hole. Mineralisation, veining and water flow were quantitative or semi-quantitative in nature; the remainder of logging was qualitative. DD: Qualitative: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Magnetic susceptibility recorded on a per metre basis in core holes. Core hole RQD logged. Core photographed wet and dry. Bulk density determination. Logging is both qualitative and quantitative or semi-quantitative in nature. AC: AC chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Holes of interest are retained, all others are disposed of. Chip trays of all EOH intervals are retained. Chip trays were stored on site in a sealed container. Chips were visually inspected and logged by an on-site geologist to record lithology (including rock type, oxidation state, weathering, grain size, colour, mineralogy, and texture), alteration, mineralisation, veining, structure, sample quality (dry/wet, contamination) and approximate water flow down hole. Mineralisation, veining and water flow were quantitative or semi-quantitative in nature; the remainder of logging was qualitative. Rockchips CMM Geologists recorded a short geological description of each sample location including lithology, alteration, veining, and mineralization.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	RC holes samples were split from dry, 1m bulk samples via a cone splitter directly from the cyclone.

Criteria	JORC Code explanation	Commentary
sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, 	RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
	including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	The duplicates and CRM's were submitted to the lab using unique sample ID's.
		2kg – 3kg RC and DD samples are submitted to the laboratory.
		Samples are oven dried at 105°C then jaw crushed to -10mm followed by a Boyd crush to a nominal -2mm. Samples were rotary split to 2.5kg. Samples were then pulverised in LM5 mills to 85% passing 75µm under sample preparation code SP3000 which consists of a 5-minute extended preparation for RC/Soil/RAB. The extended time for the pulverisation is to improve the pulverisation of samples due to the presence of garnets in the samples.
		All RC and DD analysed for Au using the FA50AAS technique which is a 50g lead collection fire assay.
	v T T F T T T T T T T T T T T T T T T T	All 4m composite samples were assayed using ALS AuME-TL43, Au + ME by aqua regia extraction with ICP-MS finish.25g sample
		This sample preparation technique is appropriate for the MGGP and KGP; and is standard industry practice for a gold deposit.
		Samples greater than 3kg are split prior to pulverizing and the remainder discarded.
		Regional AC samples were collected as 4m field composites using a spear from the individual 1m sample piles on the ground. Field duplicates were not collected for the regional AC drilling. CRM were inserted at a ratio of 1:30 composites for AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. The CRM's were submitted to the lab using unique sample ID's. 2kg – 3kg AC samples are submitted to the laboratory. Samples are oven dried at 105°C then crushed and pulverised.
		Rock chips were prepared by ALS PUL-24 preparation code, Dry, crush ~2mm, pulverise 1.2kg up to 3kg.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	RC and DD: Drilling samples were submitted to ALS in Perth. 1m RC samples were assayed by 50gm fire assay which is a total assay.
laboratory tests	applied and their derivation, etc.	RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
	established.	Regional AC drilling samples were submitted to ALS laboratory in Perth. No field duplicates were collected for the AC drilling. CRM were inserted at a ratio of 1:30 composites for the AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
		Rock chips were analysed by ALS AuME-TL43 analysis code

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	Logging and sampling were recorded directly into a Micromine Geobank template, which utilises lookup tables and in file validation on a Toughbook by the geologist on the rig. Validated data was sent to the database administrator in Perth who then carried out independent verifications using Maxwell's Datashed. Assay results when received were plotted on section and were verified against neighbouring holes.
	Discuss any adjustment to assay data.	QAQC reports were generated on a hole-by-hole basis by the database administrator as results were received.
		Capricorn Metals sampling, data collection in field is captured in an electronic logging system for geological, regolith, sample id, assay and surveying information.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	All resource related drillhole collar positions were surveyed using hand held GPS. Drillhole location data was initially captured in the MGA94 grid system. Before further resource evaluation work the drillhole locations will be picked up with DGPS by qualified surveyors.
		Down hole surveys were undertaken on 30m increments from end of hole, using a Reflex down hole gyroscopic tool. The natural surface topography was modelled using a DTM generated from airborne survey, this includes waste dumps and some in-pit waste dumping. Also available are pit surveys of the mining voids at the end of historical mining to enable depletion of the CMM resource. The pit surveys and topography surface were checked in Google Earth for accuracy. Horizontal point accuracy is expected to be <5m and vertical accuracy to 0.5m. The reference datum was GDA94 and the projection was MGA Zone 50. Topographic control appears to be of good quality and is considered adequate for resource estimation. Regional AC drillhole collar positions were surveyed before and after drilling using a handheld GPS. Drillhole location data was captured in the MGA94 grid system. Down hole surveys were not undertaken for the any of the AC drilling due to the shallow nature of the holes. Any regional AC intercepts will be followed up with infill RC drilling using downhole surveys and more accurate collar survey technique. Soil and rock chips sample location were captured using a handheld GPS. All GPS data points were later visualised using ARCGIS software to ensure they were recorded in the correct position The grid system used is UTM GDA 94 Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	RC and DD Samples were collected and analysed for each metre down the hole. RC hole spacing was between 50m N x 50m E and 25m N x 25m E, sufficient for resource estimation. Regional AC samples were collected and analysed for gold and multielement by 4m field composites down the hole, with the EOH individual metre sampled separately for multi element analysis. Hole spacing was predominantly 100m x 400m, 200m x 200m and 50m x 100m for AC. Sample locations for the rockchips were selected based on availability of material to sample in areas

Criteria	JORC Code explanation	Commentary
		of interest.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill lines are oriented across strike on an MGA grid. MGGP orebody dips at 80 degrees to the East and KGP 25 degrees to the west. Holes in the drill Programmes have been mostly drilled at inclination of -55 to -60 degrees at MGGP and KGP. The orientation of the drilling is suitable for the mineralisation style and orientation of the target mineralisation. Where possible the AC exploration drilling programmes are planned to be drilled perpendicular to the orientation of the geology. Significant mineralisation intervals in the AC will be followed up with infill RC drilling to better understand the orientation of mineralisation.
Sample security	The measures taken to ensure sample security.	Calico sample bags are sealed into green bags/polyweave bags and cable tied. These bags were then sealed in bulka bags by company personnel and dispatched by third party contractor. In-company reconciliation is completed with laboratory assay returns. Soil and rock chip samples collected by CMM and stored on site, prior to being transported to the laboratory ALS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Competent Person for Exploration Results reported here has visited the project areas where sampling has taken place and has reviewed and confirmed the sampling procedures.

Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	MGGP: The resource is located across mining tenements held by wholly owned Capricorn subsidiaries METROVEX PTY LTD and CRIMSON METALS PTY LTD; being M 59/772, E 59/2450, E 59/2594, E 59/2606, G 59/11, G 59/12, G 59/13, G 59/14, G 59/15, G 59/16, G 59/17, G 59/18, G 59/48, G 59/70, L 59/140, L 59/45, L 59/46, L 59/53, M 59/328, M 59/402, M 59/403, M 59/404, P 59/2286, P 59/2287, P 59/2290, P 59/2291, P 59/2306, P 59/2309, P 59/2310. All of the tenements are subject to a 1% NSR royalty to Avenger Projects Ltd, including gold production above 90,000 ounces. A royalty is also payable to St Barbara Limited on all gold production in excess of 20,000 ounces (excluding production from historic waste dumps and tailings) at the rate of \$10 per ounce, applicable to leases M 59/328, M 59/402, M 59/403, M 59/404, G 59/11, G 59/12, G 59/13, G 59/14, G 59/15, G 59/16, G 59/17, G 59/18, L 59/45, L 59/46, L 59/53 No other known impediments exist to operate in the area. KGP: The Bibra deposit is located in M52/1070 held by Greenmount Resources, a wholly owned subsidiary of Capricorn Metals. M52/1070 is within the area of granted E52/1711 exploration tenement in the Pilbara region of Western Australia. E52/1711 was acquired from BHPB in 2008. South32 (via the spin-out from

Commentary
BHPB) retain a 2% NSR whilst BHPB a claw-back provision whereby BHPB can elect to acquire a 70% equity in the project only if JORC compliant reported resources of 5,000,000 ounces of gold and/or 120,000 tonnes of contained nickel have been delineated. The Nyiyaparli People hold Native Title over the area including E52/1711 and M52/1070. There is no known heritage or environmental impediments over the lease. No other known impediments exist to operate in the area.
MGGP: The Mt Gibson Gold Deposit (Mt Gibson) has a history of minor gold production dating back to the 1930's when prospectors operated small gold workings at Paynes-Crusoe and Tobias Find. While the area was subject to previous prospecting and company exploration in smaller leaseholdings, the Mt. Gibson Gold Project was first held in more-or-less its present configuration and extent by Reynolds Australia, who commenced exploration in the early 1980's. Soil and laterite sampling resulted in several significant gold and base metal anomalies being defined; follow up rotary air blast (RAB), air core (AC), reverse circulation (RC) and diamond drilling Programmes outlined significant economic laterite and oxide resources. A joint venture between Reynolds Australia Metals and Forsayth Mining Limited (with FML as the operator) began operations in 1986, mining and processing 6.5 million tonnes of laterite ores defined by FML in 1984, followed later by oxide and sulphide ores defined by drilling beneath the laterite orebodies. The project was sold by Reynolds to Camelot Resources in 1995. Continuing exploration resulted in the discovery of further oxide resources, mainly on the Taurus Trend, and the underground quartz-sulphide deposit at Wombat. These resources were subsequently mined and processed, all mining being completed at the end of 1997 and final milling of low grade stockpiles completed in June of 1998. A 4Mt dump leach remained in operation until November 1998, producing 68,868 ounces of gold. Including the dump leach, a total of 16,477,882 tonnes of ore was processed during the life of the operation, for 868,478 ounces of gold at an overall average grade of 1.64g/t Au. KGP: Prior to Capricorn Metals, E52/1711 was held by Independence group (IGO) who undertook exploration between 2008 & 2014. Prior to Independence group, WMC (BHPB) explored the area from 2004 to 2008.
MGGP: The Mt Gibson Gold Project tenements are located at the southern extremity of the Retaliation Greenstone Belt, in the SW portion of the Yalgoo-Singleton Greenstone Belt in the Murchison Province of the Yilgarn Craton. The tenements are mostly covered by a veneer of alluvial quartz sands and laterite gravels, with sporadic greenstone subcrop and outcrop, increasingly exposed in the north of the project area. The mineralised laterite gravels are situated slightly down-slope from the lode deposits on the Gibson trend. Regionally, the greenstone belt has been metamorphosed to middle amphibolite facies and hosts a number of Au-Cu deposits and prospects, including Golden Grove, 90km to the northwest of Mt.Gibson. The lode style mineralisation at Mt. Gibson is predominantly hosted by three main trends: The Gibson Trend The majority of the known and mined mineralisation is hosted by this trend. It is hypothesised to have

Criteria	JORC Code explanation	Commentary
		an arcuate north-south to northeasterly strike (trending more north-easterly in the north) and extends for more than seven kilometres from the southern granite contact to beyond the Hornet ore body.
		The so-called "Mine Sequence" is around 400 metres wide and consists of a parcel of sheared, metamorphosed and chlorite-biotite-muscovite altered mafic volcanics. Numerous felsic porphyries intrude the Mine Sequence. Mineralisation is hosted within multiple sets of elongate lodes with strong strike continuity, which anastomose and pinch-swell along strike and to depth. The main lode systems include Hornet, Enterprise, Orion and S2.
		The Taurus Trend
		The north-westerly trending Taurus Trend lies west of and diagonal to the Gibson Trend. Mineralisation is intimately associated with an apparently continuous felsic unit emplaced into the northwest trending shear and was discovered late in the life of the mining operation. It is characterised by discontinuous ore bodies, and strongly mineralised quartz-sulphide veining. The ore bodies on this trend include Sheldon and Wombat which, although not as continuous in strike as the ore bodies on the Gibson Trend, show a higher gold tenor.
		The Highway Trend
		The Highway Trend is a northeast trending shear zone, hosted by a mafic sequence in the western terrain, 11km northwest of the main mining area. This trend hosts the Highway ore body, and the Phoenix and Aquarius Prospects. It shares many of the characteristics of the Gibson trend, but it appears to lack the VHMS mineralising event and has generally been regarded as a predominantly low-grade system, although work from previous explores suggest it may have greater persistence and significance than previously thought and hence justifies further attention. The project area also hosts a number of BIF and quartz hosted small mineral occurrences including Paynes-Crusoe and MacDonald's Find.
		KGP: Bibra is part of a large-scale Archaean aged gold mineralised system. The resource is hosted within a package of deformed meta-sediments which has developed on at least two parallel, shallow dipping structures; Laterite oxide mineralization has developed over the structures close to surface. The primary mineralisation is strata-bound with lineations identified as controlling higher-grade shoots. The deposit is oxidized to average depths of 50-70m.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material 	All relevant drillhole information can be found in section 1 – "Sampling techniques", "Drilling techniques" and "Drill Sample Recovery" and the significant intercepts table.
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods		Reported MGGP appendix 1 and highlights intercepts are reported sufficient for open pit mining methods and include a minimum of 0.5g/t Au value over a minimum length of 1m with a maximum

Criteria	J	ORC Code explanation	Commentary
	low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of matal equivalent values should be clearly stated.	2m length of consecutive internal waste. No upper cuts have been applied.	
		Reported MGGP underground focused intercepts are reported sufficient for underground mining methods and include a minimum of 1g/t Au value over a minimum length of 1m with a maximum 2m length of consecutive internal waste. No upper cuts have been applied.	
			Reported KGPP appendix 1 and highlights intercepts are reported sufficient for regional exploration methods and include a minimum of 0.3g/t Au value over a minimum length of 1m with a maximum 2m length of consecutive internal waste. No upper cuts have been applied.
			No aggregation methods have been applied for the rockchips. No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	•	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	MGGP: The mineralisation dips steeply to the east, and drilling is generally orientated at 60 degrees to the west, meaning intercepts are roughly perpendicular to mineralisation in the majority of cases. Some vertical holes drilled from the base of mined pits and are therefore at a high degree to the mineralisation. KGP: At Bibra, the geometry of the mineralisation has already been defined from previous drilling programs and current mining. The intersection angle between drill angle and the perpendicular angle to the ore zone is less than 10 degrees.
Diagrams	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the diagrams in the body of this report.
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to be a balanced report with a suitable cautionary note.
Other substantive exploration data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other material information or data to report.
Further work	•	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work includes continued resource infill RC drilling at both projects.

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	No Mineral Resource Estimation update being reported.

Criteria	JORC Code explanation	Commentary
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	No Mineral Resource Estimation update being reported.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	No Mineral Resource Estimation update being reported.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	No Mineral Resource Estimation update being reported.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	No Mineral Resource Estimation update being reported.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	No Mineral Resource Estimation update being reported.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	No Mineral Resource Estimation update being reported.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No Mineral Resource Estimation update being reported.

Criteria	JORC Code explanation	Commentary
Environmental factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No Mineral Resource Estimation update being reported.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	No Mineral Resource Estimation update being reported.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	No Mineral Resource Estimation update being reported.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No Mineral Resource Estimation update being reported.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	No Mineral Resource Estimation update being reported.

Section 4 Estimation and Reporting of Ore Reserves
(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	Reserve.	

Criteria	JORC Code explanation	Commentary
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	No Ore Reserve being reported.
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	No Ore Reserve being reported.
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	No Ore Reserve being reported.
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. The mining recovery factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	No Ore Reserve being reported.
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	No Ore Reserve being reported.
Environmental	 The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported. 	No Ore Reserve being reported.
Infrastructure	 The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed. 	No Ore Reserve being reported.

Criteria	JORC Code explanation	Commentary
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The derivation of assumptions made of metal or commodity price(s), for the principal minerals and co-products. The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	No Ore Reserve being reported.
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	No Ore Reserve being reported.
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	No Ore Reserve being reported.
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	No Ore Reserve being reported.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	No Ore Reserve being reported.
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent. 	No Ore Reserve being reported.
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	No Ore Reserve being reported.
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	No Ore Reserve being reported.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	No Ore Reserve being reported.

