Moblan Final 2024 Drill Results

- Final results for 116 new drillholes totalling 38,953.40m for Sayona's Moblan Lithium Project, Québec, Canada with highlights including:
 - Inter Area Pegmatites (outside MRE 2024 pit shell):
 - **59.55m @ 1.46% Li₂0** from 316.60m in drillhole SYN-24-0837
 - Potential Resources Upgrade (within MRE 2024 pit shell):
 - 60.75m @ 1.82% Li₂O from 67.50m in drillhole SYN-24-0852
 - 54.80m @ 1.62% Li₂0 from 34.25m in drillhole SYN-24-0854
 - 56.50m @ 1.47% Li₂O from 226.40m in drillhole SYN-24-0834
 - 55.65m @ 1.75% Li₂O from 209.60m in drillhole SYN-24-0891
 - 48.75m @ 1.66% Li₂O from 38.25m in drillhole SYN-24-0939
- All assay results from the 2024 drilling campaign have now been validated and released, adding 33,591 new assays from 281 drill holes (76,202 meters) to the database for the updated Resources and 3D geological model.
- Multiple thick, high-grade intercepts within the 2024 Mineral Resource Estimate (MRE) pit shell support conversion from Inferred to Indicated/Measured categories.
- Drilling confirms continuity of spodumene-bearing pegmatites across all zones, particularly the sub-horizontal dykes that connect Main, South, Inter, and Moleon areas.
- These new and recent drilling results from the 2024 program will be incorporated into a future mineral resource update in 2025.

North American lithium producer Sayona Mining Limited ("Sayona") (ASX:SYA; OTCQB:SYAXF) announced today the final results from its 2024 drilling program at the Moblan Lithium Project (Sayona 60%; Investissement Quebec 40%), further demonstrating the high-grade nature of this highly strategic asset.

Sayona is pleased to report the final results from the 2024 drilling campaign, comprising 116 diamond drill holes for a total of 38,953.40 metres. With all assays now validated and released, the program has successfully enhanced the potential to expand Moblan's mineral resource base. Drilling efforts focused on in-fill targets aimed at upgrading resource categories within the 2024 Mineral Resource Estimate, while also intercepting mineralisation beyond the current pit shells in the Main, South, Moleon, and especially the Inter Area. These results support the potential conversion of Inferred resources to Indicated and Measured categories within the MRE envelope.

The exploration drilling results reported outside the current resource pit shell are grouped into four key areas: Main, South, Inter, and Moleon. The latest results confirm the continuity of spodumene-bearing pegmatite dyke systems across these zones and particularly the sub-horizontal dykes extending from the Main and South areas into the Inter area that can be followed over 2.3 km. This release also presents new drill results located within the existing resource pit shell, which include intercepts from all four areas

Sayona's CEO, Lucas Dow commented: "The consistent high-grade intercepts in the Main, South, Inter and Moleon areas highlight the scale and quality of the Moblan Project as one of North America's most promising hard rock lithium projects. We continue to see strong grades, impressive thicknesses, and excellent geological continuity, both within and beyond the current resource pit shell. These results not only support the potential for a resource upgrade but also reinforce Moblan's position as the cornerstone of our growth strategy in the Eeyou-Istchee James Bay region."

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description
South Area (outside	e MRE 2024 pit shell)				
SYN-24-0862	127.20	141.00	13.80	2.20	13.80m @ 2.20% Li ₂ 0 from 127.20m
SYN-24-0864	116.40	141.00	24.60	1.74	24.60m @ 1.74% Li ₂ 0 from 116.40m
SYN-24-0925	99.10	136.00	36.90	1.33	36.90m @ 1.33% Li ₂ 0 from 99.10m
Main Area (outside	MRE 2024 pit shell)				
1331-16-115ext	391.60	412.35	20.75	1.67	20.75m @ 1.67% Li ₂ 0 from 391.60m
1331-22-173ext	291.45	309.25	17.80	1.75	17.80m @ 1.75% Li20 from 291.45m
1331-22-179ext	351.55	375.80	24.25	1.43	24.25m @ 1.43% Li ₂ O from 351.55m
1331-22-182ext	304.00	322.55	18.55	1.41	18.55m @ 1.41% Li ₂ O from 304.00m
1331-22-185ext	270.70	308.75	38.05	1.85	38.05m @ 1.85% Li ₂ O from 270.70m
SYN-24-0875	298.75	318.50	19.75	1.51	19.75m @ 1.51% Li ₂ O from 298.75m
SYN-24-0883	237.80	268.00	30.20	1.44	30.20m @ 1.44% Li ₂ 0 from 237.80m
SYN-24-0896	206.70	240.10	33.40	2.15	33.40m @ 2.15% Li ₂ O from 206.70m
SYN-24-0920	243.60	275.00	31.40	1.92	31.40m @ 1.92% Li ₂ 0 from 243.60m
SYN-24-0929	246.45	271.30	24.85	2.21	24.85m @ 2.21% Li ₂ O from 246.45m
SYN-24-0930	99.35	115.25	15.90	1.58	15.90m @ 1.58% Li ₂ 0 from 99.35m
SYN-24-0933	359.35	378.00	18.65	1.41	18.65m @ 1.41% Li ₂ O from 359.35m
Inter Area (outside	MRE 2024 pit shell)				
SYN-24-0731	295.25	324.10	28.85	1.46	28.85m @ 1.46% Li ₂ O from 295.25m
SYN-24-0736ext	308.65	343.45	34.80	1.64	34.80m @ 1.64% Li ₂ O from 308.65m
SYN-24-0827	232.90	261.65	28.75	1.45	28.75m @ 1.45% Li ₂ 0 from 232.90m
SYN-24-0830	235.05	246.30	11.25	2.31	11.25m @ 2.31% Li ₂ 0 from 235.05m
	262.90	281.80	18.90	1.59	18.90m @ 1.59% Li ₂ 0 from 262.90m
SYN-24-0832	308.60	333.55	24.95	1.55	24.95m @ 1.55% Li ₂ O from 308.60m
SYN-24-0833	275.15	290.00	14.85	1.74	14.85m @ 1.74% Li ₂ O from 275.15m
	298.40	312.45	14.05	1.82	14.05m @ 1.82% Li ₂ 0 from 298.40m
SYN-24-0837	271.00	293.10	22.10	1.46	22.10m @ 1.46% Li ₂ 0 from 271.00m
	316.60	376.15	59.55	1.46	59.55m @ 1.46% Li ₂ O from 316.60m
	391.00	429.00	38.00	1.28	38.00m @ 1.28% Li ₂ 0 from 391.00m
SYN-24-0889A	224.95	259.00	34.05	2.01	34.05m @ 2.01% Li ₂ O from 224.95m
	315.65	339.15	23.50	1.47	23.50m @ 1.47% Li ₂ 0 from 315.65m
SYN-24-0890	237.60	251.60	14.00	1.89	14.00m @ 1.89% Li ₂ 0 from 237.60m
SYN-24-0893	182.95	200.40	17.45	1.62	17.45m @ 1.62% Li ₂ 0 from 182.95m
SYN-24-0894	310.25	356.40	46.15	1.36	46.15m @ 1.36% Li ₂ O from 310.25m
	379.25	409.35	30.10	1.26	30.10m @ 1.26% Li ₂ 0 from 379.25m
SYN-24-0898ext	404.15	423.30	19.15	2.31	19.15m @ 2.31% Li ₂ 0 from 404.15m
SYN-24-0900	157.60	173.00	15.40	1.82	15.40m @ 1.82% Li ₂ 0 from 157.60m
SYN-24-0903	185.10	226.10	41.00	1.69	41.00m @ 1.69% Li ₂ 0 from 185.10m
SYN-24-0907	230.65	266.05	35.40	1.35	35.40m @ 1.35% Li ₂ 0 from 230.65m

Table 1 – Drillhole Best Intercepts - All New Results above a Metal Factor greater than 25

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description
SYN-24-0909	302.30	314.90	12.60	2.52	12.60m @ 2.52% Li ₂ 0 from 302.30m
SYN-24-0931	224.90	247.25	22.35	1.41	22.35m @ 1.41% Li ₂ 0 from 224.90m
SYN-24-0939	366.15	398.40	32.25	1.59	32.25m @ 1.59% Li ₂ 0 from 366.15m
Moleon Area (outsid	de MRE 2024 pit shell))			
SYN-24-0887	132.15	148.50	16.35	1.78	16.35m @ 1.78% Li ₂ 0 from 132.15m
	200.90	227.65	26.75	1.82	26.75m @ 1.82% Li ₂ 0 from 200.90m
Potential Resources	s Upgrade (within MRI	E 2024 pit sh	nell)		
SYN-24-0852	67.50	128.25	60.75	1.82	60.75m @ 1.82% Li ₂ O from 67.50m
SYN-24-0854	34.25	89.05	54.80	1.62	54.80m @ 1.62% Li ₂ O from 34.25m
SYN-24-0859	11.10	33.25	22.15	1.71	22.15m @ 1.71% Li ₂ 0 from 11.10m
SYN-24-0866	11.80	36.35	24.55	1.82	24.55m @ 1.82% Li ₂ 0 from 11.80m
SYN-24-0883	87.30	104.20	16.90	1.59	16.90m @ 1.59% Li ₂ 0 from 87.30m
SYN-24-0895	223.10	251.40	28.30	1.18	28.30m @ 1.18% Li ₂ 0 from 223.10m
SYN-24-0920	36.15	54.30	18.15	1.44	18.15m @ 1.44% Li ₂ 0 from 36.15m
SYN-24-0933	36.10	57.15	21.05	2.27	21.05m @ 2.27% Li ₂ 0 from 36.10m
SYN-24-0832	29.55	71.80	42.25	1.64	42.25m @ 1.64% Li ₂ O from 29.55m
	279.45	303.80	24.35	1.69	24.35m @ 1.69% Li ₂ 0 from 279.45m
SYN-24-0833	32.80	46.90	14.10	1.91	14.10m @ 1.91% Li ₂ 0 from 32.80m
	247.50	272.80	25.30	1.72	25.30m @ 1.72% Li ₂ 0 from 247.50m
SYN-24-0834	126.05	158.60	32.55	1.83	32.55m @ 1.83% Li ₂ O from 126.05m
	226.40	282.90	56.50	1.47	56.50m @ 1.47% Li ₂ O from 226.40m
SYN-24-0835	202.85	225.90	23.05	1.51	23.05m @ 1.51% Li ₂ 0 from 202.85m
SYN-24-0837	24.75	60.95	36.20	1.50	36.20m @ 1.50% Li ₂ 0 from 24.75m
SYN-24-0860	185.45	213.30	27.85	1.53	27.85m @ 1.53% Li ₂ 0 from 185.45m
SYN-24-0877	174.85	205.00	30.15	1.59	30.15m @ 1.59% Li ₂ O from 174.85m
SYN-24-0878	236.55	253.40	16.85	1.97	16.85m @ 1.97% Li ₂ 0 from 236.55m
	256.10	281.70	25.60	1.31	25.60m @ 1.31% Li ₂ 0 from 256.10m
SYN-24-0879	88.30	106.70	18.40	1.99	18.40m @ 1.99% Li ₂ 0 from 88.30m
SYN-24-0880	78.40	96.70	18.30	1.47	18.30m @ 1.47% Li ₂ 0 from 78.40m
SYN-24-0881A	190.45	209.95	19.50	1.93	19.50m @ 1.93% Li ₂ 0 from 190.45m
SYN-24-0884	151.55	194.70	43.15	1.44	43.15m @ 1.44% Li ₂ O from 151.55m
SYN-24-0890	214.40	234.30	19.90	1.64	19.90m @ 1.64% Li ₂ 0 from 214.40m
SYN-24-0891	209.60	265.25	55.65	1.75	55.65m @ 1.75% Li ₂ 0 from 209.60m
SYN-24-0892	208.70	229.55	20.85	1.76	20.85m @ 1.76% Li ₂ 0 from 208.70m
SYN-24-0899	70.45	93.15	22.70	2.06	22.70m @ 2.06% Li ₂ 0 from 70.45m
SYN-24-0932	100.65	119.60	18.95	1.84	18.95m @ 1.84% Li ₂ 0 from 100.65m
SYN-24-0939	38.25	87.00	48.75	1.66	48.75m @ 1.66% Li ₂ 0 from 38.25m
	225.05	248.90	23.85	2.47	23.85m @ 2.47% Li ₂ 0 from 225.05m

Notes (1): Table 1 presents all new results above a Metal Factor greater than 25. Bold text indicates Metal Factor greater than 50.

Notes (2): Methodology for calculating all drilling intercepts presented in the tables and figures in this press release. Drillhole intercepts query and calculations are made automatically using the economic composite tool in Leapfrog software (v.2023.2.1). The selection algorithm was applied to all the drilling results and may not represent true thickness. Calculations are made according to the following steps. Step no.1: Assigned lithology code (ex: pegmatites, gabbro, granodiorite) to each individual sample based on majority code (i.e. rule of 51%). Step no.2: Assignment of a 0% Li₂O content to all lithologies other than spodumene pegmatites (e.g. "waste lithologies" such as gabbro and volcanic rocks). Step no. 3: Calculation of intercepts based on a minimum grade of 0.25% Li₂O over a minimum core length of 2m (and no maximum length), with a tolerance allowing the inclusion of 2m waste gap up to a maximum of 20m cumulative length of waste inside an intercept. Step no.4: Selection of the drilling results highlights based on grades, lengths, and Metal Factor (Li₂O grade (%) x core length (m)).

Figure 1- Plan View with Selected New Highlights of 2024 Drilling Program (not included in current MRE)

Notes: Text boxes for all new results with Metal Factor (grade * thickness) greater than 50 (this release).

Targeted Resource Conversion (Within 2024 MRE Pit Shell)

This section presents the latest drill results located within the resource pit shell, covering all four areas: Main, South, Inter, and Moleon. Detailed results and their breakdown are provided in Table 2. Significant wide intercepts (>50m) from conversion drilling include: 1.82% Li₂O over 60.75m from 67.50m in hole SYN-24-0852, 1.62% Li₂O over 54.80m from 34.25m in hole SYN-24-0854, 1.47% Li₂O over 56.50m from 226.40m in hole SYN-24-0834, and 1.75% Li₂O over 55.65m from 209.60m in hole SYN-24-0891. These intercepts confirm the potential for upgrading and converting inferred resources to the indicated and measured categories within the 2024 MRE pit shells. The results also underscore the continuity of mineralisation and support the potential for increased reserves at Moblan (see Figures 1 and 2).

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
SYN-24-0816	117.20	126.75	9.55	1.99	9.55m @ 1.99% Li ₂ 0 from 117.20m	South
SYN-24-0819	115.40	120.50	5.10	0.90	5.10m @ 0.90% Li ₂ 0 from 115.40m	
SYN-24-0852	67.50	128.25	60.75	1.82	60.75m @ 1.82% Li ₂ 0 from 67.50m	
SYN-24-0854	34.25	89.05	54.80	1.62	54.80m @ 1.62% Li ₂ 0 from 34.25m	
SYN-24-0855	39.00	41.50	2.50	1.51	2.50m @ 1.51% Li ₂ 0 from 39.00m	
SYN-24-0856	59.65	66.30	6.65	0.96	6.65m @ 0.96% Li ₂ 0 from 59.65m	
	72.30	76.40	4.10	0.75	4.10m @ 0.75% Li ₂ 0 from 72.30m	
SYN-24-0857	11.05	19.65	8.60	1.44	8.60m @ 1.44% Li ₂ 0 from 11.05m	
	23.15	30.80	7.65	1.02	7.65m @ 1.02% Li ₂ 0 from 23.15m	
SYN-24-0859	11.10	33.25	22.15	1.71	22.15m @ 1.71% Li ₂ 0 from 11.10m	
SYN-24-0861	18.70	21.30	2.60	1.43	2.60m @ 1.43% Li ₂ 0 from 18.70m	
	45.65	54.70	9.05	1.65	9.05m @ 1.65% Li ₂ 0 from 45.65m	
SYN-24-0866	11.80	36.35	24.55	1.82	24.55m @ 1.82% Li ₂ 0 from 11.80m	
	48.80	63.50	14.70	1.50	14.70m @ 1.50% Li ₂ 0 from 48.80m	
SYN-24-0873	32.20	34.50	2.30	0.92	2.30m @ 0.92% Li ₂ 0 from 32.20m	
	67.90	70.45	2.55	2.13	$2.55m @ 2.13\% Li_20 from 67.90m$	
	93.60	97.00	3.40	1.72	3.40m @ 1.72% Li ₂ 0 from 3.60m	
	108.40	114.00	5.60	1.62	5.60m @ 1.62% Li ₂ 0 from 108.40m	
	135.95	142.50	6.55	0.99	6.55m @ 0.99% Li ₂ 0 from 135.95m	
	216.80	219.20	2.40	0.62	2.40m @ 0.62% Li ₂ 0 from 216.80m	
	232.25	240.90	8.65	0.66	8.65m @ 0.66% Li ₂ 0 from 232.25m	
SYN-24-0751	154.85	164.10	9.25	1.60	9.25m @ 1.60% Li ₂ 0 from 154.85m	
SYN-24-0875	51.50	62.50	11.00	1.77	11.00m @ 1.77% Li ₂ 0 from 51.50m	Main
	115.15	119.95	4.80	1.69	4.80m @ 1.69% Li ₂ 0 from 115.15m	
	169.65	175.85	6.20	1.01	6.20m @ 1.01% Li ₂ 0 from 169.65m	
	197.00	201.75	4.75	1.13	4.75m @ 1.13% Li ₂ 0 from 197.00m	
	235.90	239.80	3.90	1.29	3.90m @ 1.29% Li ₂ 0 from 235.90m	
SYN-24-0876	3.85	9.40	5.55	1.45	5.55m @ 1.45% Li ₂ 0 from 3.85m	
	18.80	29.70	10.90	1.49	10.90m @ 1.49% Li ₂ 0 from 18.80m	
	44.20	46.40	2.20	1.19	2.20m @ 1.19% Li ₂ 0 from 44.20m	

Table 2 - Potential Resources Upgrade (intervals above 0.6% Li₂O over 2m - within 2024 MRE pit shell)

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
	70.65	74.60	3.95	1.76	3.95m @ 1.76% Li ₂ 0 from 70.65m	
	101.40	107.20	5.80	1.47	5.80m @ 1.47% Li ₂ 0 from 101.40m	
	122.85	125.75	2.90	1.17	2.90m @ 1.17% Li ₂ 0 from 122.85m	
	145.85	152.70	6.85	1.43	6.85m @ 1.43% Li ₂ 0 from 145.85m	
SYN-24-0883	87.30	104.20	16.90	1.59	16.90m @ 1.59% Li ₂ 0 from 87.30m	
	131.70	135.60	3.90	1.88	3.90m @ 1.88% Li ₂ 0 from 131.70m	
SYN-24-0895	46.45	58.05	11.60	1.83	11.60m @ 1.83% Li ₂ 0 from 46.45m	
	89.30	95.60	6.30	1.56	6.30m @ 1.56% Li ₂ 0 from 89.30m	
	223.10	251.40	28.30	1.18	28.30m @ 1.18% Li ₂ 0 from 223.10m	
SYN-24-0896	1.00	9.15	8.15	1.85	8.15m @ 1.85% Li ₂ 0 from 1.00m	
	61.20	73.00	11.80	1.58	11.80m @ 1.58% Li ₂ 0 from 61.20m	
	105.20	110.40	5.20	1.61	5.20m @ 1.61% Li ₂ 0 from 105.20m	
SYN-24-0920	36.15	54.30	18.15	1.44	18.15m @ 1.44% Li ₂ O from 36.15m	
	99.75	103.55	3.80	1.81	3.80m @ 1.81% Li ₂ 0 from 99.75m	
	131.90	137.10	5.20	1.27	5.20m @ 1.27% Li ₂ 0 from 131.90m	
SYN-24-0929	32.00	45.85	13.85	1.46	13.85m @ 1.46% Li ₂ 0 from 32.00m	
	58.60	66.35	7.75	1.69	7.75m @ 1.69% Li ₂ 0 from 58.60m	
	76.30	84.00	7.70	1.10	7.70m @ 1.10% Li ₂ 0 from 76.30m	
SYN-24-0933	36.10	57.15	21.05	2.27	21.05m @ 2.27% Li ₂ 0 from 36.10m	
SYN-24-0934A	37.45	51.40	13.95	1.64	13.95m @ 1.64% Li ₂ 0 from 37.45m	
	78.80	86.20	7.40	1.73	7.40m @ 1.73% Li ₂ 0 from 78.80m	
SYN-24-0827	46.05	53.45	7.40	1.32	7.40m @ 1.32% Li ₂ 0 from 46.05m	In
	104.05	108.25	4.20	1.66	4.20m @ 1.66% Li ₂ 0 from 104.05m	
	143.60	148.00	4.40	1.32	4.40m @ 1.32% Li ₂ 0 from 143.60m	
SYN-24-0832	29.55	71.80	42.25	1.64	42.25m @ 1.64% Li ₂ O from 29.55m	
	84.10	89.35	5.25	2.14	5.25m @ 2.14% Li ₂ 0 from 84.10m	
	152.10	154.55	2.45	0.85	2.45m @ 0.85% Li ₂ 0 from 154.55m	
	182.20	184.35	2.15	1.19	2.15m @ 1.19% Li ₂ 0 from 182.20m	
	232.00	243.00	11.00	1.19	11.00m @ 1.19% Li ₂ 0 from 232.00m	
	250.70	262.10	11.40	1.54	11.40m @ 1.54% Li ₂ 0 from 250.70m	
	279.45	303.80	24.35	1.69	24.35m @ 1.69% Li ₂ O from 279.45m	
SYN-24-0833	32.80	46.90	14.10	1.91	14.10m @ 1.91% Li ₂ O from 32.80m	
	86.60	89.95	3.35	2.17	3.35m @ 2.17% Li ₂ 0 from 86.60m	
	146.95	150.60	3.65	1.39	3.65m @ 1.39% Li ₂ O from 146.95m	
	247.50	272.80	25.30	1.72	25.30m @ 1.72% Li ₂ O from 247.50m	
SYN-24-0834	29.60	32.50	2.90	1.44	2.90m @ 1.44% Li ₂ 0 from 29.60m	
	83.15	86.15	3.00	0.82	3.00m @ 0.82% Li ₂ 0 from 83.15m	
	126.05	158.60	32.55	1.83	32.55m @ 1.83% Li ₂ O from 126.05m	

V

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
	205.60	210.25	4.65	0.94	4.65m @ 0.94% Li ₂ 0 from 205.60m	
	226.40	282.90	56.50	1.47	56.50m @ 1.47% Li ₂ 0 from 226.40m	
SYN-24-0835	32.50	41.25	8.75	1.48	8.75m @ 1.48% Li ₂ 0 from 32.50m	
	127.95	130.85	2.90	1.53	2.90m @ 1.53% Li ₂ 0 from 127.95m	
	189.05	197.50	8.45	1.44	8.45m @ 1.44% Li ₂ 0 from 189.05m	
	202.85	225.90	23.05	1.51	23.05m @ 1.51% Li ₂ O from 202.85m	
SYN-24-0836	36.05	40.35	4.30	1.17	4.30m @ 1.17% Li ₂ 0 from 36.05m	
	87.05	89.55	2.50	2.10	2.50m @ 2.10% Li ₂ 0 from 87.05m	
	132.70	135.45	2.75	1.18	2.75m @ 1.18% Li ₂ 0 from 132.70m	
	145.20	147.85	2.65	1.36	2.65m @ 1.36% Li ₂ 0 from 145.20m	
	176.90	179.80	2.90	1.36	2.90m @ 1.36% Li ₂ 0 from 176.90m	
SYN-24-0837	24.75	60.95	36.20	1.50	36.20m @ 1.50% Li ₂ 0 from 24.75m	
	82.30	87.15	4.85	1.72	4.85m @ 1.72% Li ₂ 0 from 82.30m	
	139.05	142.25	3.20	1.75	3.20m @ 1.75% Li ₂ 0 from 139.05m	
	163.85	170.50	6.65	1.94	6.65m @ 1.94% Li ₂ O from 163.85m	
	231.20	239.15	7.95	0.87	7.95m @ 0.87% Li ₂ 0 from 231.20m	
SYN-24-0853	42.90	48.00	5.10	1.76	5.10m @ 1.76% Li ₂ 0 from 42.90m	
	92.50	96.60	4.10	1.76	4.10m @ 1.76% Li ₂ 0 from 92.50m	
	198.65	209.00	10.35	1.41	10.35m @ 1.41% Li ₂ O from 198.65m	
SYN-24-0860	31.25	42.55	11.30	1.34	11.30m @ 1.34% Li ₂ 0 from 31.25m	
	84.35	87.55	3.20	2.22	3.20m @ 2.22% Li ₂ 0 from 84.35m	
	159.70	164.00	4.30	1.85	4.30m @ 1.85% Li ₂ 0 from 159.70m	
	185.45	213.30	27.85	1.53	27.85m @ 1.53% Li ₂ O from 185.45m	
SYN-24-0877	105.95	108.35	2.40	1.02	2.40m @ 1.02% Li ₂ 0 from 105.95m	
	122.90	25.45	2.55	2.00	2.55m @ 2.00% Li ₂ 0 from 122.90m	
	174.85	205.00	30.15	1.59	30.15m @ 1.59% Li ₂ O from 174.85m	
SYN-24-0878	25.10	36.00	10.90	1.87	10.90m @ 1.87% Li ₂ 0 from 25.10m	
	50.00	58.00	8.00	1.46	8.00m @ 1.46% Li ₂ 0 from 50.00m	
	81.00	88.90	7.90	1.15	7.90m @ 1.15% Li ₂ 0 from 81.00m	
	93.70	102.90	9.20	2.26	9.20m @ 2.26% Li ₂ 0 from 93.70m	
	128.75	132.50	3.75	2.19	3.75m @ 2.19% Li ₂ 0 from 128.75m	
	193.00	207.00	14.00	1.73	14.00m @ 1.73% Li ₂ 0 from 193.00m	
	231.65	234.00	2.35	1.35	2.35m @ 1.35% Li ₂ 0 from 231.65m	
	236.55	253.40	16.85	1.97	16.85m @ 1.97% Li ₂ O from 236.55m	
	256.10	281.70	25.60	1.31	25.60m @ 1.31% Li ₂ 0 from 256.10m	
SYN-24-0879	37.80	40.90	3.10	2.30	3.10m @ 2.30% Li ₂ 0 from 37.80m	
	88.30	106.70	18.40	1.99	18.40m @ 1.99% Li ₂ 0 from 88.30m	
	123.65	126.80	3.15	1.58	3.15m @ 1.58% Li ₂ O from 123.65m	

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
	202.60	208.00	5.40	1.73	5.40m @ 1.73% Li ₂ 0 from 202.60m	
	251.70	258.80	7.10	1.27	7.10m @ 1.27% Li ₂ 0 from 251.70m	
SYN-24-0880	78.40	96.70	18.30	1.47	18.30m @ 1.47% Li ₂ 0 from 78.40m	
SYN-24-0881A	57.30	65.65	8.35	1.65	8.35m @ 1.65% Li ₂ 0 from 57.30m	
	106.15	110.50	4.35	2.56	4.35m @ 2.56% Li ₂ 0 from 106.15m	
	124.80	127.65	2.85	0.62	2.85m @ 0.62% Li ₂ 0 from 124.80m	
	190.45	209.95	19.50	1.93	19.50m @ 1.93% Li ₂ 0 from 190.45m	
	249.60	253.65	4.05	1.56	4.05m @ 1.56% Li ₂ 0 from 249.60m	
SYN-24-0884	109.30	116.65	7.35	1.75	7.35m @ 1.75% Li ₂ 0 from 109.30m	
	151.55	194.70	43.15	1.44	43.15m @ 1.44% Li ₂ O from 151.55m	
SYN-24-0885	35.35	44.45	9.10	1.19	9.10m @ 1.19% Li ₂ 0 from 35.35m	
	99.95	103.95	4.00	1.29	4.00m @ 1.29% Li ₂ 0 from 99.95m	
	246.25	256.65	10.40	1.44	10.40m @ 1.44% Li ₂ 0 from 246.25m	
SYN-24-0888	208.15	213.75	5.60	1.50	5.60m @ 1.50% Li ₂ 0 from 208.15m	
	218.40	226.15	7.75	0.66	7.75m @ 0.66% Li ₂ 0 from 218.40m	
SYN-24-0889	2.30	4.70	2.40	2.54	2.40m @ 2.54% Li ₂ 0 from 2.30m	
	6.80	11.90	5.10	2.41	5.10m @ 2.41% Li ₂ 0 from 6.80m	
SYN-24-0889A	2.95	12.00	9.05	1.78	9.05m @ 1.78% Li ₂ 0 from 2.95m	
	41.75	55.85	14.10	1.32	14.10m @ 1.32% Li ₂ 0 from 41.75m	
	71.00	82.70	11.70	1.00	11.70m @ 1.00% Li ₂ 0 from 71.00m	
	180.60	185.00	4.40	1.28	4.40m @ 1.28% Li ₂ 0 from 180.60m	
SYN-24-0890	40.00	43.15	3.15	1.44	3.15m @ 1.44% Li ₂ 0 from 40.00m	
	88.75	93.70	4.95	1.43	4.95m @ 1.43% Li ₂ 0 from 88.75m	
	214.40	234.30	19.90	1.64	19.90m @ 1.64% Li ₂ O from 214.40m	
SYN-24-0891	34.60	42.20	7.60	1.31	7.60m @ 1.31% Li ₂ 0 from 34.60m	
	209.60	265.25	55.65	1.75	55.65m @ 1.75% Li ₂ O from 209.60m	
SYN-24-0892	33.35	42.90	9.55	2.00	9.55m @ 2.00% Li ₂ 0 from 33.35m	
	208.70	229.55	20.85	1.76	20.85m @ 1.76% Li ₂ O from 208.70m	
	237.30	241.80	4.50	0.88	4.50m @ 0.88% Li ₂ 0 from 237.30m	
SYN-24-0893	22.95	30.85	7.90	1.40	7.90m @ 1.40% Li ₂ 0 from 22.95m	
SYN-24-0894	26.25	38.60	12.35	1.58	12.35m @ 1.58% Li ₂ 0 from 26.25m	
	67.15	77.00	9.85	0.81	9.85m @ 0.81% Li ₂ 0 from 67.15m	
	81.15	87.05	5.90	1.68	5.90m @ 1.68% Li ₂ 0 from 81.15m	
	95.00	106.50	11.50	1.44	11.50m @ 1.44% Li ₂ 0 from 95.00m	
	143.20	147.35	4.15	1.44	4.15m @ 1.44% Li ₂ 0 from 143.20m	
	201.30	206.80	5.50	1.70	5.50m @ 1.70% Li ₂ 0 from 201.30m	
	228.40	238.90	10.50	1.59	10.50m @ 1.59% Li ₂ 0 from 228.40m	
	265.95	268.60	2.65	1.49	2.65m @ 1.49% Li ₂ O from 265.95m	

V

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
	271.60	294.45	22.85	0.63	22.85m @ 0.63% Li ₂ O from 271.60m	
	299.00	307.70	8.70	1.73	8.70m @ 1.73% Li ₂ 0 from 299.00m	
SYN-24-0897	101.25	106.05	4.80	1.65	4.80m @ 1.65% Li ₂ 0 from 101.25m	
	117.55	126.00	8.45	1.36	8.45m @ 1.36% Li ₂ 0 from 117.55m	
SYN-24-0898	43.85	47.70	3.85	1.98	3.85m @ 1.98% Li ₂ 0 from 43.85m	
	123.55	140.30	16.75	0.92	16.75m @ 0.92% Li ₂ 0 from 123.55m	
	144.90	162.90	18.00	1.13	18.00m @ 1.13% Li ₂ 0 from 144.90m	
SYN-24-0899	70.45	93.15	22.70	2.06	22.70m @ 2.06% Li ₂ 0 from 70.45m	
	97.20	99.30	2.10	1.21	2.10m @ 1.21% Li ₂ 0 from 97.20m	
	112.00	114.45	2.45	1.99	2.45m @ 1.99% Li ₂ 0 from 112.00m	
	208.95	212.05	3.10	1.60	3.10m @ 1.60% Li ₂ 0 from 208.95m	
SYN-24-0903	29.40	37.20	7.80	1.85	7.80m @ 1.85% Li ₂ 0 from 29.40m	
	178.95	181.80	2.85	0.83	2.85m @ 0.83% Li ₂ 0 from 178.95m	
SYN-24-0905	180.40	190.25	9.85	1.94	9.85m @ 1.94% Li ₂ 0 from 180.40m	
	194.55	206.60	12.05	1.56	12.05m @ 1.56% Li ₂ 0 from 194.55m	
SYN-24-0907	175.10	178.15	3.05	1.05	3.05m @ 1.05% Li ₂ 0 from 175.10m	
SYN-24-0919	35.25	41.75	6.50	0.69	6.50m @ 0.69% Li ₂ 0 from 35.25m	
	44.70	47.00	2.30	1.00	2.30m @ 1.00% Li ₂ 0 from 44.70m	
	92.60	97.35	4.75	1.87	4.75m @ 1.87% Li ₂ 0 from 92.60m	
	148.75	154.70	5.95	2.14	5.95m @ 2.14% Li ₂ O from 148.75m	
	245.50	249.15	3.65	0.82	3.65m @ 0.82% Li ₂ 0 from 245.50m	
	254.00	261.70	7.70	2.65	7.70m @ 2.65% Li ₂ 0 from 254.00m	
	263.85	272.40	8.55	1.69	8.55m @ 1.69% Li ₂ 0 from 263.85m	
	278.20	282.25	4.05	1.20	4.05m @ 1.20% Li ₂ 0 from 278.20m	
	290.70	296.50	5.80	1.05	5.80m @ 1.05% Li ₂ 0 from 290.70m	
	306.45	311.80	5.35	1.37	5.35m @ 1.37% Li ₂ 0 from 306.45m	
SYN-24-0921	89.45	93.30	3.85	1.33	3.85m @ 1.33% Li ₂ 0 from 89.45m	
	161.70	166.75	5.05	0.99	5.05m @ 0.99% Li ₂ O from 161.70m	
SYN-24-0931	71.60	78.30	6.70	0.93	6.70m @ 0.93% Li ₂ 0 from 71.60m	
SYN-24-0932	100.65	119.60	18.95	1.84	18.95m @ 1.84% Li ₂ O from 100.65m	
	141.05	144.05	3.00	1.28	3.00m @ 1.28% Li ₂ 0 from 141.05m	
SYN-24-0939	25.65	33.95	8.30	2.05	8.30m @ 2.05% Li ₂ 0 from 25.65m	
	38.25	87.00	48.75	1.66	48.75m @ 1.66% Li ₂ O from 38.25m	
	145.35	149.60	4.25	1.31	4.25m @ 1.31% Li ₂ O from 145.35m	
	169.45	176.00	6.55	1.47	6.55m @ 1.47% Li ₂ 0 from 169.45m	
	225.05	248.90	23.85	2.47	23.85m @ 2.47% Li ₂ 0 from 225.05m	

Notes: Table 2 presents all intervals above 0.6% Li₂O over 2m. Bold text indicates Metal Factor greater than 25. See Notes (2) (Table 1) for drilling intercept calculation methodology.

South Area

All newly reported drill results from the South area shown below are located outside the current resource pit shell and may contribute to future resource growth. Key intercepts from the South area are listed in Table 3. The pegmatite complex in this zone comprises east-west trending spodumene-bearing dykes that are sub-horizontal or gently dipping northward at $10-15^{\circ}$. Recent drilling confirmed the presence of these dykes, with several thick intercepts returning strong lithium grades, including: 2.20% Li₂O over 13.80m (SYN-24-0862), 1.74% Li₂O over 24.60m (SYN-24-0864), 1.33% Li₂O over 36.90m (SYN-24-0925), and multiple zones in SYN-24-0927 such as 1.48% Li₂O over 14.05m and 1.35% Li₂O over 14.80m (see Figure 1).

Both recent and historical drilling results confirm the presence of broad, flat-lying dykes, as well as smaller, paralleltrending dykes that appear to extend eastward, westward, and southward. These additional diamond drillholes in the South area may contribute to upgrading mineral resources in a future resource update.

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
SYN-24-0859	317.50	321.30	3.80	0.96	3.80m @ 0.96% Li ₂ 0 from 317.50m	
SYN-24-0861	250.65	256.55	5.90	0.79	5.90m @ 0.79% Li ₂ 0 from 250.65m	
SYN-24-0862	127.20	141.00	13.80	2.20	13.80m @ 2.20% Li ₂ O from 127.20m	
SYN-24-0864	116.40	141.00	24.60	1.74	24.60m @ 1.74% Li ₂ O from 116.40m	South
SYN-24-0873	276.50	280.10	3.60	1.77	3.60m @ 1.77% Li ₂ 0 from 276.50m	
SYN-24-0874	261.65	265.20	3.55	1.15	3.55m @ 1.15% Li ₂ O from 261.65m	
SYN-24-0925	99.10	136.00	36.90	1.33	36.90m @ 1.33% Li ₂ 0 from 99.10m	
SYN-24-0926	88.50	97.25	8.75	1.14	8.75m @ 1.14% Li ₂ 0 from 88.50m	
	99.55	104.75	5.20	1.22	5.20m @ 1.22% Li ₂ 0 from 99.55m	
	107.80	114.60	6.80	1.89	6.80m @ 1.89% Li ₂ 0 from 107.80m	
SYN-24-0927	79.80	93.85	14.05	1.48	14.05m @ 1.48% Li ₂ 0 from 79.80m	
	97.35	112.15	14.80	1.35	14.80m @ 1.35% Li ₂ 0 from 97.35m	

Table 3 -South Area (intervals above 0.6% Li₂O over 2m - outside MRE 2024 pit shell)

Notes: Table 3 presents all intervals above 0.6% Li₂O over 2m. Bold text indicates Metal Factor greater than 25. See Notes (2) (Table 1) for drilling intercept calculation methodology.

Main Area

The newly reported drill results from the Main area are located outside the current resource pit shell and may contribute to future resource growth. Key intercepts are summarised in Table 4. Both recent and historical drilling confirm the northern extension of the Main pegmatites at depth, consistent with their moderate dip of 20° to the north. Notably, several significant new intercepts were obtained near the eastern edge of the Main area, adjacent to the Inter zone. These include very thick mineralised zones (25 to 38 metres) located outside the pit shell. The results confirm a stacked geometry of sub-horizontal LCT pegmatites, several of which are highly promising in both grade and thickness. Highlights include: **1.85% Li₂O over 38.45m** (hole 1331-22-185-ext), **1.44% Li₂O over 30.20m** (hole SYN-24-0883), **2.15% Li₂O over 33.40m** (hole SYN-24-0896), and **1.92% Li₂O over 31.40m** (hole SYN-24-0920). These findings continue to validate the sub-horizontal continuity of mineralisation (see Figure 1).

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
1331-16-112-ext	188.70	191.70	3.00	0.81	3.00m @ 0.81% Li ₂ 0 from 188.70m	
	218.60	221.65	3.05	1.40	3.05m @ 1.40% Li ₂ 0 from 218.60m	
	383.70	396.70	13.00	1.32	13.00m @ 1.32% Li ₂ 0 from 383.70m	
	412.40	417.65	5.25	1.51	5.25m @ 1.51% Li ₂ 0 from 412.40m	
1331-16-115-ext	298.10	313.70	15.60	1.51	15.60m @ 1.51% Li ₂ 0 from 298.10m	
	376.85	386.30	9.45	1.41	9.45m @ 1.41% Li ₂ 0 from 376.85m	
	391.60	412.35	20.75	1.67	20.75m @ 1.67% Li ₂ 0 from 391.60m	
1331-22-165-ext	418.70	422.40	3.70	0.71	3.70m @ 0.71% Li ₂ 0 from 418.70m	
	178.10	182.40	4.30	1.37	4.30m @ 1.37% Li ₂ 0 from 178.10m	
	275.00	277.40	2.40	1.79	2.40m @ 1.79% Li ₂ 0 from 275.00m	Main
	282.85	285.00	2.15	1.89	2.15m @ 1.89% Li ₂ 0 from 282.85m	
	317.60	326.00	8.40	1.91	8.40m @ 1.91% Li ₂ 0 from 317.60m	
1331-22-167-ext	347.55	352.90	5.35	1.04	5.35m @ 1.04% Li ₂ 0 from 347.55m	
	375.30	381.85	6.55	2.07	6.55m @ 2.07% Li ₂ 0 from 375.30m	
1331-22-171-ext	289.45	306.00	16.55	1.47	16.55m @ 1.47% Li ₂ 0 from 289.45m	
	312.70	323.00	10.30	0.70	10.30m @ 0.70% Li ₂ 0 from 312.70m	
	420.00	426.05	6.05	1.79	6.05m @ 1.79% Li ₂ 0 from 420.00m	
	451.85	455.95	4.10	1.65	4.10m @ 1.65% Li ₂ 0 from 451.85m	
1331-22-173-ext	291.45	309.25	17.80	1.75	17.80m @ 1.75% Li ₂ 0 from 291.45m	
	343.10	355.20	12.10	1.76	12.10m @ 1.76% Li ₂ 0 from 343.10m	
1331-22-179-ext	276.60	287.35	10.75	1.43	10.75m @ 1.43% Li ₂ 0 from 276.60m	
	351.55	375.80	24.25	1.43	24.25m @ 1.43% Li ₂ O from 351.55m	
	383.15	390.00	6.85	1.67	6.85m @ 1.67% Li ₂ 0 from 383.15m	
1331-22-182-ext	304.00	322.55	18.55	1.41	18.55m @ 1.41% Li ₂ 0 from 304.00m	
	332.00	343.00	11.00	1.40	11.00m @ 1.40% Li ₂ 0 from 332.00m	
	345.30	350.45	5.15	0.75	5.15m @ 0.75% Li ₂ 0 from 345.30m	
	352.50	362.20	9.70	1.43	9.70m @ 1.43% Li ₂ 0 from 352.50m	
	394.55	403.00	8.45	1.51	8.45m @ 1.51% Li ₂ 0 from 394.55m	
1331-22-185-ext	270.70	308.75	38.05	1.85	38.05m @ 1.85% Li ₂ 0 from 270.70m	

Table 4 – Main Area (intervals above 0.6% Li₂O over 2m - outside MRE 2024 pit shell)

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
	371.00	381.35	10.35	1.93	10.35m @ 1.93% Li ₂ O from 371.00m	
1331-22-202-ext	334.60	339.00	4.40	0.60	4.40m @ 0.60% Li ₂ 0 from 334.60m	
1331-22-210-ext	336.75	341.60	4.85	1.25	4.85m @ 1.25% Li ₂ O from 336.75m	
1331-22-292-ext	290.10	293.00	2.90	1.58	2.90m @ 1.58% Li ₂ 0 from 290.10m	
1331-22-295-ext	361.10	365.50	4.40	0.97	4.40m @ 0.97% Li ₂ 0 from 361.10m	
1331-22-318-ext	362.15	368.65	6.50	1.00	6.50m @ 1.00% Li ₂ O from 362.15m	
1331-22-496-ext	352.05	366.55	14.50	1.35	14.50m @ 1.35% Li ₂ 0 from 352.05m	
	431.65	446.10	14.45	1.26	14.45m @ 1.26% Li ₂ O from 431.65m	
SYN-24-0742-ext	338.40	346.35	7.95	0.82	7.95m @ 0.82% Li ₂ 0 from 338.40m	
SYN-24-0751	193.60	198.80	5.20	1.80	5.20m @ 1.80% Li ₂ 0 from 193.60m	
SYN-24-0775-ext	297.20	300.90	3.70	1.27	3.70m @ 1.27% Li ₂ 0 from 297.20m	
	330.00	332.50	2.50	1.45	2.50m @ 1.45% Li ₂ 0 from 330.00m	
	336.00	349.60	13.60	0.93	13.60m @ 0.93% Li ₂ 0 from 336.00m	
	357.40	360.85	3.45	0.67	3.45m @ 0.67% Li ₂ 0 from 357.40m	
SYN-24-0794-ext	345.70	353.05	7.35	1.29	7.35m @ 1.29% Li ₂ 0 from 345.70m	
SYN-24-0806-ext	311.60	315.85	4.25	0.62	4.25m @ 0.62% Li ₂ 0 from 311.60m	
	319.00	324.35	5.35	1.76	5.35m @ 1.76% Li ₂ 0 from 319.00m	
SYN-24-0875	298.75	318.50	19.75	1.51	19.75m @ 1.51% Li ₂ O from 298.75m	
	327.70	333.40	5.70	1.75	5.70m @ 1.75% Li ₂ 0 from 327.70m	
SYN-24-0876	353.60	361.70	8.10	1.16	8.10m @ 1.16% Li ₂ 0 from 353.60m	
	179.50	182.55	3.05	1.45	3.05m @ 1.45% Li ₂ 0 from 179.50m	
SYN-24-0883	268.45	280.00	11.55	1.27	11.55m @ 1.27% Li ₂ 0 from 268.45m	
	237.80	268.00	30.20	1.44	30.20m @ 1.44% Li ₂ 0 from 237.80m	
SYN-24-0895	318.90	329.30	10.40	1.42	10.40m @ 1.42% Li ₂ 0 from 318.90m	
	259.00	267.30	8.30	1.47	8.30m @ 1.47% Li ₂ 0 from 259.00m	
	270.30	274.90	4.60	0.98	4.60m @ 0.98% Li ₂ 0 from 270.30m	
SYN-24-0896	317.40	326.10	8.70	1.40	8.70m @ 1.40% Li ₂ 0 from 317.40m	
	206.70	240.10	33.40	2.15	33.40m @ 2.15% Li ₂ 0 from 206.70m	
	243.70	258.00	14.30	1.69	14.30m @ 1.69% Li ₂ 0 from 243.70m	
SYN-24-0920	280.55	288.50	7.95	1.44	7.95m @ 1.44% Li ₂ 0 from 280.55m	
	243.60	275.00	31.40	1.92	31.40m @ 1.92% Li ₂ 0 from 243.60m	
	277.55	281.90	4.35	1.67	4.35m @ 1.67% Li ₂ 0 from 277.55m	
	286.50	286.35	2.85	1.18	2.85m @ 1.18% Li ₂ 0 from 286.50m	
	325.65	337.50	11.85	1.45	11.85m @ 1.45% Li ₂ 0 from 325.65m	
SYN-24-0929	137.40	140.10	2.70	1.66	2.70m @ 1.66% Li ₂ 0 from 137.40m	
	246.45	271.30	24.85	2.21	24.85m @ 2.21% Li ₂ O from 246.45m	
	275.25	278.85	3.60	1.71	3.60m @ 1.71% Li ₂ 0 from 275.25m	
	289.85	294.75	4.90	1.30	4.90m @ 1.30% Li ₂ 0 from 289.85m	
	343.00	353.25	10.25	1.23	10.25m @ 1.23% Li ₂ 0 from 343.00m	

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
SYN-24-0930	99.35	115.25	15.90	1.58	15.90m @ 1.58% Li ₂ 0 from 99.35m	
	141.65	143.80	2.15	0.85	2.15m @ 0.85% Li ₂ 0 from 141.65m	
SYN-24-0933	321.60	334.90	13.30	0.96	13.30m @ 0.96% Li ₂ 0 from 321.60m	
	359.35	378.00	18.65	1.41	18.65m @ 1.41% Li ₂ 0 from 359.35m	
SYN-24-0934A	231.70	242.85	11.15	1.24	11.15m @ 1.24% Li ₂ 0 from 231.70m	

Notes: Table 4 presents all intervals above 0.6% Li₂O over 2m. Bold text indicates Metal Factor greater than 25. See Notes (2) (Table 1) for drilling intercept calculation methodology.

Inter Area

The new drilling results from the Inter area are all outside the resource pit shell and could potentially contribute to increasing mineral resources. Highlights from the Inter Area are detailed in Table 5. The most significant intercepts (>35m) returned 1.46% Li₂O over 59.55m and 1.28% Li₂O over 38.00m in hole SYN-24-0837, 1.36% Li₂O over 46.15m in hole SYN-24-0894, 1.69% Li₂O over 41.00m in hole SYN-24-0903, and 1.35% Li₂O over 35.40m in hole SYN-24-0907 (Figure 1 and Figure 2). Drilling in the Inter area demonstrates the continuity of the sub-horizontal pegmatite dykes at depth. All the intercepts presented in this press release confirm the success of this program and the connection potential between Moleon, Main and South pegmatites.

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
SYN-24-0731	228.80	235.50	6.70	1.06	6.70m @ 1.06% Li ₂ 0 from 228.80m	
	295.25	324.10	28.85	1.46	28.85m @ 1.46% Li ₂ 0 from 295.25m	
	327.90	332.75	4.85	0.61	4.85m @ 0.61% Li ₂ 0 from 327.90m	
SYN-24-0736ext	287.20	289.60	2.40	2.29	2.40m @ 2.29% Li ₂ 0 from 287.20m	
	308.65	343.45	34.80	1.64	34.80m @ 1.64% Li ₂ 0 from 308.65m	Inter
	356.45	362.80	6.35	1.15	6.35m @ 1.15% Li ₂ O from 356.45m	
SYN-24-0785ext	586.20	600.95	14.75	1.33	14.75m @ 1.33% Li ₂ 0 from 586.20m	
SYN-24-0827	232.90	261.65	28.75	1.45	28.75m @ 1.45% Li ₂ 0 from 232.90m	
	293.30	296.50	3.20	2.29	3.20m @ 2.29% Li ₂ 0 from 293.30m	
SYN-24-0830	235.05	246.30	11.25	2.31	11.25m @ 2.31% Li ₂ 0 from 35.05m	
	262.90	281.80	18.90	1.59	18.90m @ 1.59% Li ₂ 0 from 262.90m	
	284.30	294.25	9.95	1.08	9.95m @ 1.08% Li ₂ 0 from 284.30m	
SYN-24-0832	308.60	333.55	24.95	1.55	24.95m @ 1.55% Li ₂ O from 308.60m	
	336.20	346.40	10.20	1.01	10.20m @ 1.01% Li ₂ 0 from 336.20m	
	372.95	376.80	3.85	0.79	3.85m @ 0.79% Li ₂ 0 from 372.95m	
SYN-24-0833	275.15	290.00	14.85	1.74	14.85m @ 1.74% Li ₂ O from 275.15m	
	298.40	312.45	14.05	1.82	14.05m @ 1.82% Li ₂ O from 298.40m	
SYN-24-0834	295.40	305.00	9.60	1.46	9.60m @ 1.46% Li ₂ 0 from 295.40m	
	308.25	312.55	4.30	1.81	4.30m @ 1.81% Li ₂ 0 from 308.25m	
SYN-24-0835	233.80	240.80	7.00	1.40	7.00m @ 1.40% Li ₂ 0 from 233.80m	

Table 5 - Inter Area (intervals above 0.6% Li₂O over 2m - outside MRE 2024 pit shell)

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
	243.80	251.30	7.50	1.14	7.50m @ 1.14% Li ₂ 0 from 243.80m	
SYN-24-0836	191.80	198.20	6.40	0.79	6.40m @ 0.79% Li ₂ 0 from 191.80m	
	253.70	259.60	5.90	1.48	5.90m @ 1.48% Li ₂ 0 from 253.70m	
SYN-24-0837	242.30	247.95	5.65	1.35	5.65m @ 1.35% Li ₂ 0 from 242.30m	
	271.00	293.10	22.10	1.46	22.10m @ 1.46% Li ₂ 0 from 271.00m	
	316.60	376.15	59.55	1.46	59.55m @ 1.46% Li ₂ 0 from 316.60m	
	391.00	429.00	38.00	1.28	38.00m @ 1.28% Li ₂ 0 from 391.00m	
	431.90	436.75	4.85	1.29	4.85m @ 1.29% Li ₂ 0 from 431.90m	
	453.60	458.80	5.20	0.96	5.20m @ 0.96% Li ₂ 0 from 453.60m	
SYN-24-0860	288.90	296.30	7.40	0.75	7.40m @ 0.75% Li ₂ 0 from 288.90m	
SYN-24-0877	207.45	213.15	5.70	1.62	5.70m @ 1.62% Li ₂ 0 from 207.45m	
SYN-24-0878	286.60	292.85	6.25	0.96	6.25m @ 0.96% Li ₂ 0 from 286.60m	
	297.75	310.55	12.80	1.14	12.80m @ 1.14% Li ₂ 0 from 297.75m	
	438.00	444.40	6.40	1.52	6.40m @ 1.52% Li ₂ 0 from 438.00m	
SYN-24-0879	268.75	281.15	12.40	1.67	12.40m @ 1.67% Li ₂ 0 from 268.75m	
SYN-24-0880	191.10	214.65	23.55	0.99	23.55m @ 0.99% Li ₂ 0 from 191.10m	
	233.15	235.40	2.25	0.84	$2.25m @ 0.84\% Li_20 from 233.15m$	
SYN-24-0886	259.00	262.50	3.50	0.93	3.50m @ 0.93% Li ₂ 0 from 259.00m	
SYN-24-0888	235.90	238.90	3.00	0.93	3.00m @ 0.93% Li ₂ 0 from 235.90m	
	241.20	243.20	2.00	1.42	2.00m @ 1.42% Li ₂ 0 from 241.20m	
	246.75	249.40	2.65	0.93	2.65m @ 0.93% Li ₂ 0 from 246.75m	
SYN-24-0889A	224.95	259.00	34.05	2.01	34.05m @ 2.01% Li ₂ 0 from 224.95m	
	315.65	339.15	23.50	1.47	23.50m @ 1.47% Li ₂ 0 from 315.65m	
SYN-24-0890	237.60	251.60	14.00	1.89	14.00m @ 1.89% Li ₂ 0 from 237.60m	
	258.90	266.35	7.45	1.65	7.45m @ 1.65% Li ₂ 0 from 258.90m	
SYN-24-0891	271.40	278.25	6.85	1.37	6.85m @ 1.37% Li ₂ 0 from 271.40m	
SYN-24-0892	265.20	272.75	7.55	1.36	7.55m @ 1.36% Li ₂ 0 from 265.20m	
	287.25	289.80	2.55	1.45	2.55m @ 1.45% Li ₂ 0 from 287.25m	
SYN-24-0893	123.50	138.75	15.25	1.28	15.25m @ 1.28% Li ₂ 0 from 123.50m	
	171.75	180.30	8.55	0.99	8.55m @ 0.99% Li ₂ 0 from 171.75m	
	182.95	200.40	17.45	1.62	17.45m @ 1.62% Li ₂ 0 from 182.95m	
SYN-24-0894	310.25	356.40	46.15	1.36	46.15m @ 1.36% Li ₂ 0 from 310.25m	
	379.25	409.35	30.10	1.26	30.10m @ 1.26% Li ₂ 0 from 379.25m	
SYN-24-0897	194.50	199.85	5.35	1.26	5.35m @ 1.26% Li ₂ 0 from 194.50m	
	284.40	303.00	18.60	1.27	18.60m @ 1.27% Li ₂ 0 from 284.40m	
	375.30	388.10	12.80	1.49	12.80m @ 1.49% Li ₂ 0 from 375.30m	
SYN-24-0898	273.40	286.20	12.80	1.56	12.80m @ 1.56% Li ₂ 0 from 273.40m	
	306.20	311.45	5.25	2.96	5.25m @ 2.96% Li ₂ 0 from 306.20m	

Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
SYN-24-0898ext	404.15	423.30	19.15	2.31	19.15m @ 2.31% Li ₂ O from 404.15m	
SYN-24-0899	221.20	229.60	8.40	1.39	8.40m @ 1.39% Li ₂ 0 from 221.20m	
	234.60	237.25	2.65	1.70	2.65m @ 1.70% Li ₂ 0 from 234.60m	
	240.55	243.70	3.15	1.28	3.15m @ 1.28% Li ₂ 0 from 240.55m	
SYN-24-0900	157.60	173.00	15.40	1.82	15.40m @ 1.82% Li ₂ 0 from 157.60m	
	230.35	243.85	13.50	1.79	13.50m @ 1.79% Li ₂ O from 230.35m	
SYN-24-0901	170.00	180.20	10.20	1.28	10.20m @ 1.28% Li ₂ 0 from 170.00m	
SYN-24-0903	185.10	226.10	41.00	1.69	41.00m @ 1.69% Li ₂ O from 185.10m	
SYN-24-0906	211.05	226.20	15.15	1.36	15.15m @ 1.36% Li ₂ O from 211.05m	
	228.70	241.35	12.65	1.07	12.65m @ 1.07% Li ₂ O from 228.70m	
	327.30	330.85	3.55	1.91	3.55m @ 1.91% Li ₂ O from 327.30m	
	353.50	367.35	13.85	1.32	13.85m @ 1.32% Li ₂ O from 353.50m	
SYN-24-0907	230.65	266.05	35.40	1.35	35.40m @ 1.35% Li ₂ O from 230.65m	
	302.65	305.30	2.65	2.22	2.65m @ 2.22% Li ₂ O from 302.65m	
SYN-24-0908	139.95	142.00	2.05	1.04	2.05m @ 1.04% Li ₂ O from 139.95m	
	237.80	244.80	7.00	1.79	7.00m @ 1.79% Li ₂ 0 from 237.80m	
SYN-24-0909	302.30	314.90	12.60	2.52	12.60m @ 2.52% Li ₂ O from 302.30m	
SYN-24-0912	185.20	187.80	2.60	1.31	2.60m @ 1.31% Li ₂ 0 from 185.20m	
	197.80	200.75	2.95	1.18	2.95m @ 1.18% Li ₂ O from 197.80m	
SYN-24-0921	316.00	318.00	2.00	1.83	2.00m @ 1.83% Li ₂ O from 316.00m	
	340.00	342.50	2.50	2.33	2.50m @ 2.33% Li ₂ 0 from 340.00m	
SYN-24-0931	224.90	247.25	22.35	1.41	22.35m @ 1.41% Li ₂ O from 224.90m	
	299.85	305.75	5.90	1.46	5.90m @ 1.46% Li ₂ 0 from 299.85m	
SYN-24-0932	223.15	233.20	10.05	1.12	10.05m @ 1.12% Li ₂ 0 from 223.15m	
	244.90	259.00	14.10	1.31	14.10m @ 1.31% Li ₂ 0 from 244.90m	
	267.70	270.90	3.20	1.18	3.20m @ 1.18% Li ₂ 0 from 267.70m	
	330.65	339.80	9.15	1.79	9.15m @ 1.79% Li ₂ O from 330.65m	
SYN-24-0939	366.15	398.40	32.25	1.59	32.25m @ 1.59% Li ₂ O from 366.15m	

Notes: Table 5 presents all intervals above 0.6% Li₂O over 2m. Bold text indicates Metal Factor greater than 25. See Notes (2) (Table 1) for drilling intercept calculation methodology.

Moleon Area

All results from the Moleon area are located outside the current resource pit shell and indicate potential for future resource expansion. Key intercepts are outlined in Table 6. Drilling in the Moleon area confirms the extension of sub-horizontal, east-west trending pegmatites from the Main and South areas, intersected by north-south striking, steeply dipping pegmatite dykes. This structural intersection creates zones of significant mineralisation with substantial thicknesses. The new results further validate the eastward continuity of sub-horizontal pegmatites into the Moleon area, with N-S trending dykes exhibiting estimated true widths of up to 27m. Notable intercepts include **1.78% Li₂O over 16.35m** and **1.82% Li₂O over 26.75m** in hole SYN-24-0887. Figure 1 provides further visual context for these findings

Table 6 - Moleon Area (intervals above 0.6% Li₂O over 2m - outside MRE 2024 pit shell)

	Drillhole	From (m)	To (m)	Length (m)	Li ₂ O %	Description	Area
	SYN-24-0887	132.15	148.50	16.35	1.78	16.35m @ 1.78% Li ₂ O from 132.15m	
_	-	200.90	227.65	26.75	1.82	26.75m @ 1.82% Li ₂ O from 200.90m	
_	SYN-24-0911	7.65	14.55	6.90	1.66	6.90m @ 1.66% Li ₂ 0 from 7.65m	Moleon
	SYN-24-0911A	7.50	15.10	7.60	1.57	7.60m @ 1.57% Li ₂ 0 from 7.50m	
_		197.60	201.95	4.35	1.83	4.35m @ 1.83% Li ₂ O from 197.60m	
_	SYN-24-0915	169.55	172.10	2.55	0.76	2.55 @ 0.76% Li ₂ O from 169.55m	

Notes: Table 6 presents all intervals above 0.6% Li₂O over 2m. Bold text indicates Metal Factor greater than 25. See Notes (2) (Table 1) for drilling intercept calculation methodology.

The Moblan project is located about 130 km northwest of Chibougamau and approximately 85 km from the Cree community of Mistissini. Conveniently located within 300 metres of the Route du Nord, a regional highway accessible year-round, the project benefits from direct connectivity to railway lines leading to major ports in Eastern Canada.

For more information, please contact:

Andrew Barber

Director of Investor Relations

Ph: +617 3369 7058 Email: <u>ir@sayonamining.com.au</u>

About Sayona Mining

Sayona Mining Limited is a North American lithium producer (ASX:SYA; OTCQB:SYAXF), with projects in Québec, Canada and Western Australia.

In Québec, Sayona's assets comprise North American Lithium together with the Authier Lithium Project and the Tansim Lithium Project, supported by a strategic partnership with American lithium developer Piedmont Lithium Inc. Sayona also holds a 60% stake in the Moblan Lithium Project in northern Québec.

In Western Australia, the Company holds a large tenement portfolio in the Pilbara region prospective for gold and lithium. Sayona is exploring for Hemi style gold targets in the world class Pilbara region, while its lithium projects include Company-owned leases and those subject to a joint venture with Morella Corporation (ASX:1MC). For more information, please visit us at <u>www.sayonamining.com.au</u>

About Investissement Québec

Investissement Québec's mission is to play an active role in Québec's economic development by stimulating business innovation, entrepreneurship and business acquisitions, as well as growth in investment and exports. Operating in all of the province's administrative regions, the Corporation supports the creation and growth of businesses of all sizes with investments and customised financial solutions. It also assists businesses by providing consulting services and other support measures, including technological assistance available from Investissement Québec Innovation. In addition, through Investissement Québec International, the Corporation prospects for talent and foreign investment, and assists Québec businesses with export activities.

References to Previous ASX Releases

- Drilling confirms thick, high-grade lithium intercepts and further down-dip expansion of the Moblan pegmatite system – 27 April 2025
- Moblan continues to deliver more high-grade lithium results from the 2024 drill program 30 January 2025
- Moblan mineral resource increase 81% to 93Mt 27 August 2024
- Moblan drilling reveals further high-grade lithium intersections 13 June 2024
- Moblan drilling delivers thick, high-grade intersections 26 May 2024
- Moblan Lithium Project Definitive Feasibility Study 20 February 2024
- Moblan drilling shows expansion potential 23 October 2023
- Drill results significantly expand Moblan lithium footprint 11 July 2023
- Moblan boosted by significant increase in lithium resource 17 April 2023

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and all material assumptions and technical parameters continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Competent and Qualified Person Statement

The information in this announcement relating to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr. Carl Corriveau, PGeo, VP Exploration of Sayona, Mr Alain Carrier, PGeo, independent consultant (Norda Stelo/InnovExplo) who are all members of the Quebec Order of Geologists, a Registered Overseas Professional Organisation as defined in the ASX Listing Rules, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Corriveau and Carrier consent to the inclusion in this release of the matters based on the information in the form and context in which they appear.

Forward Looking Statements

This press release contains certain forward-looking statements. Such statements include, but are not limited to, statements relating to "reserves" or "resources". Forward-looking statements are based on certain assumptions and involve known and unknown risks, uncertainties and other factors, many of which are beyond Sayona's control. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. There can be no assurance that such information will prove to be accurate as actual results and future events could differ materially from those anticipated in such forward-looking statements.

Table 7 – Drillhole Collar Data

South Area

W

Drillhole	East (m)	North (m)	Elevation (m)	Azimuth	Dip Degrees	End of Hole (m)
SYN-24-0816	507,453.39	5,619,711.36	478.33	180	-60	225.00
SYN-24-0817	507,549.46	5,619,697.12	480.11	180	-77	261.15
SYN-24-0819	507,500.78	5,619,724.58	479.52	180	-62	201.00
SYN-24-0824	507,613.25	5,619,763.60	482.13	182	-70	180.00
SYN-24-0852	506,376.79	5,619,792.51	568.24	210	-63	168.00
SYN-24-0854	506,452.95	5,619,632.92	550.58	180	-70	141.00
SYN-24-0855	506,468.44	5,619,929.90	540.39	180	-70	102.00
SYN-24-0856	506,469.63	5,619,571.10	544.20	165	-56	120.00
SYN-24-0857	506,480.01	5,619,892.32	539.37	180	-55	102.00
SYN-24-0859	506,526.31	5,619,886.58	536.83	177	-60	402.00
SYN-24-0861	506,563.37	5,619,944.41	536.02	180	-70	351.00
SYN-24-0862	506,557.07	5,619,566.21	533.92	180	-57	141.00
SYN-24-0864	506,598.31	5,619,548.19	539.45	188	-73	141.00
SYN-24-0866	506,642.67	5,619,830.42	537.92	188	-62	100.00
SYN-24-0873	507,452.40	5,619,890.18	484.40	184	-73	375.00
SYN-24-0874	507,620.58	5,619,824.44	483.64	176	-75	327.00
SYN-24-0918	507,304.49	5,619,619.89	478.35	194	-46	279.00
SYN-24-0925	506,896.29	5,619,578.12	494.30	180	-65	171.00
SYN-24-0926	506,954.76	5,619,511.41	478.79	180	-65	180.00
SYN-24-0927	506,889.63	5,619,515.65	495.47	180	-75	141.00
SYN-24-0936	507,303.98	5,619,619.75	478.28	180	-57	201.00
SYN-24-0937	507,352.61	5,619,629.01	478.66	180	-70	192.00
			Sub-total	22	drillholes	4,501.15

Main Area

Drillhole	East (m)	North (m)	Elevation (m)	Azimuth	Dip Degrees	End of Hole (m)
1331-16-112-ext	507,191.50	5,620,029.70	516.20	179	-53	444.60
1331-16-115-ext	507,250.70	5,620,267.70	538.60	179	-56	462.00
1331-22-165-ext	507,251.68	5,619,959.91	504.43	183	-69	348.00
1331-22-167-ext	507,096.81	5,619,952.81	504.19	172	-60	411.00
1331-22-171-ext	507,106.31	5,620,075.31	509.04	181	-51	462.00
1331-22-173-ext	507,151.86	5,620,072.75	515.38	180	-55	426.00
1331-22-179-ext	507,175.02	5,620,187.09	518.80	180	-55	420.00
1331-22-182-ext	507,282.30	5,620,117.43	524.36	160	-55	435.00
1331-22-185-ext	507,346.29	5,620,228.59	537.98	192	-58	435.00
1331-22-202-ext	506,950.44	5,620,099.76	505.27	177	-82	413.40
1331-22-210-ext	507,002.96	5,619,799.15	506.79	182	-81	423.00
1331-22-291-ext	507,002.75	5,619,986.40	506.91	180	-80	450.00
1331-22-292-ext	507,000.99	5,620,046.12	502.39	179	-80	423.00
1331-22-293-ext	507,013.51	5,620,109.58	503.30	200	-80	432.00
1331-22-295-ext	506,983.90	5,620,198.29	500.46	172	-75	408.00
1331-22-318-ext	507,297.38	5,620,302.75	548.11	180	-65	414.00
1331-22-344-ext	507,304.10	5,620,409.24	561.35	0	-85	420.00
1331-22-496-ext	507,401.53	5,620,500.67	569.31	180	-65	494.60
SYN-24-0742-ext	507,154.05	5,620,253.66	512.84	180	-65	399.00

Drillhole	East (m)	North (m)	Elevation (m)	Azimuth	Dip Degrees	End of Hole (m)
SYN-24-0751	507,257.74	5,620,396.88	552.75	177	-63	222.00
SYN-24-0751-ext	507,257.74	5,620,396.88	552.75	177	-63	471.00
SYN-24-0775-ext	507,243.39	5,620,283.42	538.18	180	-65	417.00
SYN-24-0794-ext	507,260.90	5,620,323.06	546.97	180	-65	444.00
SYN-24-0806-ext	507,190.04	5,620,334.94	526.62	180	-65	411.00
SYN-24-0875	507,347.74	5,620,044.23	500.51	175	-61	393.00
SYN-24-0876	507,297.84	5,619,952.86	490.77	175	-68	378.00
SYN-24-0883	507,346.81	5,620,178.23	532.30	182	-70	360.00
SYN-24-0895	507,347.55	5,620,044.91	500.95	180	-72	546.00
SYN-24-0896	507,364.13	5,620,066.53	508.86	195	-80	351.00
SYN-24-0920	507,286.91	5,620,048.96	513.33	180	-72	351.00
SYN-24-0929	507,221.78	5,620,071.67	516.65	180	-65	370.50
SYN-24-0930	507,396.86	5,620,211.41	532.60	152	-72	387.00
SYN-24-0933	507,124.03	5,620,151.18	508.29	175	-52	411.00
SYN-24-0934A	507,124.03	5,620,151.14	508.23	175	-66	384.00
			Sub-total	34	drillholes	14,017.10

Inter Area

V

Main Area

Drillhole	East (m)	North (m)	Elevation (m)	Azimuth	Dip Degrees	End of Hole (m)
1331-22-343-ext	507,449.56	5,620,397.60	564.29	0	-85	408.00
SYN-24-0731	507,438.93	5,620,395.68	565.58	180	-60	381.00
1331-22-736-ext	507,446.71	5,620,455.56	583.24	180	-65	450.00
1331-22-785-ext	507,470.73	5,620,191.26	514.99	130	-65	630.00
SYN-24-0827	507,625.88	5,620,029.82	496.72	130	-53	318.00
SYN-24-0830	507,652.38	5,620,059.58	493.98	130	-50	336.00
SYN-24-0832	507,579.68	5,619,966.11	491.15	188	-65	426.00
SYN-24-0833	507,605.87	5,619,972.39	493.76	180	-60	351.00
SYN-24-0834	507,557.15	5,619,933.03	493.63	183	-62	363.00
SYN-24-0835	507,651.71	5,620,059.42	493.96	145	-72	276.00
SYN-24-0836	507,652.13	5,620,059.73	493.98	130	-60	300.00
SYN-24-0837	507,579.15	5,619,966.56	490.92	195	-75	486.00
SYN-24-0853	507,605.87	5,619,971.93	493.66	181	-52	390.00
SYN-24-0860	507,606.60	5,619,973.46	493.69	160	-60	390.00
SYN-24-0877	507,664.45	5,620,077.24	490.30	130	-67	252.00
SYN-24-0878	507,461.14	5,620,112.59	507.32	143	-67	606.00
SYN-24-0879	507,500.86	5,620,106.00	491.02	125	-58	351.00
SYN-24-0880	507,525.31	5,620,143.71	482.23	160	-73	327.00
SYN-24-0881A	507,521.19	5,620,209.66	498.40	130	-58	357.00
SYN-24-0884	507,613.00	5,620,227.31	498.60	128	-73	300.00
SYN-24-0885	507,664.53	5,620,014.36	496.05	162	-57	351.00
SYN-24-0886	507,660.23	5,620,202.49	489.48	93	-46	291.00
SYN-24-0888	507,573.99	5,620,132.78	478.58	99	-53	300.00
SYN-24-0889	507,568.98	5,620,048.10	483.56	182	-71	15.15
SYN-24-0889A	507,568.95	5,620,047.90	483.54	182	-71	360.00
SYN-24-0890	507,624.85	5,620,030.68	496.65	191	-80	300.00

Drillhole	East (m)	North (m)	Elevation (m)	Azimuth	Dip Degrees	End of Hole (m)
SYN-24-0891	507,662.20	5,620,014.57	496.18	217	-70	315.00
SYN-24-0892	507,650.50	5,620,059.36	493.77	170	-66	306.00
SYN-24-0893	507,747.21	5,620,049.96	492.77	117	-65	252.00
SYN-24-0894	507,461.08	5,620,111.89	507.21	152	-59	429.00
SYN-24-0894-ext	507,461.08	5,620,111.89	507.21	152	-59	531.00
SYN-24-0897	507,642.76	5,620,251.86	495.25	30	-55	435.00
SYN-24-0898	507,597.84	5,620,213.67	495.10	30	-50	402.00
SYN-24-0898-ext	507,597.84	5,620,213.67	495.10	30	-50	438.00
SYN-24-0899	507,521.73	5,620,084.65	480.81	141	-71	384.00
SYN-24-0900	507,767.39	5,619,979.57	482.97	100	-48	300.00
SYN-24-0901	507,766.73	5,619,978.11	483.04	123	-49	300.00
SYN-24-0902	507,765.37	5,619,977.74	483.10	143	-48	303.00
SYN-24-0903	507,748.60	5,620,050.84	492.78	167	-48	333.00
SYN-24-0904	507,764.22	5,619,977.93	483.10	163	-48	300.00
SYN-24-0905	507,763.07	5,619,978.40	483.05	185	-48	300.00
SYN-24-0906	507,434.68	5,620,347.20	563.41	103	-67	384.00
SYN-24-0907	507,434.31	5,620,347.28	563.40	103	-80	369.00
SYN-24-0908	507,598.85	5,620,461.22	520.77	100	-50	330.00
SYN-24-0909	507,484.51	5,620,484.17	583.81	102	-49	402.00
SYN-24-0912	507,602.92	5,620,526.08	535.41	100	-50	258.00
SYN-24-0914	507,503.92	5,620,535.06	577.26	100	-50	303.00
SYN-24-0919	507,661.48	5,620,015.22	496.21	200	-58	360.00
SYN-24-0921	507,606.69	5,619,973.79	493.63	165	-52	401.00
SYN-24-0931	507,396.53	5,620,211.44	532.67	105	-77	375.00
SYN-24-0932	507,397.55	5,620,213.31	532.65	173	-64	573.00
SYN-24-0938	507,513.69	5,620,975.95	520.81	130	-50	264.00
SYN-24-0939	507,580.58	5,619,967.35	490.83	240	-83	510.00

Moleon Area

Drillhole	East (m)	North (m)	Elevation (m)	Azimuth	Dip Degrees	End of Hole (m)
SYN-24-0887	507,825.96	5,620,031.89	485.38	93	-49	267.00
SYN-24-0911	507,890.86	5,620,505.32	486.51	100	-50	27.00
SYN-24-0911A	507,890.80	5,620,505.44	486.60	100	-50	240.00
SYN-24-0913	507,832.89	5,620,529.48	498.41	100	-50	285.00
SYN-24-0915	507,890.86	5,620,563.65	497.02	100	-50	240.00
SYN-24-0916	508,191.33	5,620,562.42	468.79	100	-50	102.00
SYN-24-0917	508,290.38	5,620,590.72	469.48	100	-52	102.00
			Sub-total	7	drillholes	1,263.00
			Total	116	drillholes	38,953.40

Sub-total

53 drillholes

19,172.15

Notes: The coordinates are in metres in UTM NAD83 Zone 18 and elevation are above sea level.

APPENDIX A – JORC TABLES

WP

JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Sampling at the Moblan Lithium Project (the 'Project') is adequate, of good quality and comes from core drilling. Core samples are obtained from diamond drilling (NQ and HQ diameter core). New results from this release were from NQ and BTW core diameter.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Geological logging of recovered drill core visually identified pegmatite and its constituent mineralogy to determine the intervals for sampling. Lithium-bearing spodumene is easily identified. Sampling has been determined on geological characteristics and ranges from between 0.25 m and 1.6 m in length. The core was cut using a diamond saw core-cutter, and half-cores were sampled. All pegmatite material intersected downhole has been sampled.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Sample preparation and assaying methods are industry-standard and appropriate for this type of mineralisation. The Project is supported by core samples taken by diamond drilling (no other sampling methods were used).

Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Drilling from surface was carried out by diamond drilling methods, using a standard tube to recover NQ and HQ size core (no other drilling methods were used). The core was not orientated. Downhole drill azimuth and dip have been determined by TN-14 azimuth aligner and downhole Reflex Gyro multi- and single-shot recording instruments; Flexit multi-shot; and Tropari and acid test for the remaining historical drill holes.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Drilling was directly into the hard (fresh) rock, starting at the surface, and core recovery approximates 100%. the core has been marked up, and the core recovery and RQD.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	To ensure the representative nature of the samples drilling has been by diamond drill core methods, measurements have been recorded. Core recoveries were typically high and considered acceptable, and it is not believed a bias has been introduced into the sampling system.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no correlation or bias between the grades obtained and core recovery.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All drill core has been geologically logged to a level of detail appropriate for the Project. Geological logging, RQD measurements and structural information have been completed. The logging is qualitative and is supported by photography of marked-up core. The logging was appropriate and of sufficient quality and level of detail to support the mineral resource estimation and mining and metallurgical studies.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Geological logging recorded qualitative descriptions of lithology, alteration, mineralisation, veining, and structure. Logging also includes core recovery and RQD measurements.
		The 2024 Moblan Mineral Resource Estimate ('2024 MRE') is supported by 771 surface drillholes for 130,633m drilled between 2002 and the end 2023 and by surface channel samples (samples collected from 10 surface trenches) with database close-out date of April 2nd, 2024 (ASX announcement 27 August 2024).
	The total length and percentage of the relevant intersections logged.	Several results have been published since the 2024 MRE. In 2024, new release covers the results of 94 new drillholes totalling 20,735.75m (ASX announcement 26 May 2024), in June 2024, 34 new drillholes (7,853m) were released (ASX announcement June 13 th , 2024) and in January 2025, 57 new drillholes (13,999m) (ASX announcement January 30 th , 2025), 99 drillholes (28,513.95) (ASX announcement April 27, 2025).
		This release covers the results of 116 new drillholes totalling 38,953.40m. The completed and released drill holes for the Project currently amount to 986 drillholes (198,100.35m). The sample database has been established in UTM coordinates (NAD 83 Zone 18).

Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Drill core has been cut in half by a diamond saw, with half-core samples packaged and grouped into bulk bags for dispatch to the laboratory. Half-core sampling is considered an appropriate method to ensure a sufficient quantity of sample is collected for it to be representative of the drill material and appropriate for the grain size of the material being sampled.
	If non-core, whether riffled, tube sampled, rotary split, etc., and whether sampled wet or dry.	There was no sampling method other than diamond drilling (core drilling).
		Sampling, sample preparation and quality control protocols are considered appropriate for the material being sampled.
	For all sample types, the nature, quality and	Since 2011, sample preparation has been conducted in independent accredited laboratories (SGS laboratories in Toronto, Ontario (Canada) and ALS and AGAT laboratories in Val-d'Or, Québec (Canada)).
	appropriateness of the sample preparation technique.	AGAT: each core sample is dried and weighed, and the entire sample is crushed to 75% passing 2 mm. A split of up to 250 g is taken using a riffle splitter and pulverised to better than 85% passing 75 µm.
		ALS: each core sample is dried and weighed, and the entire sample is crushed to 70% passing 2 mm. A split of up to 250 g is taken using a riffle splitter and pulverised to better than 85% passing 75 µm.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	The core samples have been selected by visual logging methods and are considered appropriate for the analytical work being carried out in an industry-standard manner.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The remaining half-cores, crushed samples (rejects) and pulverised samples (pulps) are retained for further analysis and quality control checks.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate for the style of mineralisation.
		All samples were analysed at independent accredited laboratories (SGS laboratories in Toronto, Ontario (Canada), and ALS and AGAT laboratories in Val-d'Or, Québec (Canada)).
	The nature, quality and appropriateness of	All the 2007–2010 samples were analysed by SGS in Toronto by Sodium Peroxide Fusion and ICP-MS finish using a 0.2 g aliquot of pulverised material.
Quality of assay data and laboratory tests	the assaying and laboratory procedures used and whether the technique is considered partial or total.	In 2022–2025, all core samples were analysed at ALS by ME-MS589L Sodium Peroxide Fusion and ICP-MS finish using a 0.2 g aliquot of pulverised material. Previous operators and Sayona have regularly inserted third-party reference control samples and blank samples in the sample stream to monitor assay and laboratory performance. Assaying was completed by ALS Laboratories.
		It is believed that the sampling, assaying and laboratory procedures are representative of the drilled material and appropriate for the Project.

WP

	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	There was no sampling method other than diamond drilling. No geophysical tools or XRF instruments have been used in determining mineralisation.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	QA/QC was ensured by the insertion of Certified Reference Material ('CRM'), half-core duplicate sampling, and the insertion of blanks into the sample sequence. Protocols include the systematic insertion of CRM standards at approximately 1 for every 25 samples and alternating blank samples of quartz and core duplicate samples at a rate of 1 for every 25 samples in previous operator programmes (SOQUEM). Since June 2022, Sayona's protocols have switched to 1 control sample for every 20 samples. The CRMs used for monitoring lithium values are OREAS 750, OREAS 751, OREAS 752, OREAS 753 and OREAS 999. Occasionally, a CRM for Zn (OREAS 630B) has been used to validate other metals. These standards have been selected to reflect the target mineralisation type. Assays of quality control samples were compared with reference samples in the database and verified as acceptable prior to using the data from the analysed batches. The assaying techniques and quality control protocols used are considered appropriate for the data to be reported in its current form and for the estimation of mineral resources.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Sampling intervals defined by the geologist were assigned sample identification numbers prior to core cutting. The results have been reviewed by multiple geologists. The company conducts internal data verification protocols, which have been followed. Significant intersections were verified by company personnel and CPs. There are no currently known drilling, sampling, recovery, or other factors that could materially affect the accuracy or reliability of the data.
	The use of twinned holes.	No twinned holes have been drilled.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All sampling and assay information were stored in a secure GeoticLog database with restricted access. Assay results from the laboratory with corresponding sample identification are loaded directly into the GeoticLog database.
	Discuss any adjustment to assay data.	Li% has been converted to Li ₂ 0% for reporting purposes. The conversion used is Li ₂ 0 = Li x 2.1527. No other adjustments to the assay data have been made.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The drilling collars are positioned using handheld GPS and then professionally surveyed after completion. The professional survey firms of Paul Roy, Arpenteur-Géomètre, and Caouette, Thériault & Renaud, both based in Chibougamau, provided a land surveyor with a GPS base station to survey the completed drill collar locations. Drill rigs were aligned using an electronic azimuth aligner (TN-14 azimuth aligner). Downhole survey data were collected at 3-m intervals using Reflex EZ and Flexit instruments. Some historical drill holes were subjected to Tropari and acid tests to monitor down-hole deviations. The government's LIDAR survey of the area was used to prepare a DEM/topographic model for the Project. There are no mine workings on the site.
	Specification of the grid systeusMed.	The grid system is UTM NAD83 Zone 18.

	Quality and adequacy of topographic control.	The quality and adequacy of the topographic control and drill hole database are considered appropriate for the work undertaken, and the data is suitable for use in mineral resource estimation.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The drill hole spacing ranges from 20–65m within the mineral resource area. The spacing between drill hole fences is typically around 50m apart. The drilling grid is looser in areas at the exploration stage and may include isolated drill holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate	The data spacing is sufficient to establish the degree of geological and grade continuity for the exploration results, yielding Measured, Indicated and Inferred Mineral Resources within the Main dykes and Indicated and Inferred Mineral Resources within the South, Inter and Moleon dykes. Significant assay intercepts remain open.
	for the Mineral Resource and Ore Reserves estimation procedure(s) and classifications applied.	Further drilling is required to determine the extent of currently defined mineralisation. New drilling results obtained since the 2024 MRE database close-out date could potentially locally upgrade some resources and add new resources.
	Whether sample compositing has been	One metre (1m) compositing is applied to samples used for the mineral resource estimation. Samples from drill holes completed after the 2024 MRE were not composited.
	applied.	For the purposes of illustrating exploration results, lithium values for pegmatite dykes are reported as the weighted average of individual samples.
Orientation of data in relation to geological structure		Drilling may intersect mineralisation at various angles but is typically orthogonal to the lithium pegmatites dykes. Some drill positions have utilised the same drill pad but with a variable dip to intersect the target mineralisation at depth.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The relationship between the drilling orientation and the orientation of key mineralised structures is appropriate. Drill holes exploring the extent of the Project intersected four (4) lithium-bearing pegmatite dyke swarms: Main, South, New South and Moleon. Each corresponds to a series of stacked dykes of variable thickness separated by faults. The Main group comprises 5 dykes oriented E-W and dipping gently to the north (N260°/-20°) and two dykes oriented approximately N-S and dipping steeply to the west (N180°/-70°). The South group comprises 12 dykes oriented E-W and nearly sub-horizontal or dipping gently to the south (N260°/-10°) and one dyke oriented approximately N-S and dipping steeply to the west (N180°/-70°). The New South group comprises 12 dykes oriented E-W and nearly sub-horizontal or dipping gently to the south (N260°/-5°) and one dyke oriented approximately N-S and dipping steeply to the west (N180°/-70°). The New South group comprises 12 dykes oriented E-W and nearly sub-horizontal or dipping gently to the south (N260°/-5°) and one dyke oriented approximately N-S and dipping steeply to the west (N180°/-70°). The Moleon group comprises 1 dyke oriented E-W and nearly sub-horizontal or dipping gently to the south (N260°/-5°) and one dyke oriented approximately N-S and dipping steeply to the west (N180°/-70°). The Moleon group comprises 1 dyke oriented E-W and nearly sub-horizontal or dipping gently to the south (N260°/-5°) and 9 dykes oriented K-W and nearly sub-horizontal or dipping gently to the south (N260°/-5°) and 9 dykes oriented N-S and dipping steeply to the south (N260°/-5°) and 9 dykes oriented N-S and dipping steeply to the west (N180°/-70°).
		Spodumene pegmatite dykes in the area are typically tabular bodies, and the reported results appear consistent with that style of mineralisation. Drill hole orientation does not appear to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	All reasonable measures and industry-standard sample and storage protocols have been applied. Sample security is controlled by tracking samples from the drill rig through core logging, sampling, laboratory preparation and analysis, and database entry. Drill core was delivered from the drill rig to the core yard every shift. On completion of geological and geotechnical logging, Laurentia Exploration or Sayona personnel and/or their representatives finished processing the core and sent the samples to the laboratory.

Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Internal reviews of core handling, sample preparation and laboratory procedures were conducted on a regular basis by both Laurentia Exploration or Sayona personnel and/or by their representatives. The CP for the resource estimate, Mr. Alain Carrier, P.Geo., completed an independent logging and sampling review, and conducted re-sampling of selected core intervals. The results of the CP's independent re-sampling programme are satisfactory. Independent (Technominex) and internal (Sayona) CPs also conducted site visits and reviewed the application of core logging and sampling protocols and procedures. During the 2024 Summer-fall campaign, sampling was conducted at Service MNG in Val-d'Or and at Services Technominex in Rouyn-Noranda. The drill core was logged and sampled by experienced geologists (Sayona/Laurentia Exploration) at the Moblan site, at the Chatillon camp. Sayona has continued the same sampling procedures as for the 2022-2023 campaign. The transportation of the core was handled by these two companies (MNG and Technominex). The cores were palletised at the site after logging and alternately transported by these two service companies. The delivery of the samples to the ALS laboratory was carried out by MNS (in Val-d'Or) and Technominex (in Rouyn-Noranda). The 2024 core storage is located at the LAN mining site in La Corne, and the storage of pulp and rejects is at the warehouse in Amos.
		The sample preparation, security and analytical procedures are consistent with current industry standards and are appropriate and acceptable for the styles of mineralisation identified and will be appropriate for use in mineral resource estimation. There are no identified drilling, sampling or recovery factors that materially impact the adequacy and reliability of the results of the drilling programme on the Project.

JORC Code, 2012 Edition – Table 2

Section 2: Reporting of Exploration Results

WP

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Moblan is situated in the northwestern part of the Province of Québec, Canada. The Moblan Property, host to the lithium mineral resources outlined in the 2024 MRE consists of 20 claims (roughly 433 ha or 4.3 km ²) held by Sayona Nord (60%) and Investissement Québec (40%). The Moblan Property is subject to a 1.5 to 2.5% Gross Overriding Revenue ('GOR') royalty payable to Lithium Royalty Corporation.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All claims are in good standing as of July 7, 2025. Claims are currently owned 60% by Sayona Nord Inc. (101628) and 40% by Investissement Québec (19383). On 31 December 2023, SOQUEM transferred its 40% participation in Moblan Property claims to Investissement Québec. Investissement Québec is now a 40% partner in the Moblan Property (according to the document entitled "Moblan joint venture agreement deed of assignment" dated 31 December 2023. There are no impediments that have been identified for operating in the Project areas.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The current Properties cover and overlap many historical mining and exploration properties. The boundaries and names of those properties have evolved following changes in ownership, option agreements, or land packages as claims were abandoned or added. Exploration work has been varied (e.g., prospecting, mapping, geophysics, geochemistry, drilling, etc.) and has focused on a variety of commodities (e.g., precious metals, base metals, and, more recently, critical and strategic minerals). Interest in lithium in the area began in the 1960s inside the current limits of the Moblan Property. Surface prospecting and trenching performed by Muscocho Explorations Ltd in 1963 resulted in the discovery of numerous lithium-bearing dykes. A few of the dykes had been sampled earlier and revealed high grades of lithium oxide. Twenty-eight (28) lithium-bearing pegmatite dykes have been discovered in six (6) separate areas on the Moblan Property between 1992 and 2004, during work conducted by Abitibi Lithium Corporation. The current Project has been the subject of significant exploration and drilling efforts, including geophysics, geochemistry, historical studies, metallurgical testing and engineering studies.
Geology	Deposit type, geological setting and style of mineralisation.	The Properties host several mineral occurrences and showings. These (and other adjacent) occurrences highlight the strong potential of the area for (i) Li pegmatite deposits; (ii) Cu-Zn VMS deposits; (iii) Au orogenic quartz-carbonate veins and disseminated sulphide deposits; (iv) Ni-Cu-PGE magmatic sulphide deposits; and (v) Au-Cu porphyry systems (e.g., Troilus Gold). The economic potential of the Moblan Property is for lithium mineralisation (spodumene pegmatites). Lithium-bearing pegmatites were grouped into four (4) dyke swarms: Main, South, New South and Moleon. Each corresponds to a series of stacked lithium-bearing dykes of variable thicknesses separated by faults

Criteria	JORC Code explanation	Commentary
		The Main group comprises 5 lithium pegmatite dykes oriented E-W and dipping gently to the north (N260°/-20°) and two dykes oriented approximately N-S and dipping steeply to the west (N180°/-70°). This swarm extends laterally E-W for approximately 1500 m and 500 m N-S. In this group, the thickest dyke has an average intercept length of 25 m.
		The South group comprises 12 dykes oriented E-W and almost sub-horizontal or dipping gently to the south (N260°/-10°) and one dyke oriented approximately N-S and dipping steeply to the west (N180°/-70°). This swarm extends laterally E-W for approximately 1800 m and 300 m N-S. In this group, the thickest dyke has an average intercept length of 45 m.
		The New South group comprises 12 dykes oriented E-W and dipping moderately to the north (N260°/-5°) and one dyke oriented approximately N-S and dipping steeply to the west (N180°/-70°). This swarm extends laterally E-W for approximately 1800 m and 300 m N-S. In this group, the thickest dyke has an average intercept length of 29 m.
		The Moleon group comprises 1 dyke oriented E-W and nearly sub-horizontal or dipping gently to the south (N260°/-5°) and 9 dykes oriented N-S and dipping steeply to the west (N180°/-70°). This swarm extends laterally N-S for approximately 750 m and 250 m E-W. In this group, the thickest dyke has an average intercept length of 26 m.
		Refer to previous exploration releases for the drill hole information of the previously reported intercepts (ASX announcements of 26 April 2022; 27 June 2022; 17 April 2023, 11 July 2023, 22 October 2023, 27 May 2024, 13 June 2024, 27 August 2024, 30 January 2025, 27 April 2025).
	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Material information on the Project's drill holes is illustrated on the figures (plan views, sections, results tables) in ASX Announcements of April, July and October 2023, and in May, June, and August 2024, 30 January 2025, and 27 April 2025.
		The coordinates in the figures and the tables are in metres (UTM NAD83 Zone 18), and the elevation is in metres above sea level.
Drill hole Information		The selection of the most significant drill hole intercepts was based on high metal factors (%Li ₂ O content x length in metres) for intervals in spodumene pegmatite dykes. In ASX Announcements of April, July and October 2023, of May and June 2024 and of January 2025 and 27 April 2025, the table includes collar dip and azimuth of the hole, down hole length, interception depth, and hole length.
		Depending on the azimuths and plunges of the selected boreholes, the drilled lengths are apparent and do not reflect true thicknesses.
		The CPs were provided with all necessary detailed drill hole information to complete the 2024 MRE and 2024 DFS.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract	The Project is at an advanced stage of exploration, with a reported mineral resource, ongoing engineering studies, and a substantial database of 986 drillholes (198,100.35m). All the details are therefore not presented in table form.
from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drilling resumed on the Project after the publication of the 2024 MRE and while engineering studies on the Project were still being carried out. The new 2024 drilling results are not included in the 2024 MRE. The CPs do not believe that their omission will materially affect the 2024 MRE. The new drilling results will have an influence mainly on the periphery of the current resources, potentially contributing to the conversion of resources	

Criteria	JORC Code explanation	Commentary
		(upgrading) and adding new resources (ASX Announcements of July and October 2023, May, June, August 2024, and January and April 2025).
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Significant assay intercepts are reported as the weighted average over total pegmatite core length. Li ₂ O grades do not show great variations (coefficient of variation of 0.85). Based on statistical analysis, no capping is required, and no capping was applied to the Project's Li ₂ O grades. Refer to previous exploration releases for the drill hole information of previously reported intercepts.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Aggregation of Li ₂ O grades to obtain the weighted average of a significant intercept is constrained within single pegmatite dykes.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values were used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	The reported significant assay intervals represent apparent widths. Refer to previous exploration releases for the drill hole information of previously reported intercepts.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Drilling is not always perpendicular to the dip of mineralisation, and true widths are less than downhole widths. Lithium pegmatites correspond to a series of stacked dykes of variable true thicknesses.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Pegmatite intercepts (%Li $_2$ O over m) are expressed over downhole length (not over true width).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the figures in previous resources and exploration releases (ASX Announcement of April, July and October 2023, and May, June and August 2024, and January and April 2025) for illustrations of previously reported holes and assays and for the block model results of the 2024 MRE.

Y

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All assay results were used to estimate and report the 2024 MRE and for the engineering studies.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The reported drill results are consistent with geological observations and the mineral resource estimate as described. Metallurgical testing, geomechanical, geotechnical and environmental studies, and condemnation drilling were completed for engineering purposes. No other meaningful exploration data are reported.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work includes additional drilling to outline the geometry and extent of the lithium pegmatite dyke swarms identified to date. Exploration and step-out drilling is planned to extend the limits of the mineralised system and potentially discover additional pegmatite dykes.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to the figures in previous exploration releases (ASX Announcements of April, July and October 2023, and May, June and August 2024, and January and April 2025) for illustrations of previously reported holes and assays.

Y