OTWAY
EXPLORATION
DRILLING
PROGRAM.

PROJECT UPDATE

October 2025

Mr Noel Newell
Executive Chairman

Disclaimers

Important Notice

This presentation contains certain statements which may constitute "forward-looking statements". Forward-looking statements are only predictions and are subject to inherent risks and uncertainties which could cause actual values, results, performance or achievements to differ materially from those expressed, implied or project in any forward-looking statements.

The nature of the business and activities carried on by 3D Energi are speculative and no representation or warranty, express or implied, is made by 3D Energi that the material contained in this presentation will be achieved or prove to be correct. Except for statutory liability which cannot be excluded, each of 3D Energi, its officers, employees and advisers expressly disclaim any responsibility for the accuracy or completeness of the material contained in this presentation and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this presentation or any error or omission there from.

3D Energi accepts no responsibility to update any person regarding any inaccuracy, omission or change in information in this presentation nor any other information made available to a person nor any obligation to furnish the person with any further information. You must not rely on the information in this presentation or any associated materials in making an investment decision.

The information in this presentation is in summary form only and does not contain all the information necessary to fully evaluate any transaction or investment. It should be read in conjunction with 3D Energi's other periodic and continuous disclosure announcements lodged with the ASX. This document does not constitute an offer, invitation or recommendation to subscribe for or purchase any securities and does not form the basis of any contract or commitment. All persons should consider seeking appropriate professional advice in reviewing this presentation and evaluating 3D Energi.

All information in this presentation is current as at the date of this release, unless otherwise stated.

Prospective Resources Statement (LR 5.25, 5.28, 5.43)

All prospective resources presented in this announcement are prepared as at 30 June 2025, as disclosed in the Company's ASX release titled "Multi-TCF Gas Prospectivity in the Otway Basin" dated 30 June 2025. This announcement should be read in conjunction with that earlier release, which contains all of the information required by ASX Listing Rules 5.25 to 5.41.

The Company confirms that it is not aware of any new information or data that materially affects the prospective resource estimates included in the 30 June 2025 announcement, and that all the material assumptions and technical parameters underpinning the resource estimations in that announcement continue to apply and have not materially changed.

Estimates of prospective resources have been prepared in accordance with the definitions and guidelines of the Society of Petroleum Engineers Petroleum Resources Management System (SPE-PRMS, 2018) and the ASX Listing Rules. These estimates were prepared using probabilistic methods, incorporating a range of uncertainty on reservoir input parameters to predict the likely range of outcomes, and are reported in the categories of Low Estimate (P90), Best Estimate (P50), and High Estimate (P10). All resource categories reflect unrisked recoverable volumes.

All petroleum estimates have been aggregated by arithmetic summation by category (low estimate, best estimate, high estimate). Where prospective resources have been aggregated beyond the field level by arithmetic summation, the aggregate low estimate may be a conservative estimate and the aggregate high estimate may be optimistic due to portfolio effects.

Competent Persons Statement

The prospective resource estimates is this announcement are based on and fairly represents information and supporting documentation prepared by Daniel Thompson, who is a Qualified Petroleum Reserves and Resources Evaluator (QPRRE). Daniel is an employee of 3D Energi Limited and is a member of the American Association of Petroleum Geologists. Daniel has more than 10 years of relevant experience and has consented to the inclusion of the estimates in the form and context in which they appear.

Company Overview

3D Energi is positioned to deliver transformational growth in an Otway success case

rket

Shares on Issue 418.8m

Share Price

11.5¢

15 October 2025

Market Cap

48.17m

Top 20 Shareholders

49.14%

Sash

\$8.4m

~A\$100m

2 exploration wells

Debt

Nil

Prospective Resource

1.8 Tcf¹

Mean Recoverable Gas

Strategically positioned at the centre of East Coast gas exploration

O.G. Energy

O.G. Energy

We are in the middle of one of the largest offshore exploration and development programs in recent Australian history

Significant near-term drilling program

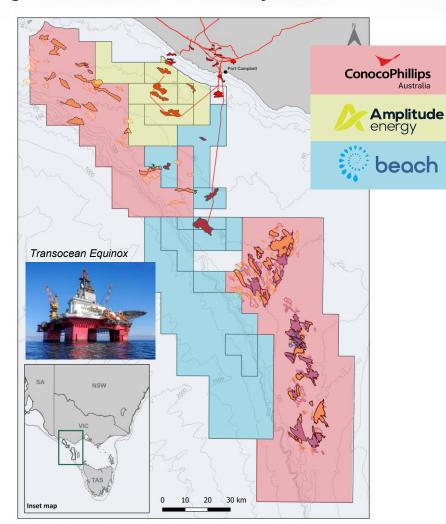
Transocean Equinox drilling rig in the Otway for a **16-well** campaign with **380 firm days**. Includes options that, if fully exercised, could keep the rig in Australia into **2028**.

Strong demand outlook

Otway Basin gas is well positioned to supply **tightening East Coast markets**, with proximity to key infrastructure and population centres.

Strategic basin – Majors have arrived

Entry and expansion of majors and NOCs (e.g. ConocoPhillips Australia, KNOC¹) and O.G Energy in the basin highlights growing recognition of the basin's **untapped value**.

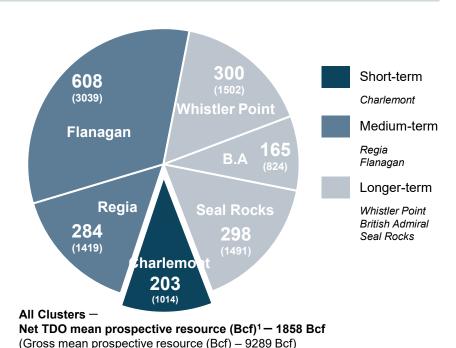

Development ready

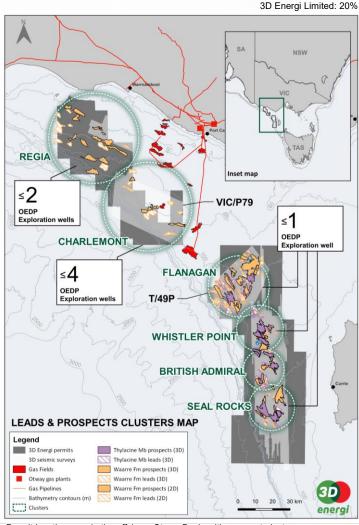
Existing pipelines, processing capacity, and recent change in government interest to boost domestic gas supply makes **development faster and more cost effective**.

World-class exploration success rates

Significant remaining gas potential in an **underexplored** basin with **world-class** exploration success rates drilling amplitude supported prospects with modern 3D seismic.

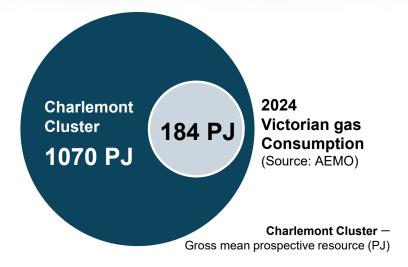
Permit location map in the offshore Otway Basin with prospect clusters


Multi-Tef gas portfolio: short, medium and long-term potential



Multi-TCF prospectivity reinforces 3D Energi's role in future East Coast Gas supply

The largest disclosed prospective resource in the offshore Otway Basin, located within **6** prospect clusters.


Short, medium and long-term exploration potential based on **risk**, **maturity**, and **proximity** to infrastructure.

VIC/P79 & T/49P

51 prospects identified across VIC/P79 and T/49P with a combined mean prospective resource of **9.2 Tcf**¹ (Gross) – **1.8 Tcf** net to TDO⁷

This portfolio positions TDO as a **leading exploration player** in southeast Australia's premier gas basin

¹Prospective resources are those estimated quantities of petroleum that may potentially be recovered by the application of a future development project(s) relate to undiscovered accumulations. These estimates have both a risk of discovery and a risk of development. Further exploration appraisal and evaluation is required to determine the existence of a significant quantity of potentially recoverable hydrocarbons.

3D energi

Multi-Tef gas portfolio: optionality and scalability

100%

Distance from existing infrastructure (km) 80 10 20 50 60 70 100 110 10% 20% **BRITISH SEAL ROCKS ADMIRAL** 30% WHISTLER **Geological Chance of Success** POINT Increasing cost of development, **REGIA** larger economic volumes **FLANAGAN** 50% **Conceptual field** 60% development pathway on PHASE **OEDP** commercial success OEDP. 70% **CHARLEMONT** Leads defined on 2D seismic 80% ⇒ Regia Cluster Flanagan Decreasing cost of development, 90% smaller economic volumes Whistler Point Cluster British Admiral Cluster Seal Rocks Cluster Charlemont Cluster

The Otway portfolio allows 3D Energi to scale investment in line with success and provides a balanced mix of near-term value and long-term growth.²

Phase 1 of the OEDP will focus on the **Charlemont Cluster**: mature, lower risk prospects close to infrastructure

Success at one prospect can unlock multiple follow-up targets or an adjacent cluster.

² Distance of prospects from infrastructure is based on the Amplitude Energy pipeline in VIC/P79 and the Beach Energy pipeline in T/49P. These measurements are indicative only and do not account for optimal tie-in locations. No permissions or agreements exist for tie-in to these pipelines. Prospective resource estimates in the Regia Cluster are based on 2D seismic and are subject to change with the acquisition and interpretation of 3D seismic data.

Otway Exploration Drilling Program summary

The Joint Venture brings world-class expertise and strong financial and operational capacity

The **Otway Joint Venture** strategically positions 3D Energi to:

- Share exploration risk
- · Access world-class technical expertise
- Strengthen our financial and operational capacity
- Enhances investor confidence through alignment with globally respected Joint Venturers.

51% (Operator)

29%

The Otway Exploration Drilling Program proposes the drilling of up to 6 exploration wells and will be completed in two (2) phases.

Two (2) firm wells have been contracted for Phase 1 (2025)

Up to four (4) optional wells in Phase 2.

Placement of **\$9.2M** sees 3D Energi funded for net share of **first** well costs.

Options are **advanced** for a second tranche placement for net share of **second** well costs, estimated at approximately **\$12M**.

2025

PHASE 1

2

Firm Exploration wells

US\$65m

Well carry from ConocoPhillips³

'26-'28

PHASE 2
OEDP

≤4

Optional Exploration wells

Phase 2 is contingent on Phase 1 results

³ One exploration well carry for up to US\$35m, one carry for up to US\$30m.

PHASE 1 Otway Exploration Drilling Program

Phase 1 targets near-field seismic supported prospects close to infrastructure

- Phase 1 of the OEDP has the potential to unlock up to 355 Bcf⁴ 71 Bcf net prospective resource to 3D Energi.
- Phase 1 is designed to establish a commercially viable volume that enables the earliest possible pathway to market.

Exploration Well 1
Mid-October 2025

ESSINGTON-1

262 Bcf⁴

Gross mean prospective resource

52 Bcf

Net mean prospective resource

Chance of Success

Waarre A reservoir

68%

Waarre C reservoir

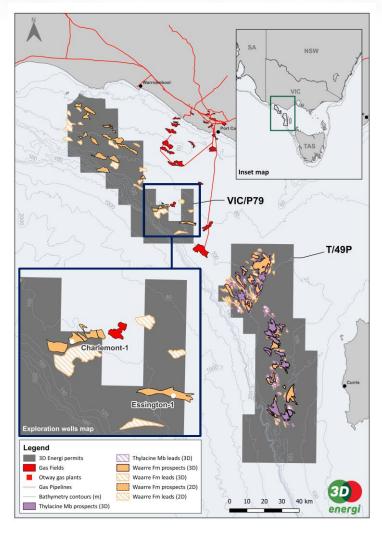
76%

Exploration Well 2
November 2025

CHARLEMONT-1

93 Bcf⁴

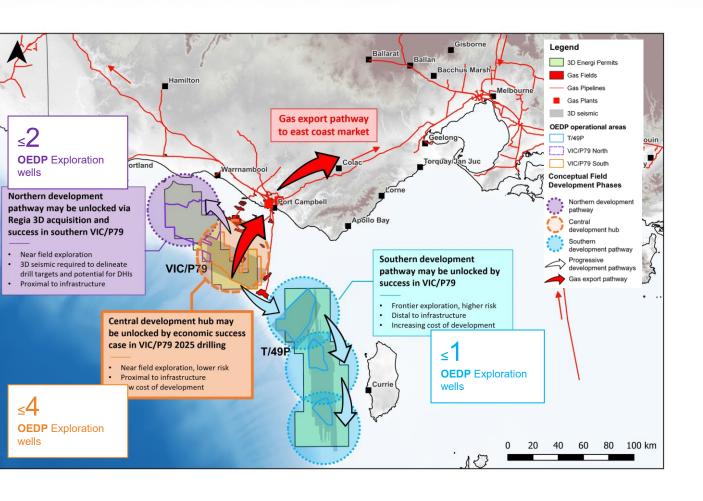
Gross mean prospective resource


19 Bcf

Net mean prospective resource

Chance of Success

Waarre A reservoir
81%


⁴ Refer to **Page 2** (Disclaimers) for *Prospective Resource statements*, **Page 4** for *Prospective Resource scautionary statement*, and **Pages 19-25** for *full prospective resource tables*. Prospective Resource estimates have both a technical (CoS) and commercial (CoD) risk component. Prospective Resources have not been adjusted for the Chance of Development (CoD), which requires consideration of many contingencies, including economic, legal, regulatory, markets, political, social, relevant approvals, project finance and development timing.

⁵ No permissions or agreements exist for tie-in to existing infrastructure.

Scalable gas hub tie-back on exploration success

Subsea tie-back proximal to infrastructure provides lower cost and faster pathway to market – optionality in tie-in partners

Resource potential

1 Tcf¹⁴ mean prospective resource in the Charlemont Cluster located adjacent to infrastructure

Early commercial success?

Potential to discover an economic volume by the end of Phase 1 of the OEDP

Shorter timeline to production

Sub-sea tie-back would reduce the timeline to first gas for a commercial gas discovery

Market exposure

Domestic east coast gas supply shortage by the end of the decade

Scalability

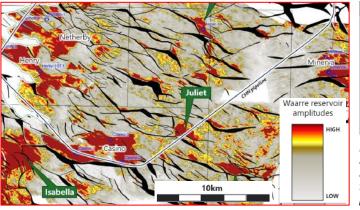
A significant portfolio provides unparalleled **running room** in the basin for follow up exploration

Proximity to infrastructure

Existing pipelines for sub-sea tie backs and two gas plants (Otway and Athena) with capacity

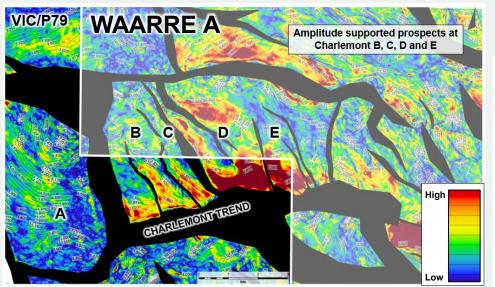
Capital efficiency

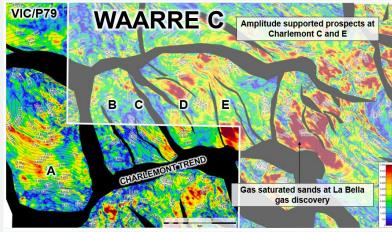
Brownfields tie-back significantly reduces capex costs for any future development



Unlocking the Charlemont Cluster: amplitude anomalies

Clear seismic signatures typical of gas accumulations in the Otway


Exploration utilising modern **3D seismic** to target **amplitude supported** prospects has a **94% success rate** in the Offshore Otway.


Example of seismic amplitude anomalies associated with gas fields in adjoining permit to the north⁶

- ~3,924 km² of state-of-the-art 3D seismic underpins the Otway portfolio.
- DHIs such as amplitude anomalies and flat spots are present in 23% of prospects⁷, materially reducing exploration risk.
- Amplitude anomalies show strong conformance with structures in depth.

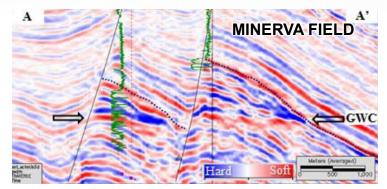
Waarre A RMS amplitude map showing amplitude anomalies (red)

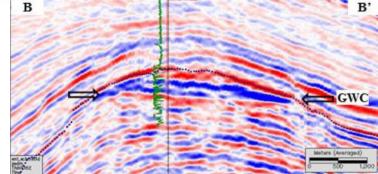
Seismic amplitudes are calibrated against the La Bella-1 gas discovery.

Waarre C RMS amplitude map showing amplitude anomalies (red)

⁶ Sourced from Amplitude Energy 'East Coast Supply Project' presentation dated 24 March 2025

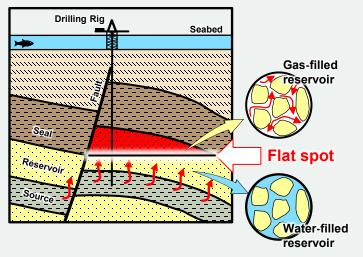
⁷ The stated DHI coverage is based on current data and may be revised as additional 3D seismic is acquired and interpreted

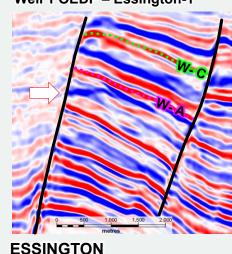

Unlocking the Charlemont Cluster: contact indicators


Clear seismic signatures typical of gas accumulations in the Otway

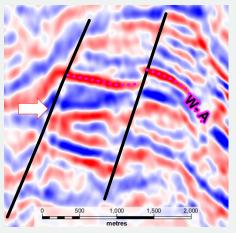
Contact indicators known as flat spots are common in the Charlemont Cluster and are observed in several Otway gas fields, including Minerva (right), Geographe and Thylacine fields.

About contact indicators / flat spots

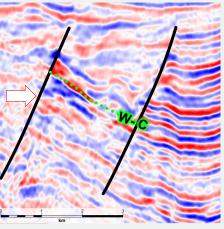

Under the right conditions, gas water contacts can be revealed as 'flat spots', flat cross-cutting seismic events within traps on seismic.



Flat spot at Minerva Field8 for comparison


Schematic example of an Otway gas trap

Well 1 OEDP - Essington-1



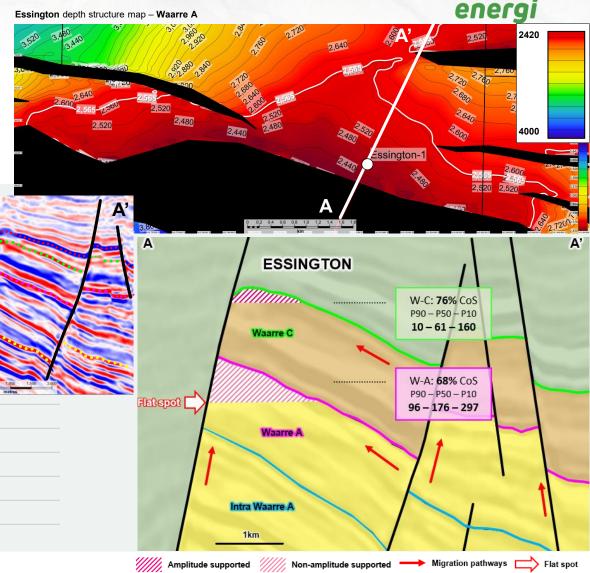
Well 2 OEDP - Charlemont-1

CHARLEMONT B

Well 3 OEDP? - Charlemont-2

Seismic data licenced from Viridien Earth Data

energi

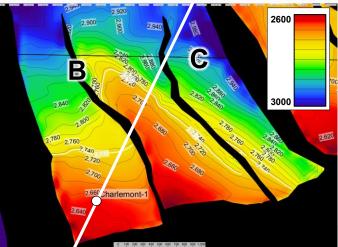

CHARLEMONT A

Well 1: Essington prospect

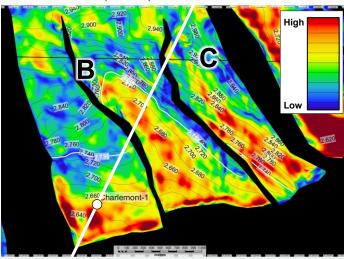
October 2025

- A strong seismic flat spot is observed in the Waarre A on reprocessed 3D **seismic**² — a classic DHI — which suggests the presence of a gas water contact.
- Essington has a high chance of success at both targets from 68% to 76% with a combined mean prospective resource of 262 Bcf 9 (gross).

Essington prospect sur	mmary	
Closure	Structural: three-way dip closure	Amplitude
Primary target		anomaly —
Reservoir	Waarre A (producing Casino-Henry-Netherby fields)	Ello mont
Estimated depth	~2470m TVDSS	Flat spot
Top seal	Waarre B shale and coals	
Secondary target		The state of the s
Reservoir	Waarre C (producing Thylacine field)	
Estimated depth	~2240 m TVDSS	0 590 1,000 1,000 2,000 moles
Top seal	Regionally extensive and thick Belfast Mudstone	
Lateral seal	The Belfast Mudstone forms the cross-fault seal for both re	eservoirs
Source	Mature gas prone source rocks proven by surrounding field	ds
Phase	Dry gas with low CO ₂ concentrations anticipated (5-10% b	ased on surrounding fields)
Analogue fields	Stacked pay at Casino, Artisan and La Bella gas discoveri	es – adjacent to Geographe
Key risks	Potential fault seal leakage (low saturation gas) and elevate	ted CO ₂ concentrations

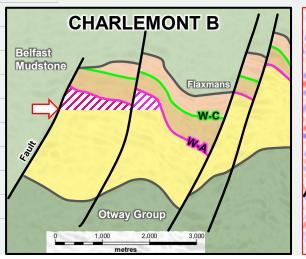


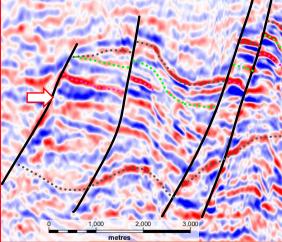
Well 2: Charlemont B prospect


November 2025

- Charlemont B has an 81% chance of success in the Waarre A reservoir due to strong DHIs — an amplitude anomaly conforming with structure and a strong seismic flat spot that coincides with amplitude shut-off.
- Charlemont B has a mean prospective resource of 93 Bcf¹⁰ (gross) in the Waarre A.
- Charlemont B is located only 7km down trend from the La Bella-1.

Charlemont B depth structure map - Waarre A





Charlemont B prospect summary

Closure	Structural: three-way dip closure
Primary target	
Reservoir	Waarre A (producing Casino-Henry-Netherby fields)
Estimated depth	~2648m TVDSS
Top Seal	Waarre B shale and coals
Lateral seal	The Belfast Mudstone forms the cross-fault seal to the west and south
Source	Mature gas prone source rocks proven by surrounding fields
Phase	Dry gas with low CO ₂ concentrations anticipated (5-10% based on surrounding fields)
Analogue fields	La Bella gas discovery (Waarre C), Casino-Henry-Netherby (Waarre A)
Key risks	Potential fault seal leakage (low saturation gas) and elevated CO ₂ concentrations

///// Amplitude supported prospects

Seismic data licenced from Viridien Earth Data

Unlocking the Charlemont Cluster

Phase 1 aims to establish a commercially viable volume that enables the earliest possible pathway to market

Charlemont B is an **exploration/appraisal well** — success could unlock the broader Charlemont Trend (C-E prospects) leading up to the La Bella gas discovery.

Charlemont B-E prospects have a combined mean prospective resource of 258 Bcf¹¹ – 51.6 Bcf net to TDO.

De-risking from success at Charlemont B and Essington during Phase 1 could effectively unlock up to 520 Bcf11 mean prospective resource – 104 Bcf net to TDO.

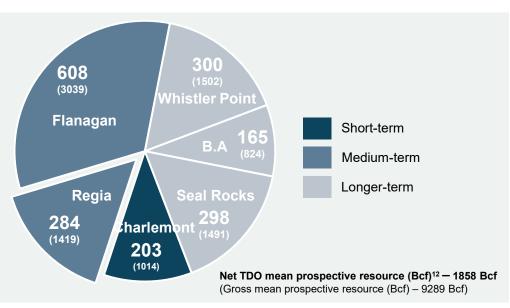
Charlemont A offers a compelling Phase 2 opportunity

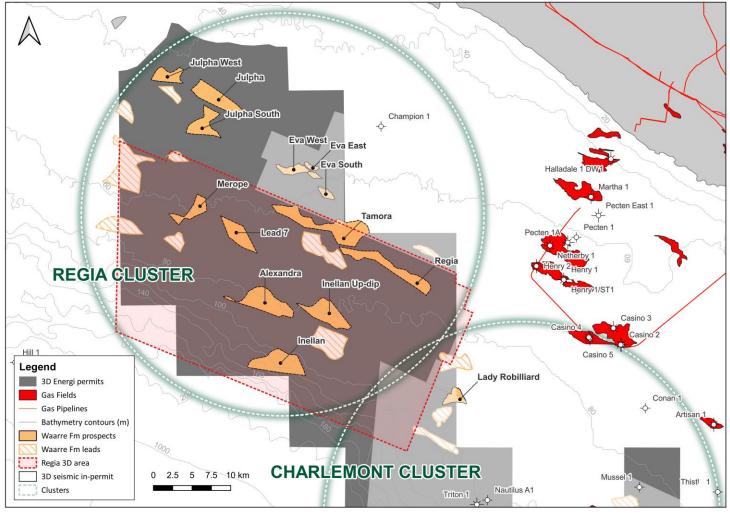
Charlemont A has a significant prospective resource (332 Bcf¹¹ gross mean - 66 Bcf net to TDO) and has strong follow-up potential as a Phase 2 target.

Charlemont A presents a higher risk, high reward opportunity within the Waarre C reservoir with a 47% Chance of Success.

The primary risk lies in **reservoir quality**, owing to a greater burial depth (3000+ metres).

Unlocking the Regia Cluster

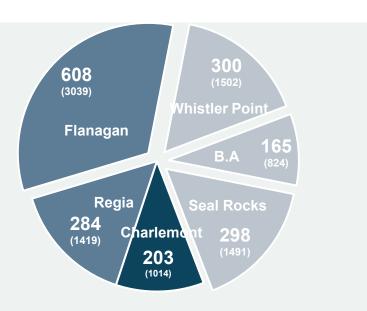

New 3D seismic survey to mature next wave of drilling



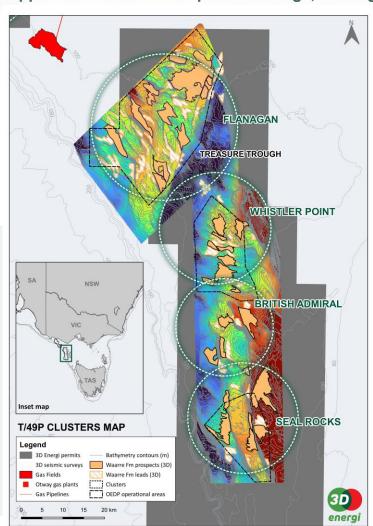
The Regia Cluster contains 13 emerging leads and prospects with a combined **1.4 Tcf**¹² mean prospective resource (gross).

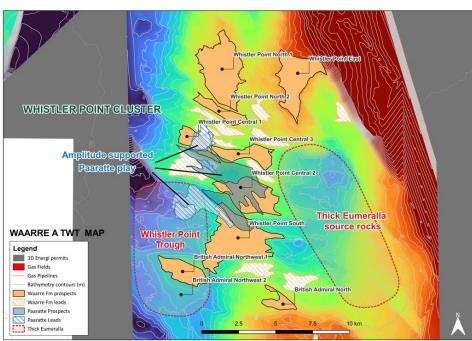
The **Regia 3D** seismic survey (planned >1000 km²) is undergoing environmental approvals — it aims to mature this high-potential cluster for future exploration drilling.

Optional rig days across the consortium of operators could potentially keep the **Transocean Equinox** in Australia into **2028**.


3D energi

Frontier upside: southern clusters - scalable gas growth


Southern clusters provide longer-term growth opportunities in underexplored acreage, contingent on further infrastructure expansion to the south


Southern clusters like Flanagan (3 Tcf¹³ gross mean prospective resource), Whistler Point, British Admiral and Seal Rocks offer frontier scale upside.

These prospects provide **strategic balance** to the portfolio, complementing lower risk near-field exploration opportunities.

Net TDO mean prospective resource (Bcf)¹² – 1858 Bcf (Gross mean prospective resource (Bcf) – 9289 Bcf)

Whistler Point and British Admiral clusters are **well positioned** for charge from the adjacent Whistler Point Trough with shallow **amplitude anomalies** in the Paaratte Formation suggesting **active hydrocarbon systems**.

Table 1 – Summary of the Prospective Resource (Bcf) across VIC/P79 and T/49P exploration permits. Volumes represent aggregated estimates for prospect clusters.

	L	ow	В	est	M	lean	Hi	gh
Prospect Cluster	Gross	Net TDO						
VIC/P79								
Charlemont	484	97	912	183	1014	203	1654	332
Regia	173	34	1082	217	1419	283	3097	620
Sub-total	657	131	1994	400	2433	486	4751	952
T/49P								
Flanagan	589	118	2126	426	3039	608	6256	1251
Whistler Point	68	14	621	124	1502	300	3388	678
British Admiral	69	14	393	79	824	165	1726	345
Seal Rocks	116	23	667	133	1491	298	3178	636
Sub-total	842	169	3807	762	6856	1371	14548	2910
TOTAL								
	1499	300	5801	1162	9289	1857	19299	3862

3D energi

Table 2 - Charlemont Cluster (VIC/P79), Otway Basin, prospective resource summary (Bcf, unrisked recoverable) - Full structure

Dunanast	Dagamusin	Low	(P90)	Best (P50)	Me	an	High	(P10)	C=5 (0/)	Water
Prospect	Reservoir	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	CoS (%)	Depth (m)
CHARLEMONT CLUSTER											
Charlemont A (Monarch)	Waarre C	176	35	316	63	332	66	506	101	47%	110
Charlemont B (Rosetta)	Waarre A	52	10	88	18	93	19	138	28	81%	110
	Waarre C	12	3	20	4	21	4	32	7	82%	
Charlemont C	Waarre A	11	2	20	4	20	4	31	6	78%	100
	Sub-total	23	5	40	8	41	8	63	13	-	
Charlemont D (Trident)	Waarre A	25	5	43	9	46	9	68	14	78%	100
	Waarre C	18	4	31	6	32	7	47	10	84%	
Charlemont E (Defiance)	Waarre A	26	5	44	9	46	9	67	13	78%	100
	Sub-total	44	9	75	15	78	16	114	23	-	
	Waarre C	10	2	61	13	76	15	162	33	76%	
Essington	Waarre A	92	18	172	34	186	37	301	60	68%	95
	Sub-total	102	20	233	47	262	52	463	93	-	
Lady Robilliard	Waarre A	62	12	117	23	162	32	302	60	54%	90
	TOTAL	484	97	912	183	1014	203	1654	332		

Table 2.1 – Charlemont Cluster (VIC/P79), Otway Basin, prospective resource summary (Bcf, unrisked recoverable) – In-permit

	, ,	•	, i		, ,	•		, ·			
Prospect	Reservoir	Low (P90)		Best	Best (P50)		Mean		(P10)	CoS (%)	Water
	Reservoir	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	203 (70)	Depth (m)
CHARLEMONT CLUSTER											
Charlemont D (Trident)	Waarre A	24	5	41	8	42	8	63	13	78%	100
	Waarre C	9	2	16	3	17	3	25	5	84%	
Charlemont E (Defiance)	Waarre A	14	3	23	5	24	5	36	7	78%	100
	Sub-total	23	5	39	8	41	8	61	12	-	
Lady Robilliard	Waarre A	26	5	52	10	69	14	131	26	54%	90

Table 3 – Regia Cluster (VIC/P79) prospective resource table (Bcf, unrisked recoverable)

Drochast	Reservoir	Low	(P90)	Best	t (P50)	M	lean	High	(P10)	CoS	Seismic	Water
Prospect	Reservoir	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	(%)	Seisillic	Depth (m)
REGIA CLUSTER												
Eva East	Waarre C	6	1	18	4	21	4	38	8	61%	3D	55
Eva South	Waarre C	8	2	29	6	33	7	64	13	52%	3D	60
Eva West	Waarre C	42	8	85	17	94	19	158	32	47%	3D	55
Alexandra	Waarre C	14	3	72	14	106	21	238	48	9%	2D	80
Inellan	Waarre C	7	1	94	19	138	28	323	65	9%	2D	90
Inellan Up-Dip	Waarre C	11	2	105	21	145	29	332	66	22%	2D	80
Julpha	Waarre A	6	1	49	10	65	13	145	29	28%	2D	50
Julpha South	Waarre C	1	0.2	33	7	51	10	124	25	33%	2D	65
Julpha West	Waarre A	8	2	22	4	27	5	50	10	29%	2D	50
Alexandra Up- Dip	Waarre C	9	2	72	14	101	20	232	46	11%	2D	65
Merope	Waarre C	7	1	29	6	36	7	72	14	6%	2D	65
Regia	Waarre C	37	7	141	28	192	38	417	83	47%	2D	75
Tamora	Waarre C	17	3	333	67	410	82	904	181	42%	2D	70
										_		
	TOTAL	173	34	1082	217	1419	283	3097	620			

Table 4 – Flanagan Cluster (T/49P) prospective resource table (Bcf, unrisked recoverable)

		Low	(P90)	Best	(P50)	M	ean	High	(P10)	0-0/0/3	Water
Prospect	Reservoir	Gross	Net TDO	CoS (%)	Depth (m)						
FLANAGAN CLUSTER											
	Thylacine	1	0.08	6	1	26	5	57	11	29%	
Croswell	Waarre A	5	1	72	15	95	19	216	43	35%	95
	Sub-total	6	1	78	16	121	24	273	55	-	
	Thylacine	98	20	413	83	510	102	1040	208	25%	
Flanagan Main	Waarre A	335	67	812	162	986	197	1827	365	31%	100
Si	Sub-total	433	87	1225	245	1496	299	2867	573	-	
	Thylacine	1	0.21	31	6	54	11	116	23	28%	
Flanagan East	Waarre A	5	1	51	10	100	20	225	45	31%	100
	Sub-total	6	1	82	16	154	31	341	68	-	
	Thylacine	1	0.19	52	10	93	19	229	46	28%	
Prawn Nose	Waarre A	1	0.03	81	16	185	37	447	89	35%	110
	Sub-total	2	0.22	133	27	278	56	676	135	-	
	Thylacine	5	1	25	5	29	6	60	12	32%	
Prawn East Arm A	Waarre A	69	14	157	31	175	35	303	61	31%	100
	Sub-total	74	15	182	36	204	41	363	73	-	
	Thylacine	5	1	15	3	40	8	82	16	29%	
Prawn East Arm B	Waarre A	13	3	42	8	109	22	220	44	24%	105
	Sub-total	18	4	57	11	149	30	302	60	-	
	Thylacine	5	1	67	13	112	22	268	54	20%	
Prawn Claw East	Waarre A	1	0.26	47	9	71	14	170	34	19%	115
	Sub-total	6	1	114	23	183	37	438	88	-	
	Thylacine	9	2	38	8	65	13	144	29	25%	
Prawn West Arm A	Waarre A	1	0.28	60	12	95	19	233	47	21%	115
	Sub-total	10	2	98	20	160	32	377	75	-	
Prawn West Arm B	Thylacine	10	2	36	7	93	19	195	39	13%	120
Prawn Claw West A	Waarre A	15	3	36	7	76	15	142	28	19%	120
	Thylacine	3	1	26	5	52	10	123	25	13%	
Prawn Claw West B	Waarre A	6	1	59	12	73	15	159	32	19%	120
	Sub-total	9	2	85	17	125	25	282	56	-	
	TOTAL	589	118	2126	426	3039	608	6256	1251		

Table 5 – Whistler Point Cluster (T/49P) prospective resource table (Bcf, unrisked recoverable)

Dunamant	Danamualu.	Low	(P90)	Best (I	P50)	Mea	an	High ((P10)	C=5 (9/)	Water
Prospect	Reservoir	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	<u>CoS</u> (%)	Depth (m)
WHISTLER POINT CLUSTER											
	Thylacine	3	1	98	20	224	45	549	110	16%	
Whistler Point North 1	Waarre A	10	2	60	12	165	33	363	73	25%	110
	Sub-total	13	3	158	32	389	78	912	182	-	
Whistler Point North 2	Waarre A	5	1	29	6	53	11	123	25	20%	110
	Thylacine	8	2	123	24	248	50	596	119	18%	
Whistler Point Central 1	Waarre A	8	2	24	5	73	14	115	23	17%	110
	Sub-total	16	4	147	29	321	64	711	142	-	
	Paaratte	8	2	25	5	45	9	96	19	36%	
Whistler Point Central 2	Thylacine	5	1	49	10	165	33	363	73	23%	110
Willstier Follit Celitial 2	Waarre A	1.5	0.3	21	4	107	21	225	45	22%	
	Sub-total	14	3	95	19	317	63	684	137	-	
	Thylacine	5	1	33	7	58	12	136	27	16%	
Whistler Point Central 3	Waarre A	3	1	16	3	22	4	46	9	15%	110
	Sub-total	8	2	49	10	80	16	182	36	-	
	Thylacine	0.7	0.1	40	8	54	11	123	25	20%	
Whistler Point East	Waarre A	3	1	52	10	150	30	340	68	25%	105
	Sub-total	4	1	92	18	204	41	463	93	-	
Whistler Point South	Waarre A	8	2	51	10	138	28	313	63	22%	110
	TOTAL	68	14	621	124	1502	300	3388	678		

Table 6 – British Admiral Cluster (T/49P) prospective resource table (Bcf, unrisked recoverable)

	_	Low	(P90)	Best	(P50)	N	1ean	High	(P10)	(-0)	Water
Prospect	Reservoir	Gross	Net TDO	CoS (%)	Depth (m)						
BRITISH ADMIRAL CLUSTER											
	Thylacine	8	2	37	7	57	11	125	25	12%	
British Admiral	Waarre A	20	4	48	10	203	41	337	67	10%	105
	Sub-total	28	6	85	17	260	52	462	92	-	
	Thylacine	9	2	57	11	146	29	324	65	20%	
British Admiral North	Waarre A	2	0.4	30	6	36	7	78	16	22%	105
	Sub-total	11	2	87	17	182	36	402	80	-	
	Thylacine	9	2	26	5	36	7	74	15	18%	
British Admiral Northwest 1	Waarre A	4	1	20	4	38	8	87	17	19%	105
	Sub-total	13	3	46	9	74	15	161	32	-	
	Thylacine	1	0.2	35	7	44	9	100	20	18%	
British Admiral South 1	Waarre A	8	2	48	10	85	17	201	40	14%	105
	Sub-total	9	2	83	17	129	26	301	60	-	
British Admiral South 2	Waarre A	5	1	61	12	90	18	208	42	8%	105
British Admiral West	Waarre A	3	1	31	6	89	18	192	38	15%	105
		·				·		·			
	TOTAL	69	14	393	79	824	165	1726	345		

Table 7 – Seal Rocks Cluster (T/49P) prospective resource table (Bcf, unrisked recoverable)

Dunamant	Danamusin	Low ((P90)	Best (I	P50)	Mea	an	High	(P10)	C=5 (9/)	Water
Prospect	Reservoir	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	Gross	Net TDO	<u>Cos</u> (%)	Depth (m)
SEAL ROCKS CLUSTER											
	Thylacine	25	5	238	48	448	90	1041	208	14%	
Seal Rocks West 1	Waarre A	17	3	86	17	158	32	354	71	13%	115
	Sub-total	42	8	324	65	606	121	1395	279	-	
Seal Rocks West 2	Waarre A	18	4	53	11	85	17	178	36	15%	115
	Thylacine	3	1	55	11	100	20	246	49	6%	
Seal Rocks Central 1	Waarre A	12	2	53	11	107	21	240	48	5%	110
	Sub-total	15	3	108	22	207	41	486	97	-	
Seal Rocks Central 2	Waarre A	2	0.4	10	2	61	12	104	21	5%	110
Seal Rocks North 1	Waarre A	16	3	63	13	368	74	649	130	12%	110
Seal Rocks North 2	Waarre A	13	3	40	8	52	10	107	21	11%	110
	Thylacine	8	2	29	6	47	9	104	21	4%	
Seal Rocks East	Waarre A	2	0.4	40	8	65	13	155	31	7%	110
	Sub-total	10	2	69	14	112	22	259	52	-	
											<u> </u>
	TOTAL	116	23	667	133	1491	298	3178	636		