Quarterly ReportQ1 September FY26

3 months to 30 September 2025 (unaudited)

Highlights

Simberi Project Development

- The Simberi Expansion Project Feasibility Study remains on track to announce results in Q2 FY26.
- Early works for the Simberi Expansion Project continued with Growth Capital expenditure in Q1 FY26 of A\$16 million spent on the camp capacity expansion, 5.8MW ball mill procurement, geotechnical drilling, detailed design of the haul road and infrastructure as well as the mobile fleet expansion.
- The Papua New Guinea Mining Advisory Committee recommended the grant of an extension of the Simberi Mining Lease 136 (Simberi ML) until 2038 on 10 August 2025. The recommendation with documents were transferred to the Mining Minister on 3 September 2025 for his review and decision.

Atlantic Gold Projects

- The Pre-Feasibility Study on the 15-Mile Processing Hub continues on schedule for completion in Q3 FY26.
- Permitting processes and government support for resource development in Nova Scotia has improved significantly and as a result St Barbara withdrew litigation and switched to investigating the opportunity to re-open the Touquoy mine to process the low and medium grade stockpiles.

Operating Performance

- Safety performance continued to improve with the Total Recordable Injury Frequency Rate reduced from 1.1 at the end of Q4 FY25 to 0.2 at the end of Q1 FY26.
- Q1 gold production from Simberi was 11,158 ounces with an All-In Sustaining Cost (AISC) of A\$4,487 per ounce.
 Gold production was below forecast after reconciled gold production for September came in below the grade expected from mined grade and calculated feed grade over the month.
- Mine fleet performance continued to be poor in September as anticipated. However, additional new Volvo A60 trucks arrived at the end of Q1 FY26 and contract fleet performance has improved significantly in October.
- Cash flow contribution from operations for the quarter was A\$14 million (including A\$2 million increase in value of bullion in safe and A\$3 million in gold sale receivables at quarter end).

Financial Strength

- Total cash, bullion, gold sale receivables and listed investments of A\$157 million as at 30 September 2025 (including A\$87 million of restricted cash), with no bank debt and no hedging.
- Gold sales for Q1 FY26 totalled 11,738 ounces at an average realised price of A\$5,318 per ounce.
- Subsequent to quarter end the Company successfully completed a A\$58 million capital raise to boost working capital availability for growth capital at both Simberi and Atlantic.

St Barbara Managing Director and CEO Andrew Strelein said:

"Operating performance at Simberi continued to be impacted by truck fleet availability. By early October however the Volvo A60 truck fleet had increased to ten units from four, and the contract truck fleet availability finally improved. Total mining movement is on track to meet October budget and forecasts."

"Progress on the Simberi Expansion Project Feasibility Study remains on track for delivery in Q2 and the Pre-Feasibility for the 15 Mile Processing Hub remains on track for delivery in Q3."

Development Projects

St Barbara has development projects located on Simberi Island, Papua New Guinea, and in Nova Scotia, Canada.

Simberi

The Company's Simberi Expansion Project includes the mining of multiple open pits to exploit the substantial 2.6 million ounce oxide and sulphide Ore Reserves over a 13-year Life of Mine Plan (LOMP)¹.

Project Schedule

The Feasibility Study for the Simberi Expansion Project commenced in February 2025 and remains on track for completion in Q2 FY26 (94% complete at end of September).

A Final Investment Decision (FID) cannot now occur until Q3 FY26 because of delays with the resolution of the amended tax assessments matter, which has impacted the Company's preparations for financing.

While Feasibility Study work continues on schedule, the funding proposals for the Simberi Expansion Project remain to be advanced, pending resolution of the amended tax assessments matter. The Company has continued with advancement of the Feasibility Study and procurement of several long lead time items, including the ball mill procurement, the detailed design of the new ball mill circuit, finalising conditions on the Conservation and Environmental Protection Authority (CEPA) environmental permit and completing the construction of the camp expansion. The timeline for other early works has been rescheduled pending clarification of the resolution of the amended tax assessments.

Table 1 presents an indicative timeline for the Simberi Expansion Project based on FID in Q3 FY26. Under this timeline, early works activities are expected to continue through into Q3 FY27 before commissioning of the new ball mill enables higher processing rates to be achieved. The operation would be anticipated to continue to process oxide material through to H2 FY28, until sulphide ore processing commences. Commissioning of the flotation circuit and first concentrate production would be anticipated to be at the beginning of Q1 FY29.

Table 1. Indicative Simberi Expansion Project Schedule (based on FID in Q3 FY26)

	FY 2	2026	FY 2	2027	FY 2	028	FY29
	H1	H2	H1	H2	H1	H2	H1
Feasibility Study Update							
Mining Lease Renewal							
Final Investment Decision							
CEPA Conditions							
Early Works Packages							
Plant Design and Construction							
Plant Commissioning							
First Sulphide Ore Production							

Early Works Progress Update

Grinding Circuit

The new 5.8MW ball mill ordered in March 2025 remains on schedule and is anticipated to be ready for shipment in January 2026.

A power station expansion from 7MW to 19MW is the next key item required for the project before the grinding circuit can be commissioned. The power station was tendered and submissions received during Q1 FY26.

The Company is anticipating commissioning of the new grinding circuit in Q3 FY27.

New Wharf

Assessment of tenders for the new wharf to accommodate larger ships have progressed. A contract for this work will be prepared for execution in Q3 FY26.

Pre-Expansion Growth Capital Update

Camp Expansion

The Simberi camp expansion was 71% complete at the end of Q1 FY26. An additional 60 beds were completed during the quarter, making a total of 140 new beds now available. Construction of the next block containing 60 beds was well underway at the end of the Q1 FY26. Other building works completed to date includes new offices for safety and training, environmental and mine technical services offices, an emergency response facility and a new Flexible Open and Distance Education school.

Figure 1. Simberi Camp Expansion – New Accommodation Buildings

Figure 2. Simberi Expansion Project – New Environment and Mine Technical Services Offices

Figure 3. Simberi Expansion Project – New Health, Safety and Training Offices

Additional New Mining Fleet

Simberi took delivery of another three Volvo A60s at the end of Q1 FY26. Another three trucks arrived in early October to bring the total up from four to ten. A further six trucks are scheduled to arrive the end of FY26.

Haul Road

Geotechnical drilling and test pitting were completed in Q1 FY26 for the new haul road, which will replace the Aerial Rope Conveyor (ARC) as the primary method for ore delivery from the mine to the process plant. The ARC will need to be decommissioned because it lies within the footprint of the future Pigiput pit expansion. The haul road design is expected to be completed in Q2 FY26.

Reverse Osmosis Water Treatment Plant (RO Plant)

The RO Plant required for the sulphide ore treatment flowsheet is being installed at the process plant ahead of time. This will deliver improved water quality for the gland water system and the elution circuit. Improved gland water will substantially improve slurry pump reliability and, in turn overall plant availability. Improved water quality will also increase the efficiency of gold stripping in the elution circuit and the performance of the electrowinning circuit. The RO Plant will benefit both the current oxide and future sulphide ore processing. The plant will arrive in Q3 FY26 and installation and commissioning are also planned in Q3 FY26.

Next Steps

The key near term steps to progress the Simberi Expansion Project to enable first sulphide ore processing and to switch over to the production and sale of gold concentrate include:

- Complete the Feasibility Study;
- Continue with the execution of the abovementioned Early Works Packages and Pre-Expansion Growth Capital Projects; and
- Continue with the completion of work specified by CEPA defined under permit approvals (including detailed waste rock dump designs, detailed surface water management plans and mine closure and reclamation plans).

Resource Definition and Sterilisation Drilling

The FY25 resource definition, exploration and sterilisation drill program completed at the Simberi Operations in PNG comprised 61 holes for 10,463.5 m. The program included: 1) 34 holes for 5,166.1 m of resource definition drilling at both the Sorowar-Pigiput Southeast Trend and at the Samat deposit; and 2) 27 holes for 5,297.4 m of exploration and sterilisation drilling which tested a further five areas, including Pigibo North, Monun Extension, between Pigicow and Botlu, Pigiput-Sorowar Northeast Trend, between Pigibo and Botlu and Pigibo West.

Assay results for 17 drill holes from that FY25 program were received in Q1 FY26 and are reported here (SDH607 to SDH610, SDH617, SDH623, SDH625, SDH628, SDH630 to SDH631, SDH656, SDH658, SDH660, SDH662, SDH665, SDH667 and SDH669). This includes ten Samat resource definition holes, three Pigibo North exploration / sterilisation drill holes, two Pigicow-Botlu exploration holes and two Pigiput-Sorowar Northeast Trend holes. Assay results remain pending for three holes from the FY25 program, including one from Pigiput-Sorowar Northeast Trend (SDH672) and two from West Pigibo (SDH676 and SDH677).

A 13-hole, 1,417.5 m Darum waste rock dump sterilisation drill program was completed between late April and July 2025. Six holes for 653.5 m were completed in Q4 FY25 and the remaining seven holes for 764 m were completed in Q1 FY26. The assay results for the first five holes (SDH666, SDH668, SDH670, SDH671 and SDH685) have been received.

During Q4 FY25 and Q1 FY26 four trenches (SIMTR1061 to SIMTR1064) for 315 m were completed at Pigibo North (proposed Middle dump waste rock dump) and 11 trenches (SIMTR1065 to SIMTR1075) for 895 m were completed in between Pigiput and Samat (proposed Darum waste rock dump) to further support the sterilisation drilling programs completed in these areas. Assay results were received for all 15 trenches.

At Pigibo North, gold mineralisation continues to be intersected from near surface in exploration diamond drilling and trenching. Best drill and trench results include:

- SDH607: 35 m @ 1.2 g/t Au from 1 m: and
- SIMTR1064: 75 m @ 1. 4 g/t Au

Follow-up shallow RC drilling may be planned to further test the area.

At Pigiput-Sorowar Northeast Trend, gold mineralisation was intersected in association with a quartz-carbonate matrix breccia. Best results include:

• SDH669: 31 m @ 3.1 g/t Au from 2 m including 13 m @ 5.8 g/t Au from 15 m; 25 m @ 3.9 g/t Au from 135 m including 1 m @ 78.6 g/t Au from 145 m

At the proposed Darum waste rock dump area, gold mineralisation was intersected in SDH685. Results include:

• SDH685: 9 m @ 10.8 g/t Au from 55 m, including 6 m @ 15.7 g/t Au from 57 m

Follow-up drilling will be undertaken to better understand the dimensions and orientation of the gold mineralisation given no significant results were recorded in a number of nearby sterilisation holes.

Potential oxide mineralisation has been identified that will be investigated for economic potential. The Q1 FY26 resource definition and exploration drilling completed at the Simberi Operations comprised 12 holes for 1,773.2 m. This includes four West Pigibo infill drill holes for 437.3 m, seven Samat exploration drill holes for 918 m and one Pigiput-Sorowar Northeast Trend infill drill hole for 417.9 m.

Figure 4. FY25 and Q1 FY26 Completed Trenching and Diamond Drilling, Simberi Island, Papua New Guinea

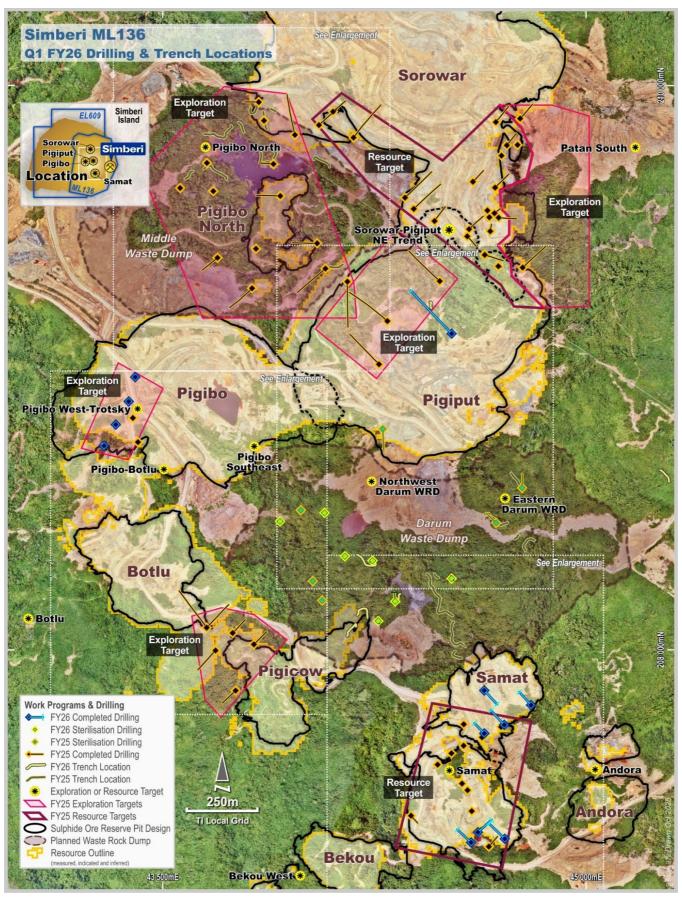
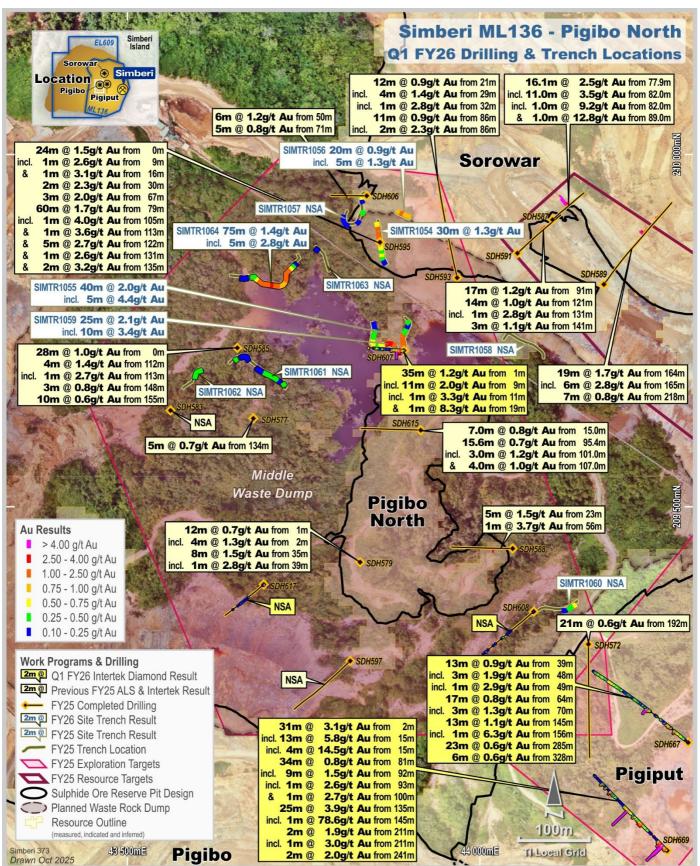



Figure 5. FY25 and Q1 FY26 Completed Trenching and Diamond Drilling Pigibo North, Simberi Island

Island Simberi ML136 - Pigiput NSA Q1 FY26 Drilling & Trench Locations SIMTR1060 NSA 2m @ 1.6g/t Au from 10m Middle 1m @ 4.3g/t Au from 54m 21m @ 0.6g/t Au from 192m 12m @ 0.7g/t Au from 130m Waste Dump 3m @ 1.4g/t Au from 137m SIMTR1077 9m @ 0.8g/t Au from 40m 13m @ 0.9g/t Au from 39m 26m @ 0.8g/t Au from 68m incl. 3m @ 1.9g/t Au from incl. 3m @ 1.5g/t Au from 84m incl. 1m @ 2.9g/t Au from 49m 17m @ 0.8g/t Au from 64m incl. 3m @ 1.3g/t Au from 70m 13m @ 1.1g/t Au from 145m incl. 1m @ 6.3g/t Au from 156m 23m @ 0.6g/t Au from 285m SDH701 **Pigiput** 6m @ 0.6g/t Au from 328m Work Programs & Drilling 2m@ Q1 FY26 Intertek Diamond Result 2m@ Previous FY25 ALS & Intertek Result 3.1g/t Au from 2m 31m @ 5.8g/t Au from 15m incl. 13m @ FY26 Completed Drilling incl. 4m @ 14.5g/t Au from 15m FY26 Sterilisation Drillhole 34m @ 0.8g/t Au from 81m FY25 Sterilisation Drillhole 9m @ 1.5g/t Au from 92m 1m @ 2.6g/t Au from 93m FY25 Completed Drilling EL609 1m @ 2.7g/t Au from 100m 2m@ FY26 Site Trench Result 25m @ 3.9g/t Au from 135m ocation ® Simber 2m@ FY25 Site Trench Result incl. 1m @ 78.6g/t Au from 145m 1.9g/t Au from 211m Q1 FY26 Trench Location 2m @ Pigipu 3.0g/t Au from 211m Q4 FY25 Trench Location incl. 1m @ 2.0g/t Au from 241m ➤ FY25 Exploration Targets FY25 Resource Targets Sulphide Ore Reserve Pit Design **Pigibo** Planned Waste Rock Dump Resource Outline SDH679 measured, indicated and inferre Au Results > 4.00 g/t Au 2.50 - 4.00 g/t Au 1.00 - 2.50 g/t Au 0.75 - 1.00 g/t Au 0.50 - 0.75 g/t Au 0.25 - 0.50 g/t Au SIMTR1066 NSA NSA 0.10 - 0.25 g/t Au ♦ SDH687 SIMTR1065 NSA 9m @ 10.8g/t Au from 55m 4m @ 2.0g/t Au from 8m 6m @ 15.7g/t Au from 57m incl. 1m @ 5.7g/t Au from 11m SDH6 4.8g/t Au from 82m 2.1g/t Au from 105m 12m @ SIMTR1067 NSA 1m @ 3.9g/t Au from 105m 7.7g/t Au from 114m 2m @ SIMTR1068 10m @ 1.9q/t Au Darum Waste Dump

SIMTR1073 5m @ 0.7g/t Au

NSA

44 000mE

SIMTR1072 NSA

44 500mE

SIMTR1071 NSA

Figure 6. FY25 and Q1 FY26 Completed Diamond Drilling Pigiput-Sorowar Northeast Trend, Simberi

100m

TI Local Grid

SIMTR1073 5m @ 0.7g/t Au Simberi ML136 - Samat SIMTR1072 NSA Q1 FY26 Drilling & Trench Locations 9m @ 10.8g/t Au from 55m incl. 6m @ 15.7g/t Au from 57m 1m @ 4.8g/t Au from 82m 12m @ 2.1g/t Au from 105m Work Programs & Drilling 3.9g/t Au from 105m 2m@ Q1 FY26 Intertek Diamond Result SIMTR1074 5m @ 4.7g/t Au 7.7g/t Au from 114m 2m @ Previous FY25 ALS & Intertek Result SIMTR1071 NSA SIMTR1075 NSA FY26 Completed Drilling FY26 Sterilisation Drillhole Darum FY25 Completed Drilling Waste Dump 2m@ FY26 Site Trench Result Q1 FY26 Trench Location Q4 FY25 Trench Location FY25 Resource Targets SIMTR1070 20m @ 0.8g/t Au **Pigicow** incl. 5m @ 1.1g/t Au Sulphide Ore Reserve Pit Design Planned Waste Rock Dump SIMTR1069 NSA Resource Outline Pigiput * Simberi Samat Location 13m @ 0.7g/t Au from 35m 2m @ 1.5g/t Au from 36m 1m @ 2.5g/t Au from 9m 10m @ 1.3g/t Au from 27m SDH65 incl. 1m @ 3.3g/t Au from 32m **SDH704** 11m @ 1.1g/t Au from 32m 1m @ 3.9g/t Au from 40m 4m @ 0.9g/t Au from 2m 23m @ 1.9g/t Au from 21m 5.8g/t Au from 6m incl. 2m @ 9.4g/t Au from 31m 1.1g/t Au from 35m 5m @ 3.8g/t Au from 39m 1m @ 7.0m @ 5.1g/t Au from 123.0m 15.0g/t Au from 64m 1m @ incl. 1.1m @ 30.2g/t Au from 128.9m 1.8g/t Au from 77m 9m @ 3.0g/t Au from 81m incl. 5m @ 4m @ 0.7g/t Au from 9m 9.0g/t Au from 81m incl. 1m @ 17m @ 0.9g/t Au from 20m 1.5g/t Au from 99m 2m @ 1.2g/t Au from 24m SDH628 24m @ 1.7g/t Au from incl. 2m @ 7.7g/t Au from 17m @ 4.2g/t Au from 53m 24m @ 0.8g/t Au from 100m incl. 10m @ 1.1g/t Au from 103m incl. 6m @ 6.4g/t Au from 56m 2m @ 5.6g/t Au from 67m 100m **Andora** 5m @ 0.8g/t Au from 0m NSA TI Local Grid SDH689 SDH702 Au Results 9m @ 2.0g/t Au from > 4.00 g/t Au 3m @ 4.6g/t Au from 0m Bekou 43m @ 2.1g/t Au from 17m 2.50 - 4.00 g/t Au incl. 1m @ 5.6g/t Au from 38m 1.00 - 2.50 g/t Au 1m @ 3.2g/t Au from 58m 0.75 - 1.00 g/t Au 27m @ 1.7g/t Au from 91m 0.50 - 0.75 g/t Au 2m @ 6.7g/t Au from 91m 4m @ 2.5g/t Au from 104m 0.25 - 0.50 g/t Au 4m @ 1.8g/t Au from 125m 0.10 - 0.25 g/t Au 45 000mE 1m @ 2.9g/t Au from 126m

Figure 7. FY25 and Q1 FY26 Completed Trenching and Diamond Drilling, Samat, Simberi Island

Simberi ML136 - Pigicow-Botlu **Q1 FY26 Drilling Locations** SDH692 pending Simberi Pigibo-Location SDH691 pending NSA **Pigibo Work Programs & Drilling** 2m@ Q1 FY26 Intertek Diamond Result 2m@ Previous FY25 ALS & Intertek Result FY26 Completed Drilling FY26 Sterilisation Drillhole FY25 Sterilisation Drillhole FY25 Completed Drilling FY25 Exploration Targets Sulphide Ore Reserve Pit Design Darum > Planned Waste Rock Dump Waste Dump Resource Outline Botlu NSA S NSA 26m @ 1.8g/t Au from 10m @ 2.7g/t Au from 76m 28.0m @ 1.2g/t Au from 80.0m 2.8m @ 2.8g/t Au from 99.2m 19m @ 0.9g/t Au from 103m 4m @ 1.3g/t Au from 116m 100m TI Local Grid 3.0m @ 1.9g/t Au from 123.0m 1.0m @ 3.1g/t Au from 123.0m NSA 3m @ 1.1g/t Au from 42m 2m @ 1.3g/t Au from 120m 10m @ 1.2g/t Au from 15m 1m @ 3.4g/t Au from 16m 1m @ 2.6g/t Au from 22m Au Results 4m @ 1.0g/t Au from 81m > 4.00 g/t Au 1m @ 3.4g/t Au from 178m 2.50 - 4.00 g/t Au 1.00 - 2.50 g/t Au 0.75 - 1.00 g/t Au 0.50 - 0.75 g/t Au 3m @ 1.7g/t Au from 60m 4m @ 2.1g/t Au from 94m 0.25 - 0.50 g/t Au incl. 1m @ 4.8g/t Au from 96m 0.10 - 0.25 g/t Au **Pigicow** 43 500mE

Figure 8. FY25 and Q1 FY26 Completed Diamond Drilling, Pigicow-Botlu, Simberi Island

Atlantic

15-Mile Processing Hub Pre-Feasibility Study and Improving Permitting Environment

The Company has continued to progress the Pre-Feasibility Study for the 15-Mile Processing Hub Project following the positive Concept Study results announced on 29 May 2025. The Pre-Feasibility Study is on schedule for announcement in Q3 FY26.

Additional baseline work was completed during the Northern summer period as planned.

Potential Re-Opening of Touquoy to treat Low and Medium Grade Stockpiles

The Company announced on 15 September 2025 the significant improvements encountered with the permitting environment in Nova Scotia. St Barbara withdrew its Supreme Court appeal and moved to investigation of re-opening Touquoy Gold Mine, to allow processing of low and medium grade stockpiles left at the site upon its premature closure.

The Touquoy processing plant operated until September 2023 and has since been maintained under a "hot care and maintenance" program, with the Company retaining key personnel to allow the operation to restart relatively quickly. Processing of the low and medium grade stockpile material would consist of rehandling the ore to the plant for processing. Low grade stockpile material was processed successfully throughout Q1 FY24 and achieved excellent recoveries. Approximately 3.1Mt of low and medium grade stockpile material at an average grade of ~0.46g/t gold was removed from St Barbara's Ore Reserves in FY24² following closure of the operation.

The proposed pathway to treat the stockpile material would be based on an amendment to the Industrial Approval. The amendment will be prepared in conjunction with the Nova Scotia Department of Environment and Climate Change's specialist Large Industrial File Team and submitted within the next six months to allow for in-pit tailings deposition at Touquoy. Subject to approval, operations are envisaged to be in a position to restart within six to twelve months after approval is received. The proposed in-pit tailings solution will run in parallel with ongoing reclamation activities without impacting existing reclamation timelines.

The potential for a closed-loop pumped hydro renewable energy project at Touquoy would also be unaffected. The pit lake depth and water storage capacity are anticipated to remain sufficient for the requirements of the lower reservoir of the pumped hydro project.

A Touquoy restart would be a significant boost to the Nova Scotia rural economy and provide near-term cashflow to support the long-term growth of St Barbara's Atlantic Operations, without altering the development schedule for the proposed 15-Mile Processing Hub Project.

The evaluation of a Touquoy restart to process stockpiles is expected to be completed by the end of Q2 FY26, encompassing permitting, engineering and mill restart requirements. In parallel, St Barbara will prepare proposed Industrial Approval amendments necessary for re-opening Touquoy and the use of in-pit tailings deposition.

Safety and sustainability

The safety performance continued to improve through Q1 FY26, with two minor reportable injuries.

St Barbara's 12-month moving average Total Recordable Injury Frequency Rate (TRIFR) further decreased from 1.1 at the end of Q4 FY25 to 0.2 at the end of Q1 FY26.

During Q1 FY26 the rehabilitation activities at Simberi continued, with a further 1.5 hectares of new area rehabilitated.

Minimal reclamation work was necessary at Touquoy in Q1 FY26. The majority of the works associated with reclamation in FY26 are laboratory analysis, models and studies based on physical sampling from FY25. The primary focus for reclamation has been to complete the cover design and water modelling, which will be major inputs for the updated reclamation plan to be submitted to the government in Q4 FY26. The studies are expected to result in a reduction in the costs of the reclamation work of approximately A\$7 million.

With regard to the Atlantic Operations, the Company continues to work with both the Nova Scotia Department of Environment and Climate Change and the Department of Natural Resources on the path forward for return of bond amounts in respect of the works and studies that will be completed prior to the submission in Q4 FY26.

Operations

Simberi Operations, New Ireland Province, Papua New Guinea

Production Summa	ary	Q1 Sep FY25	Q2 Dec FY25	Q3 Mar FY25	Q4 Jun FY25	Year FY25	Q1 Sep FY26
Ore Mined	kt	655	560	581	614	2,410	507
Waste mined	kt	1,490	1,577	1,950	1,303	6,320	1,639
Mined grade	g/t	1.13	1.07	1.28	1.16	1.16	0.94
Ore milled	kt	424	460	503	533	1,919	469
Milled grade	g/t	1.22	0.94	1.25	1.29	1.18	1.03
Recovery	%	73	74	69	66	70	72
Gold production	OZ	12,233	10,262	14,053	14,620	51,168	11,158
Gold sold	OZ	12,048	10,456	11,138	14,711	48,354	11,738
Realised gold price	\$/oz	3,750	4,107	4,546	5,121	4,428	5,318
All-In Sustaining Cost (AISC)	\$/oz produced	3,905	5,916	4,169	4,613	4,582	4,487

Simberi's gold production for Q1 FY26 was 11,158 ounces at an AISC of A\$4,487 per ounce. Gold production was below forecast after reconciled gold production for September came in below our expectations based on mined grade and calculated feed grade for the tonnes processed.

The performance of the contractor mine fleet again did not deliver acceptable availability, with maintenance issues being the key driver. During the quarter PT Petrosea Tbk (Petrosea), a leading Indonesian mining and engineering services company, acquired HBS Group, who provides contractor services to Simberi. Subsequent to the end of the quarter the contractor fleet availability has improved significantly.

During Q1 FY26 a further three Volvo A60s arrived onsite, taking the total number of trucks onsite as of 30 September to seven. Another three trucks arrived in early October to bring the total to ten. Another six trucks are scheduled to arrive by the end of FY26.

Ore milled was 469kt, with the mine fleet's production limitations constraining the overall throughput achievable from Q1 FY26 available processing hours. During the quarter there were scheduled maintenance shutdowns on both the ball and SAG mills totalling 7 days.

Exploration activities

Papua New Guinea

Simberi, Tatau & Tabar Islands

The focus of Simberi's exploration team was on the FY26 resource definition, exploration and sterilisation drilling program on ML136.

A major program of surface sampling (300 hand auger soil and 204 rock chip), trenching and RC drilling was completed between September 2024 and April 2025 covering a 6 km by 3.5 km area of southwest Tatau Island. Assay results for the surface sampling were received during Q4 FY25 (refer to ASX announcement on 6 June 2025 titled "High grade gold in rock chip and soil samples extend exploration targets in Southwest Tatau Island, PNG").

Highly anomalous gold results from hand auger soil sampling, the extent of the gold in soil anomalies (+0.1 ppm gold), the presence of widespread alteration along with percent sulphides recorded during mapping and surface sampling in southwest Tatau Island supports the presence of a large hydrothermal system and the exploration potential of the area. Results for that program included high grade gold rock chip samples with values of up to 22.5 ppm Au returned from the Mt Siro - Seraror area and high-grade gold in soil samples with values of up to 2.39 ppm Au returned from the Mt Tiro area.

A total of 22 trenches (TATTR289 to TATTR310) covering 1,483 metres for 478 channel samples were completed between January and April 2025 at southwest Tatau Island. A reconnaissance RC drill program of 17 holes (TTRC007 to TTRC023) for 1,020 metres was completed between March and April 2025. Results for the channel sampling and RC drilling were received in Q1 FY26.

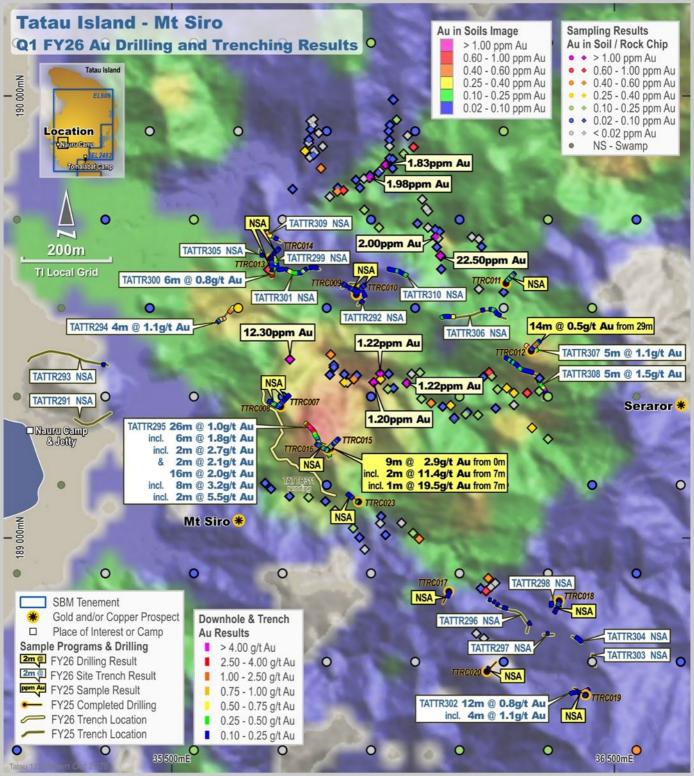
Best trench and RC drill results include:

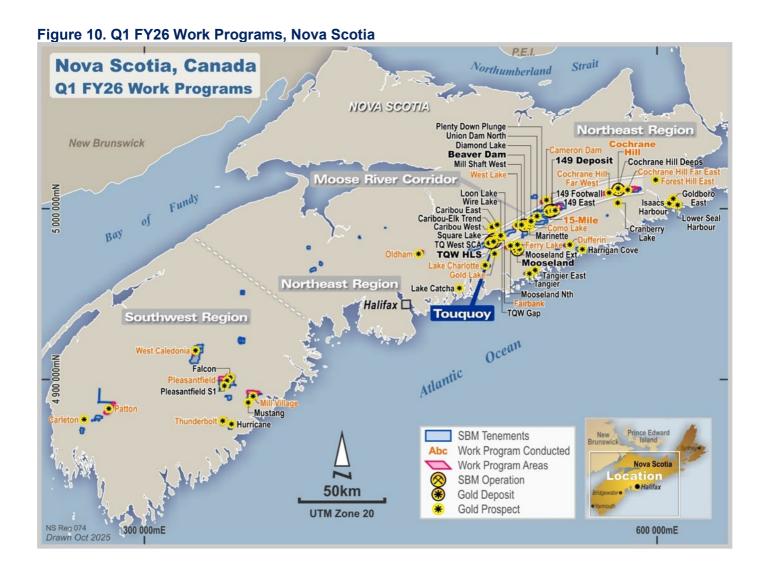
- TATTR295: 26 m @ 1.0 g/t Au and 16 m @ 2.0 g/t Au including 8 m @ 3.2 g/t Au, and
- TTRC015: 9 m @ 2.9 g/t Au from 0 m including 2 m @ 11.4 g/t Au from 7 m

Both results were returned from the same location within the surface gold anomaly at Mt Siro area. Many of the new high-grade surface rock chip and soil results reported during Q4 FY25 (refer to ASX announcement on 6 June 2025 titled "High grade gold in rock chip and soil samples extend exploration targets in Southwest Tatau Island, PNG") are yet to be followed up with trenching or RC drilling. Follow-up extension soil sampling, trenching and RC drilling are planned for FY26.

Canada

Surface sampling programs continued from May until September 2025. A combined total of 825 surface samples were collected including 575 till and 250 rock chip samples. Samples were collected from 20 areas including Oldham, Lake Charlotte, Gold Lake, Fairbank, West Lake, Ferry Lake, Como Lake, Dufferin, 15 Mile, Cameron Dam, Cochrane Hill Far West, Cochrane Hill, Cochrane Hill Far East, Forest Hill East, West Caledonia, Carleton, Patton, Pleasantfield, Thunderbolt and Mill Village.


St Barbara's current tenement holding includes one mining lease (MLE 11-1) and 169 exploration leases (EL's) which comprise 4,088 claims covering 66,185 hectares. Key areas of activity during this period included the acquisition of 77 exploration leases from MegumaGold Corporation (804 Claims), covering strategic ground west of the Touquoy mine and east of Cochrane Hill deposit. Other exploration leases acquired included 21 EL's in the Tangier gold district (81 Claims), 9 EL's at Dufferin West (23 Claims), 5 EL's at West Caledonia (280 Claims) and 3 EL's along strike from Touquoy mine (102 Claims).


Australia

Back Creek, New South Wales

No field work was conducted during the Q1 FY26.

Figure 9. Q1 FY26 Trenching and Reverse Circulation Drilling results overlain on historical gold in soil geochemistry, Mt Tiro – Seraror target, Southwest Tatau Island, Papua New Guinea.

Finance (unaudited)

St Barbara sold 11,738 ounces of gold in Q1 FY26 at an average realised price of A\$5,318 per ounce. The Company continues to have no bank debt and no hedging.

As at 30 September 2025 total cash, gold bullion, gold sale receivables and listed investments was A\$157 million, including restricted cash of A\$87 million for the Touquoy reclamation bond. Bullion on site at 30 September 2025 was valued at A\$2 million consisting of 403 ounces valued at A\$5,577 per ounce.

The operational cash flow contribution from Simberi for the quarter was A\$14 million (including A\$3 million gold sales receivable and A\$2 million bullion in safe).

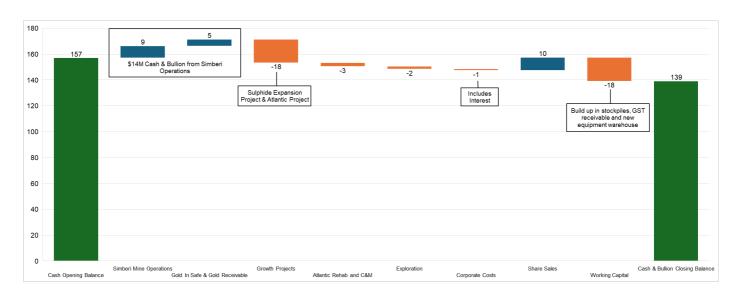
During the quarter the equity position in Brightstar Resources Limited was sold for net proceeds of A\$10 million. Subsequent to the end of the quarter net proceeds of A\$3.5 million were received for the sale of the Company's shareholding held in Peel Mining Limited.

Subsequent to the end of Q1 FY26 the Company completed an Institutional Placement to raise A\$58 million to advance its growth capital projects at Simberi and at Atlantic³. Funds raised from the Placement will be applied to the expansion and conversion of Simberi's mobile fleet, finalising the Simberi Expansion Feasibility Study, advancing Pre-Expansion Growth Capital items, completing the Pre-Feasibility Study on the 15-Mile Processing Hub, and advance plans for the potential re-opening of Touquoy for stockpile processing.

Growth capital expenditure for Q1 FY26 across Simberi and Atlantic was A\$18 million. This includes the Simberi preexpansion growth projects such as construction of the camp expansion, the 5.8MW ball mill, geotechnical drilling, detailed design of the new haul road and additional mobile fleet expansion.

Exploration expenditure was A\$2 million in Q1 FY26.

Atlantic rehabilitation expenditure in Q1 FY26 was A\$1 million and care and maintenance expenditure of A\$2 million.


The Company understands that the PNG Internal Revenue Commission (IRC) review of the objections to the tax assessments lodged by the Company's subsidiary, Simberi Gold Company Limited, was issued to external taxation consultants for review and that the review materials are with the Deputy Commissioner. The IRC has not provided updated timing for their advice to St Barbara in relation to the objection lodged in February 2025 and has not given an indication of the outcome expected from the review.

Cash, Gold & Investments (A\$M)

	Q1 Sep FY26
Cash*	134
Bullion in Safe	2
Gold Sales Receivables	3
Sub-Total	139
Listed Investments	18
Total	157

^{*} Includes A\$87M restricted cash, excludes proceeds of October capital raise

Quarter-on-Quarter Cash and Bullion Waterfall (A\$M)

Historic Quarter-on-Quarter Detailed Cash & Other Movement (A\$M)

Cash movements & balance A\$M	Q1 Sep	Q2 Dec	Q3 Mar	Q4 Jun	Year	Q1 Sep
(unaudited)	FY25	FY25	FY25	FY25	FY25	FY26
Growth Projects						
Atlantic	(2)	(2)	(1)	(2)	(7)	(2)
Simberi	(10)	(6)	(21)	(13)	(50)	(16)
Atlantic Care & Maintenance	(3)	(3)	(3)	(4)	(13)	(2)
Atlantic Rehabilitation	(5)	(1)	(2)	(4)	(12)	(1)
Exploration	(3)	(4)	(3)	(1)	(11)	(2)
Simberi Operation	(14)	(14)	1	8	(9)	9
Simberi Sustaining Capex	(1)	(2)	(4)	(1)	(8)	-
Atlantic Operation	3	5	2	4	14	-
Corporate Costs	(4)	(4)	(3)	(3)	(14)	(3)
Working Cap. / Other Balance Sheet Items	(11)	(13)	(41)	16	(50)	(18)
Cashflows before financing costs	(50)	(44)	(66)	-	(160)	(35)
Net Interest income/(expense)	2	1	1	2	6	2
Other Financing and Assets sales	25	95	-	-	120	10
Net Movement for Period	(23)	52	(65)	2	(34)	(23)
Cash Balance at start of quarter	191	168	220	155	191	157
Total Cash at end of quarter	168	220	155	157	157	134
Cash available for use	82	130	66	68	68	47
Restricted cash	86	90	89	89	89	87
Gold in Safe	2	3	6	4	4	3
Gold Sales Receivable	-	-	10	-	-	3
Total Cash & Gold at end of quarter	170	223	172	161	161	139

Equity Investments

During the quarter the equity position in Brightstar Resources Limited was sold for net proceeds of A\$10 million. Subsequent to the end of the quarter net proceeds of A\$3.5 million were received for the sale of the Company's shareholding in Peel Mining Limited.

The listed investment portfolio decreased in value to A\$17 million (A\$25 million Q4 FY25) with the increase in Geopacific Resources holding offset by the sale of shareholdings in Brightstar and Peel.

At the date of this report, St Barbara's listed investment portfolio comprises:

Company	Shares (M)	Ownership (%)	Value (A\$M)
Geopacific Resources (ASX: GPR)	458.6	14.4	17.0*

^{*}Based on closing share price on 29 October 2025

Authorised by

Andrew Strelein

Managing Director & CEO 30 October 2025

For more information

Investor Relations

David Cotterell
General Manager Business Development & Investor Relations

info@stbarbara.com.au

T: +61 3 8660 1959 M: +61 447 644 648

Media Relations

Paul Ryan / Russell Quinn Sodali & Co

M: +61 409 296 511 / +61 403 322 097

Share capital

Issued shares	ASX:SBM
Opening Balance 30 June 2025	1,082,846,341
Issued	862,563
Closing balance 30 September 2025	1,083,708,904
Unlisted employee rights	ASX:SBMAK
Opening balance 30 June 2025	75,195,551
Issued	Nil
Exercised as shares	(862,563)
Lapsed ⁴	(3,135,669)
Closing balance 30 September 2025	71,197,319
Comprises rights expiring:	
30 June 2026	46,109,134
30 June 2027	25,088,185
Unlisted rights issued under the NED Equity Plan	Nil
Closing balance 30 September 2025	71.197.319

Corporate directory

St Barbara Limited ABN 36 009 165 066

Board of Directors

Kerry Gleeson, Non-Executive Chair

Andrew Strelein, Managing Director & CEO

Joanne Palmer, Non-Executive Director

Mark Hine, Non-Executive Director

Warren Hallam, Non-Executive Director

Company Secretary

Kylie Panckhurst, General Counsel & Company Secretary

Executives

Andrew Strelein, Managing Director & CEO

Sara Prendergast, Chief Financial Officer

Randy McMahon, EGM Simberi

Brett Ascott, EGM Projects & Technical Support

Roger Mustard, EGM Exploration

Registered Office

Level 19, 58 Mounts Bay Road

Perth Western Australia 6000 Australia

T+61 8 9476 5555

F +61 8 9476 5500

E info@stbarbara.com.au

stbarbara.com.au

Australian Securities Exchange (ASX) Listing code "SBM"

Financial figures are in Australian dollars (unless otherwise noted)

Financial year commences 1 July and ends 30 June

Q1 Sep FY26 = quarter to 30 Sep 2025

Q2 Dec FY26 = guarter to 31 Dec 2025

Q3 Mar FY26 = quarter to 31 Mar 2026

Q4 Jun FY26 = quarter to 30 Jun 2026

Shareholder Enquiries

Computershare Investor Services Pty Ltd

GPO Box 2975

Melbourne Victoria 3001 Australia

T 1300 653 935 (within Australia)

T +61 3 9415 4356 (international)

F +61 3 9473 2500

www.investorcentre.com/au

Investor Relations

David Cotterell, General Manager Business Development & Investor Relations

T+61 3 8660 1959

M +61 447 644 648

Substantial Shareholders

% of Holdings ⁵	
Baker Steel Capital Managers LLP	7.2%
Paradice Investment Management Pty Ltd	6.9%

Production and All-In Sustaining Cost

Production summary				Simberi Oper	ations		
		Q1 Sep FY25	Q2 Dec FY25	Q3 Mar FY25	Q4 Jun FY25	Year FY25	Q1 Sep FY26
Ore Mined	kt	655	560	581	614	2,410	507
Waste mined / in-pit handling	kt	1,490	1,577	1,950	1,303	6,320	1,639
Mined grade	g/t	1.13	1.07	1.28	1.16	1.16	0.94
Ore milled	kt	424	460	503	533	1,919	469
Milled grade	g/t	1.22	0.94	1.25	1.29	1.18	1.03
Recovery	%	73	74	69	66	70	72
Gold production	oz	12,233	10,262	14,053	14,620	51,168	11,158
Gold sold	oz	12,048	10,456	11,138	14,711	48,353	11,738
Realised gold price	A\$/oz	3,750	4,107	4,546	5,121	4,428	5,318
All-In Sustaining Cost ⁶ A\$/o	oz produced						
Mining		2,214	2,745	1,950	1,750	2,115	2,299
Processing		1,560	1,749	1,304	1,233	1,434	1,633
Site Services		707	714	555	755	680	1,269
Stripping and ore inventory a	ıdj	(915)	193	(134)	531	(65)	(1,006)
		3,566	5,401	3,675	4,269	4,164	4,195
By-product credits		(31)	(47)	(25)	(38)	(35)	(45)
Third party refining & transpo	ort	14	70	31	39	37	38
Royalties		93	105	90	128	105	135
Total cash operating costs		3,642	5,529	3,771	4,398	4,271	4,323
Corporate and administration	1	57	87	41	55	58	55
Rehabilitation		113	139	106	99	112	85
Sustaining capital expenditur	е	93	161	251	61	141	24
All-In Sustaining Cost (AIS	C)	3,905	5,916	4,169	4,613	4,582	4,487

FY26 Production Guidance, Capital Costs & Exploration Costs⁷

	FY2	6 Guidance
Operation	Gold production	All-In Sustaining Cost
	(oz)	(A\$/oz)
Simberi	54,000 - 70,000	4,000 – 4,4008

Group Sustaining Capex	Actual	Actual	Guidance
	Year FY25	Q1 Sep FY26	FY26
	A\$M	A\$M	A\$M
Simberi	8	-	NA

Group Growth Capex	Actual Year FY25 A\$M	Actual Q1 Sep FY26 A\$M	Guidance FY26 A\$M
Atlantic	7	2	NA
Simberi	50	16	NA

Group Exploration	Actual Year FY25 A\$M	Actual Q1 Sep FY26 A\$M	Guidance FY26 A\$M
Australia*	0.7	0.1	0.2 - 0.4
Tabar Island Group, PNG*	3.2	0.6	2.0 - 2.5
Simberi Sulphide Drilling, PNG [^]	5.3	1.1	5.8 - 7.5
Nova Scotia Regional*	1.6	0.4	2.0 - 2.6
Consolidated	10.8	2.2	10.0 – 13.0

 $^{^{\}star}$ These items are expensed, $^{\wedge}$ These items are capitalised.

⁷ FY26 guidance for growth and sustaining capital at Simberi will be determined once a date is finalised for a Final Investment Decision. This will be possible when there is resolution of the revised tax assessments from the PNG Internal Revenue Commission and the approval of the Simberi ML extension.

⁸ US\$2,600 to US\$2,860 per ounce at an AUD/USD exchange rate of 0.65.

Disclaimer

This report has been prepared by St Barbara Limited ("Company"). The material contained in this report is for information purposes only. This release is not an offer or invitation for subscription or purchase of, or a recommendation in relation to, securities in the Company and neither this release nor anything contained in it shall form the basis of any contract or commitment.

This report contains forward-looking statements that are subject to risk factors associated with exploring for, developing, mining, processing and the sale of gold. Forward-looking statements include those containing such words as anticipate, estimates, forecasts, indicative, should, will, would, expects, plans or similar expressions. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, and which could cause actual results or trends to differ materially from those expressed in this report. Actual results may vary from the information in this report. The Company does not make, and this report should not be relied upon as, any representation or warranty as to the accuracy, or reasonableness, of such statements or assumptions. Investors are cautioned not to place undue reliance on such statements.

This report has been prepared by the Company based on information available to it, including information from third parties, and has not been independently verified. No representation or warranty, express or implied, is made as to the fairness, accuracy or completeness of the information or opinions contained in this report. To the maximum extent permitted by law, neither the Company, their directors, employees or agents, advisers, nor any other person accepts any liability, including, without limitation, any liability arising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this presentation or its contents or otherwise arising in connection with it.

Non-IFRS measures

The Company supplements its financial information reporting determined under International Financial Reporting Standards (IFRS) with certain non-IFRS financial measures, including Cash Operating Costs and All-In Sustaining Cost. We believe that these measures provide additional meaningful information to assist management, investors and analysts in understanding the financial results and assessing our prospects for future performance.

All-In Sustaining Cost (AISC) is based on Cash Operating Costs and adds items relevant to sustaining production. It includes some, but not all, of the components identified in World Gold Council's Guidance Note on Non-GAAP Metrics - All-In Sustaining Costs and All-In Costs (June 2013).

- AISC is calculated on gold production in the quarter.
- For underground mines, amortisation of operating development is adjusted from "Total Cash Operating Costs" in order to avoid duplication with cash expended on operating development in the period contained within the "Mine & Operating Development" line item.
- Rehabilitation is calculated as the amortisation of the rehabilitation provision on a straight-line basis over the estimated life of mine.

Cash Contribution is cash flow from operations before finance costs, refer reconciliation of cash movement earlier in this quarterly report.

Cash Operating Costs are calculated according to common mining industry practice using The Gold Institute (USA) Production Cost Standard (1999 revision).

Competent Persons Statement

Exploration results

The information in this report that relates to Exploration Results is based on information compiled by Dr Roger Mustard, who is a Member of The Australasian Institute of Mining and Metallurgy. Dr Mustard is a full-time employee of St Barbara and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Mustard consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Mineral Resources and Ore Reserves Estimates

The information in this report that relates to Simberi's Mineral Resources or Ore Reserves is extracted from the report titled 'Pre-Feasibility Work confirms 200kozpa Simberi Expansion' released to the ASX on 30 April 2025; and to the 15-Mile Processing Hub Concept Study is extracted from the ASX announcement 'Positive 15-Mile Processing Hub Concept Study' released to the ASX on 29 May 2025 and available to view at stbarbara.com.au and for which Competent Persons' consents were obtained. Each Competent Person's consent remains in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the Original Report and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the Original Report continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the Original Report.

Full details are contained in Original Report available at stbarbara.com.au

Table 1: Simberi Diamond Drilling Significant Intercepts – Simberi Island, Papua New Guinea.

	TIC	TIC		Din/	Total		Do	wn-hole	Mineralised	d Intersection		
Hole No	TIG North	TIG East	RL	Dip/ Azimuth	Total Depth	Oxidation	From	То	Length	Gold Grade		
	1401111	Last		Azimuch	Берин		m	m	m	(Au g/t)		
SDH607	209,722	43,892	160.4	-60 / 275	101.8	OX,TR,SU	1.0	36.0	35.0	1.2		
including						OX,TR,SU	9	20.0	11.0	2.0		
including						OX	11.0	12.0	1.0	3.3		
and						SU	19.0	20.0	1.0	8.3		
SDH608	209,351	44,076	146.3	-60 / 229	267.9		No	Significa	nt Results			
SDH609	208,019	43,823	164.6	-61 / 045	131.5	SU	42.0	45.0	3.0	1.1		
						SU	120.0	122.0	2.0	1.3		
SDH610	208,078	43,655	205.3	-60 / 045	236.7	SU	68.0	94.0	26.0	1.8		
including						SU	76.0	86.0	10.0	2.7		
						SU	103.0	122.0	19.0	0.9		
including						SU	116.0	120.0	4.0	1.3		
SDH617	209,390	43,693	204.6	-71 / 229	218.6				nt Results			
SDH623	207,428	44,594	64.9	-90 / 167	127.1	SU	0.0	5.0	5.0	0.8		
SDH625	207,526	44,560	81.6	-90 / 083	196.5	SU	9.0	13.0	4.0	0.7		
						SU	20.0	37.0	17.0	0.9		
including						SU	24.0	26.0	2.0	1.2		
SDH628	207,502	44,580	77.7	-90 / 290	127.3	TR,SU	2.0	26.0	24.0	1.7		
including						TR	3.0	5.0	2.0	7.7		
						SU	100.0	124.0	24.0	0.8		
including						SU	103.0	113.0	10.0	1.1		
SDH630	207,593	44,474	108.3	-89 / 280	144.1	SU	123.0	130.0	7.0	5.1		
including						SU	128.9	130.0	1.1	30.2		
SDH631	207,633	44,523	121.0	-89 / 252	101.6	OX,TR	2.0	6.0	4.0	0.9		
	,,,,,,,	,- ,-		, ,		SU	21.0	44.0	23.0	1.9		
including						SU	31.0	33.0	2.0	9.4		
SDH656	207,727	44,699	105.4	-89 / 084	102.4	TR,SU	32.0	43.0	11.0	1.1		
including	201,121	44,033	105.4	-03 / 004	102.4	TR,SU	40.0	41.0	1.0	3.9		
SDH658	207,690	44.621	120.1	-86 / 211	105.3	· '	-					
300036	207,690	44,631	120.1	-80 / 211	105.2	TR	6	7	1.0	5.8		
to also alter a						SU	35	40	5.0	1.1		
including						SU	39	40	1.0	3.8		
						SU	64	65	1.0	15.0		
						SU	77	86	9.0	1.8		
including						SU	81	86	5.0	3.0		
including						SU	81	82	1.0	9.0		
						SU	99	101	2.0	1.5		
SDH660	207,660	44,566	126.8	-89 / 250	100.3	TR	9	10	1.0	2.5		
						TR	27	37	10.0	1.3		
including						TR	32	33	1.0	3.3		
SDH662	207,736	44,566	146.4	-89 / 337	152.7	SU	35.0	48.0	13.0	0.7		
including						SU	36.0	38.0	2.0	1.5		
SDH665	207,412	44,379	91.8	-71 / 139	107.3		I		nt Results			
SDH666	208,574	44,773	67.2	-60 / 001	99.7			_	nt Results			
NOTES:	200,374	,,,,	57.2	00 / 001	33.7	1	140	3.5				

OX: oxide, SU: sulphide, TR: transitional material

Table 1 Cont: Simberi Diamond Drilling Significant Intercepts – Simberi Island, Papua New Guinea.

	TIG	TIG		Dip/	Total		Do	wn-hole	Mineralised	Intersection
Hole No	North	East	RL	Azimuth	Depth	Oxidation	From m	To m	Length m	Gold Grade (Au g/t)
SDH667	209,165	44,295	143.1	-60 / 310	367.8	TR,SU	39.0	52.0	13.0	0.9
including						SU	48.0	51.0	3.0	1.9
including						SU	49.0	50.0	1.0	2.9
						TR,SU	64.0	81.0	17.0	0.8
including						SU	70.0	73.0	3.0	1.3
						SU	145.0	158.0	13.0	1.1
including						SU	156.0	157.0	1.0	6.3
						SU	285.0	308.0	23.0	0.6
						SU	328.0	334.0	6.0	0.6
SDH668	208,450	44,681	68.6	-60 / 315	101.0	OX	8.0	12.0	4.0	2.0
including						OX	11.0	12.0	1.0	5.7
SDH669	209,012	44,266	167.5	-55 / 316	272.0	OX,TR	2.0	33.0	31.0	3.1
including	·	·				OX,TR	15.0	28.0	13.0	5.8
including						OX,TR	15.0	19.0	4.0	14.5
						SU	81.0	115.0	34.0	0.8
including						SU	92.0	101.0	9.0	1.5
including						SU	93.0	94.0	1.0	2.6
and						SU	100.0	101.0	1.0	2.7
						SU	135.0	160.0	25.0	3.9
including						SU	145.0	146.0	1.0	78.6
						SU	211.0	213.0	2.0	1.9
including						SU	211.0	212.0	1.0	3.0
						SU	241.0	243.0	2.0	2.0
SDH670	208,178	44,066	163.0	-90 / 060	101.3		No	Significa	nt Results	
SDH671	208,234	44,033	162.0	-90 / 180	91.0		No	Significa	nt Results	
SDH685	208,316	44,243	163.0	-89 / 184	127.8	SU	55.0	64.0	9.0	10.8
including						SU	57.0	63.0	6.0	15.7
						SU	82.0	83.0	1.0	4.8
						SU	105.0	117.0	12.0	2.1
including						SU	105.0	106.0	1.0	3.9
and						SU	114.0	116.0	2.0	7.7

OX: oxide, SU: sulphide, TR: transitional material

Table 2: Simberi Trench Significant Intercepts – Simberi Island, Papua New Guinea.

	Sample	Number	Trench	Start	Start	Start	End	End	End			11	Gold
Trench	Length	Of	Length	North	East	RL	North	East	RL	From	То	Interval	Grade
No	m	Samples	m	m	m	m	m	m	m	m	m	m	Au g/t
SIMTR1061	5	21	105	209,688	43,724	184.4	209,704	43,645	176.6		No Sign	ificant Result	S
SIMTR1062	5	8	40	209,696	43,605	173.9	209,669	43,579	176.0		No Sign	ificant Result	S
SIMTR1063	5	8	40	209,835	43,786	168.1	209,869	43,768	165.3		No Sign	ificant Result	S
SIMTR1064	5	26	130	209,857	43,742	177.2	209,828	43,646	172.7	30	105	75	1.4
including										75	80	5	2.8
SIMTR1065	5	21	105	208,480	44,641	66.3	208,452	44,722	70.5		No Sign	ificant Result	S
SIMTR1066	5	14	70	208,568	44,773	68.0	208,624	44,735	74.9		No Sign	ificant Result	S
SIMTR1067	5	4	20	208,407	44,760	48.8	208,393	44,747	50.7		No Sign	ificant Result	S
SIMTR1068	5	14	70	208,351	44,785	65.1	208,387	44,815	49.0	5	15	10	1.9
SIMTR1069	5	10	50	207,971	44,559	100.5	207,995	44,536	92.0		No Sign	ificant Result	S
SIMTR1070	5	24	120	208,017	44,564	87.1	208,098	44,530	112.4	10	30	20	0.8
including										20	25	5	1.1
SIMTR1071	5	43	215	208,121	44,527	116.1	208,269	44,436	145.7		No Sign	ificant Result	S
SIMTR1072	5	4	20	208,268	44,462	150.0	208,255	44,477	157.3		No Sign	ificant Result	S
SIMTR1073	5	24	120	208,337	44,188	161.5	208,328	44,242	156.9	40	45	5	0.7
SIMTR1074	5	4	20	208,180	44,336	133.0	208,198	44,341	120.2	15	20	5	4.7
SIMTR1075	5	17	85	208,108	44,226	139.9	208,123	44,189	119.6		No Sign	ificant Result	S

^{*} Site Lab Results

Table 3: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

	Town do No.	From	То	Interval	North	East	RL	Gold Grade
Sample Type	Trench No	m	m	m	m	m	m	Au g/t
Collar	SIMTR1061		0	N/A	209,668	43,724	184.4	
Trench	SIMTR1061	0	5	5	209,673	43,725	185.4	0.09
Trench	SIMTR1061	5	10	5	209,677	43,723	183.9	0.29
Trench	SIMTR1061	10	15	5	209,679	43,718	183.1	0.09
Trench	SIMTR1061	15	20	5	209,682	43,714	182.8	0.24
Trench	SIMTR1061	20	25	5	209,685	43,710	184.3	0.30
Trench	SIMTR1061	25	30	5	209,687	43,705	183.8	0.47
Trench	SIMTR1061	30	35	5	209,689	43,701	183.4	0.46
Trench	SIMTR1061	35	40	5	209,691	43,696	181.5	0.26
Trench	SIMTR1061	40	45	5	209,694	43,692	182.2	0.25
Trench	SIMTR1061	45	50	5	209,696	43,688	182.0	0.20
Trench	SIMTR1061	50	55	5	209,699	43,684	182.3	0.20
Trench	SIMTR1061	55	60	5	209,702	43,680	181.1	0.04
Trench	SIMTR1061	60	65	5	209,702	43,676	181.7	0.04
Trench	SIMTR1061	65	70	5	209,700	43,673	181.7	0.05
Trench	SIMTR1061	70	75	5	209,710		179.3	0.03
Trench	SIMTR1061	75	80	5		43,672	180.8	0.17
	SIMTR1061	80	85	5	209,716	43,667		
Trench					209,715	43,662	182.7	0.10
Trench	SIMTR1061	85	90	5	209,713	43,657	182.8	0.10
Trench	SIMTR1061	90	95	5	209,711	43,653	180.1	0.07
Trench	SIMTR1061	95	100	5	209,708	43,649	178.1	0.27
Trench	SIMTR1061	100	105	5	209,704	43,645	176.6	0.07
Collar	SIMTR1062	_	0	N/A	209,696	43,605	173.9	
Trench	SIMTR1062	0	5	5	209,695	43,600	175.6	0.31
Trench	SIMTR1062	5	10	5	209,692	43,596	175.2	0.28
Trench	SIMTR1062	10	15	5	209,687	43,594	174.3	0.31
Trench	SIMTR1062	15	20	5	209,682	43,593	173.1	0.30
Trench	SIMTR1062	20	25	5	209,677	43,592	174.1	0.07
Trench	SIMTR1062	25	30	5	209,675	43,587	172.8	0.05
Trench	SIMTR1062	30	35	5	209,672	43,583	175.1	0.04
Trench	SIMTR1062	35	40	5	209,669	43,579	176.0	0.08
Collar	SIMTR1063		0	N/A	209,835	43,786	168.1	
Trench	SIMTR1063	0	5	5	209,840	43,784	169.7	0.02
Trench	SIMTR1063	5	10	5	209,844	43,783	170.6	0.04
Trench	SIMTR1063	10	15	5	209,849	43,781	170.0	0.09
Trench	SIMTR1063	15	20	5	209,854	43,780	169.2	0.10
Trench	SIMTR1063	20	25	5	209,859	43,779	168.3	0.02
Trench	SIMTR1063	25	30	5	209,863	43,775	166.8	0.07
Trench	SIMTR1063	30	35	5	209,866	43,772	167.3	0.08
Trench	SIMTR1063	35	40	5	209,869	43,768	165.3	0.22
Collar	SIMTR1064		0	N/A	209,857	43,742	177.2	
Trench	SIMTR1064	0	5	5	209,852	43,744	173.4	0.04
Trench	SIMTR1064	5	10	5	209,849	43,740	173.1	0.03
Trench	SIMTR1064	10	15	5	209,846	43,737	175.7	0.08
Trench	SIMTR1064	15	20	5	209,842	43,733	179.9	0.18
Trench	SIMTR1064	20	25	5	209,839	43,730	181.0	0.30
Trench	SIMTR1064	25	30	5	209,835	43,726	178.4	0.51
Trench	SIMTR1064	30	35	5	209,832	43,723	174.3	1.23
Trench	SIMTR1064	35	40	5	209,827	43,723	171.7	1.39
Trench	SIMTR1064	40	45	5	209,822	43,723	170.1	1.53
Trench	SIMTR1064	45	50	5	209,822	43,721	166.8	1.59

Table 3 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

	Tue web No	From	То	Interval	North	East	RL	Gold Grade
Sample Type	Trench No	m	m	m	m	m	m	Au g/t
Trench	SIMTR1064	50	55	5	209,815	43,716	161.4	1.56
Trench	SIMTR1064	55	60	5	209,816	43,711	158.6	0.85
Trench	SIMTR1064	60	65	5	209,817	43,707	157.9	0.87
Trench	SIMTR1064	65	70	5	209,817	43,702	155.4	1.30
Trench	SIMTR1064	70	75	5	209,818	43,697	152.9	2.18
Trench	SIMTR1064	75	80	5	209,819	43,692	150.2	2.81
Trench	SIMTR1064	80	85	5	209,822	43,688	151.6	1.15
Trench	SIMTR1064	85	90	5	209,825	43,684	155.4	1.36
Trench	SIMTR1064	90	95	5	209,829	43,681	158.5	1.23
Trench	SIMTR1064	95	100	5	209,828	43,676	158.9	1.11
Trench	SIMTR1064	100	105	5	209,827	43,671	159.6	0.68
Trench	SIMTR1064	105	110	5	209,826	43,666	159.9	0.40
Trench	SIMTR1064	110	115	5	209,827	43,661	162.3	0.33
Trench	SIMTR1064	115	120	5	209,827	43,656	166.8	0.04
Trench	SIMTR1064	120	125	5	209,827	43,651	170.9	0.16
Trench	SIMTR1064	125	130	5	209,828	43,646	170.9	0.10
Collar		125		N/A	-	-	66.3	0.24
	SIMTR1065	0	0 5	1N/A 5	208,480	44,641	66.0	0.02
Trench	SIMTR1065				208,481	44,646		
Trench	SIMTR1065	5	10	5	208,482	44,651	65.5	0.02
Trench	SIMTR1065	10	15	5	208,483	44,656	66.3	0.02
Trench	SIMTR1065	15	20	5	208,478	44,656	65.5	0.02
Trench	SIMTR1065	20	25	5	208,473	44,659	64.8	0.01
Trench	SIMTR1065	25	30	5	208,471	44,663	65.6	0.01
Trench	SIMTR1065	30	35	5	208,469	44,667	65.6	0.03
Trench	SIMTR1065	35	40	5	208,466	44,672	65.5	0.02
Trench	SIMTR1065	40	45	5	208,464	44,676	68.1	0.05
Trench	SIMTR1065	45	50	5	208,459	44,678	67.1	0.24
Trench	SIMTR1065	50	55	5	208,455	44,679	67.3	0.23
Trench	SIMTR1065	55	60	5	208,451	44,682	68.6	0.06
Trench	SIMTR1065	60	65	5	208,447	44,686	67.7	0.06
Trench	SIMTR1065	65	70	5	208,444	44,690	68.0	0.02
Trench	SIMTR1065	70	75	5	208,442	44,694	68.6	0.06
Trench	SIMTR1065	75	80	5	208,442	44,699	68.7	0.04
Trench	SIMTR1065	80	85	5	208,444	44,704	69.3	0.02
Trench	SIMTR1065	85	90	5	208,447	44,708	68.3	0.05
Trench	SIMTR1065	90	95	5	208,447	44,713	68.0	0.13
Trench	SIMTR1065	95	100	5	208,449	44,718	69.0	0.03
Trench	SIMTR1065	100	105	5	208,452	44,722	70.5	<0.005
Collar	SIMTR1066		0	N/A	208,568	44,773	68.0	
Trench	SIMTR1066	0	5	5	208,573	44,772	67.4	0.02
Trench	SIMTR1066	5	10	5	208,578	44,771	68.8	0.06
Trench	SIMTR1066	10	15	5	208,582	44,768	67.1	0.05
Trench	SIMTR1066	15	20	5	208,586	44,765	66.1	0.02
Trench	SIMTR1066	20	25	5	208,589	44,761	68.6	0.01
Trench	SIMTR1066	25	30	5	208,594	44,760	68.0	0.03
Trench	SIMTR1066	30	35	5	208,599	44,758	67.5	0.02
Trench	SIMTR1066	35	40	5	208,602	44,754	69.2	0.02
Trench	SIMTR1066	40	45	5	208,606	44,751	72.2	0.01
Trench	SIMTR1066	45	50	5	208,609	44,747	72.4	0.02
Trench	SIMTR1066	50	55	5	208,612	44,743	71.6	0.02
Trench	SIMTR1066	55	60	5	208,617	44,741	73.2	0.02

Table 3 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		From	То	Interval	North	East	RL	Gold Grade
Sample Type	Trench No	m	m	m	m	m	m	Au g/t
Trench	SIMTR1066	60	65	5	208,621	44,738	73.1	0.02
Trench	SIMTR1066	65	70	5	208,624	44,735	74.9	0.02
Collar	SIMTR1067		0	N/A	208,407	44,760	48.8	
Trench	SIMTR1067	0	5	5	208,403	44,757	48.6	0.02
Trench	SIMTR1067	5	10	5	208,398	44,755	51.6	0.04
Trench	SIMTR1067	10	15	5	208,396	44,751	49.1	0.01
Trench	SIMTR1067	15	20	5	208,393	44,747	50.7	0.02
Collar	SIMTR1068		0	N/A	208,351	44,785	65.1	
Trench	SIMTR1068	0	5	5	208,356	44,784	64.2	0.30
Trench	SIMTR1068	5	10	5	208,360	44,780	63.7	1.55
Trench	SIMTR1068	10	15	5	208,364	44,779	63.4	2.21
Trench	SIMTR1068	15	20	5	208,369	44,778	62.6	0.13
Trench	SIMTR1068	20	25	5	208,309	44,778	61.8	0.13
		_			ļ			
Trench	SIMTR1068	25	30	5	208,378	44,783	60.4	0.03
Trench	SIMTR1068	30	35	5	208,382	44,786	60.0	0.04
Trench	SIMTR1068	35	40	5	208,386	44,789	58.8	0.01
Trench	SIMTR1068	40	45	5	208,389	44,793	57.8	0.01
Trench	SIMTR1068	45	50	5	208,391	44,797	54.6	0.01
Trench	SIMTR1068	50	55	5	208,393	44,802	52.6	0.01
Trench	SIMTR1068	55	60	5	208,392	44,807	49.2	0.01
Trench	SIMTR1068	60	65	5	208,391	44,812	48.6	0.18
Trench	SIMTR1068	65	70	5	208,387	44,815	49.0	0.18
Collar	SIMTR1069		0	N/A	207,971	44,559	100.5	
Trench	SIMTR1069	0	5	5	207,971	44,554	99.1	0.10
Trench	SIMTR1069	5	10	5	207,972	44,549	98.5	0.17
Trench	SIMTR1069	10	15	5	207,973	44,544	98.0	0.07
Trench	SIMTR1069	15	20	5	207,975	44,540	96.7	0.11
Trench	SIMTR1069	20	25	5	207,977	44,535	97.0	0.16
Trench	SIMTR1069	25	30	5	207,979	44,531	97.1	0.11
Trench	SIMTR1069	30	35	5	207,983	44,527	96.7	0.22
Trench	SIMTR1069	35	40	5	207,988	44,529	94.9	0.36
Trench	SIMTR1069	40	45	5	207,991	44,532	93.9	0.07
Trench	SIMTR1069	45	50	5	207,995	44,536	92.0	0.07
Collar	SIMTR1070		0	N/A	208,017	44,564	87.1	
Trench	SIMTR1070	0	5	5	208,020	44,560	87.4	0.01
Trench	SIMTR1070	5	10	5	208,024	44,557	89.9	0.17
Trench	SIMTR1070	10	15	5	208,024	44,552	91.9	0.65
Trench	SIMTR1070	15	20	5	208,020	44,548	92.3	0.86
Trench	SIMTR1070	20	25	5	208,018	44,544	90.9	1.11
Trench	SIMTR1070	25	30	5	208,018	44,539	90.6	0.74
Trench	SIMTR1070	30	35	5	208,020	44,534	90.9	0.17
Trench	SIMTR1070	35	40	5	208,023	44,530	92.2	0.03
Trench	SIMTR1070	40	45	5	208,027	44,527	93.2	0.02
Trench	SIMTR1070	45	50	5	208,031	44,525	96.0	0.01
Trench	SIMTR1070	50	55	5	208,036	44,524	97.6	0.02
Trench	SIMTR1070	55	60	5	208,041	44,524	98.6	0.03
Trench	SIMTR1070	60	65	5	208,046	44,525	100.2	0.03
Trench	SIMTR1070	65	70	5	208,051	44,526	102.1	0.02
Trench	SIMTR1070	70	75	5	208,056	44,526	101.4	0.01
Trench	SIMTR1070	75	80	5	208,061	44,525	102.6	0.02
Trench	SIMTR1070	80	85	5	208,066	44,523	102.8	0.02
Trench	SIMTR1070	85	90	5	208,070	44,522	104.0	0.02
Trench	SIMTR1070	90	95	5	208,075	44,522	105.3	0.01

Table 3 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

Campula Trusa	Trench No	From	То	Interval	North	East	RL	Gold Grad
Sample Type		m	m	m	m	m	m	Au g/t
Trench	SIMTR1070	95	100	5	208,080	44,523	107.0	0.01
Trench	SIMTR1070	100	105	5	208,085	44,524	107.4	0.01
Trench	SIMTR1070	105	110	5	208,090	44,525	109.1	0.01
Trench	SIMTR1070	110	115	5	208,095	44,527	110.9	0.02
Trench	SIMTR1070	115	120	5	208,098	44,530	112.4	0.01
Collar	SIMTR1071		0	N/A	208,121	44,527	116.1	
Trench	SIMTR1071	0	5	5	208,123	44,522	117.1	0.02
Trench	SIMTR1071	5	10	5	208,126	44,518	117.0	0.02
Trench	SIMTR1071	10	15	5	208,129	44,515	117.2	0.02
Trench	SIMTR1071	15	20	5	208,132	44,511	117.9	0.03
Trench	SIMTR1071	20	25	5	208,135	44,507	119.8	0.02
Trench	SIMTR1071	25	30	5	208,137	44,502	122.3	0.02
Trench	SIMTR1071	30	35	5	208,137	44,497	123.7	0.02
Trench	SIMTR1071	35	40	5	208,134		124.7	0.04
			45		208,134	44,493		
Trench	SIMTR1071	40		5		44,488	125.9	0.02
Trench	SIMTR1071	45	50	5	208,132	44,483	127.7	0.02
Trench	SIMTR1071	50	55	5	208,130	44,478	129.5	0.04
Trench	SIMTR1071	55	60	5	208,134	44,474	129.6	0.06
Trench	SIMTR1071	60	65	5	208,139	44,474	129.6	0.02
Trench	SIMTR1071	65	70	5	208,143	44,475	129.7	0.01
Trench	SIMTR1071	70	75	5	208,148	44,477	130.0	0.04
Trench	SIMTR1071	75	80	5	208,153	44,478	130.5	0.02
Trench	SIMTR1071	80	85	5	208,158	44,479	131.6	0.04
Trench	SIMTR1071	85	90	5	208,163	44,480	132.8	0.04
Trench	SIMTR1071	90	95	5	208,168	44,481	133.9	0.01
Trench	SIMTR1071	95	100	5	208,173	44,481	134.0	0.02
Trench	SIMTR1071	100	105	5	208,178	44,482	135.7	0.02
Trench	SIMTR1071	105	110	5	208,183	44,483	136.9	0.02
Trench	SIMTR1071	110	115	5	208,188	44,481	133.3	0.02
Trench	SIMTR1071	115	120	5	208,190	44,477	129.0	0.01
Trench	SIMTR1071	120	125	5	208,193	44,473	129.2	0.02
Trench	SIMTR1071 SIMTR1071	125	130	5 5	208,197 208,200	44,470 44,466	129.3	0.01
Trench Trench	SIMTR1071	130 135	135 140	5	208,200	44,466	131.5 133.1	0.03
Trench	SIMTR1071	140	145	5	208,203	44,461	134.5	0.02
Trench	SIMTR1071	145	150	5	208,203	44,459	135.8	0.05
Trench	SIMTR1071	150	155	5	208,214	44,458	136.5	0.02
Trench	SIMTR1071	155	160	5	208,223	44,457	137.6	0.01
Trench	SIMTR1071	160	165	5	208,225	44,452	135.8	0.01
Trench	SIMTR1071	165	170	5	208,229	44,448	138.3	0.01
Trench	SIMTR1071	170	175	5	208,233	44,447	140.9	0.02
Trench	SIMTR1071	175	180	5	208,238	44,447	142.5	0.04
Trench	SIMTR1071	180	185	5	208,243	44,447	143.0	0.11
Trench	SIMTR1071	185	190	5	208,248	44,449	142.9	0.10
Trench	SIMTR1071	190	195	5	208,253	44,448	142.7	0.02
Trench	SIMTR1071	195	200	5	208,258	44,446	143.2	0.01
Trench	SIMTR1071	200	205	5	208,262	44,443	143.9	0.01
Trench	SIMTR1071	205	210	5	208,265	44,440	143.8	0.03
Trench	SIMTR1071	210	215	5	208,269	44,436	145.7	0.02
Collar	SIMTR1072		0	N/A	208,268	44,462	150.0	
Trench	SIMTR1072	0	5	5	208,264	44,465	152.7	0.03
Trench	SIMTR1072	5	10	5	208,260	44,468	154.9	0.03
Trench	SIMTR1072	10	15	5	208,257	44,472	156.3	0.02

Table 3 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		From	То	Interval	North	East	RL	Gold Grade
Sample Type	Trench No	m	m	m	m	m	m	Au g/t
Trench	SIMTR1072	15	20	5	208,255	44,477	157.3	0.01
Collar	SIMTR1073			N/A	208,337	44,188	161.5	
Trench	SIMTR1073	0	5		208,335	44,193	162.9	<0.005
Trench	SIMTR1073	5	10		208,333	44,197	164.1	<0.005
Trench	SIMTR1073	10	15		208,330	44,201	164.7	0.32
Trench	SIMTR1073	15	20		208,326	44,204	166.0	0.05
Trench	SIMTR1073	20	25		208,322	44,207	166.5	0.05
Trench	SIMTR1073	25	30		208,318	44,210	168.5	0.15
Trench	SIMTR1073	30	35		208,314	44,212	166.9	0.06
Trench	SIMTR1073	35	40		208,309	44,214	169.7	0.16
Trench	SIMTR1073	40	45		208,304	44,216	168.6	0.69
Trench	SIMTR1073	45	50		208,301	44,220	167.2	0.04
Trench	SIMTR1073	50	55		208,299	44,224	166.8	0.01
Trench	SIMTR1073	55	60		208,299	44,229	164.7	0.02
Trench	SIMTR1073	60	65		208,298	44,234	161.5	<0.005
Trench	SIMTR1073	65	70		208,298	44,239	161.2	0.02
Trench	SIMTR1073	70	75		208,298	44,244	159.4	0.01
Trench	SIMTR1073	75	80		208,298	44,249	158.2	0.08
Trench	SIMTR1073	80	85		208,299	44,253	157.2	0.09
Trench	SIMTR1073	85	90		208,304	44,255	155.6	0.06
Trench	SIMTR1073	90	95		208,308	44,253	153.8	0.15
Trench	SIMTR1073	95	100		208,311	44,249	156.7	0.40
Trench	SIMTR1073	100	105		208,314	44,245	158.3	0.02
Trench	SIMTR1073	105	110		208,318	44,242	162.1	0.01
Trench	SIMTR1073	110	115		208,323	44,242	160.2	0.01
Trench	SIMTR1073	115	120		208,328	44,242	156.9	0.02
Collar	SIMTR1074			N/A	208,180	44,336	133.0	
Trench	SIMTR1074	0	5		208,185	44,336	128.6	0.06
Trench	SIMTR1074	5	10		208,190	44,336	126.4	0.05
Trench	SIMTR1074	10	15		208,195	44,337	125.5	0.26
Trench	SIMTR1074	15	20		208,198	44,341	120.2	4.68
Collar	SIMTR1075			N/A	208,108	44,226	139.9	
Trench	SIMTR1075	0	5	,	208,113	44,225	139.1	0.04
Trench	SIMTR1075	5	10		208,118	44,225	137.5	0.10
Trench	SIMTR1075	10	15		208,123	44,225	136.6	0.01
Trench	SIMTR1075	15	20		208,128	44,224	137.1	0.02
Trench	SIMTR1075	20	25		208,133	44,224	136.3	0.02
Trench	SIMTR1075	25	30		208,138	44,224	135.1	0.02
Trench	SIMTR1075	30	35		208,143	44,222	132.8	0.15
Trench	SIMTR1075	35	40		208,146	44,219	126.5	0.02
Trench	SIMTR1075	40	45	1	208,146	44,214	121.8	0.02
Trench	SIMTR1075	45	50		208,147	44,209	117.3	0.01
Trench	SIMTR1075	50	55	1	208,144	44,204	120.3	0.04
Trench	SIMTR1075	55	60	1	208,143	44,200	117.4	0.01
Trench	SIMTR1075	60	65	+	208,140	44,195	118.1	0.01
Trench	SIMTR1075	65	70		208,137	44,192	121.1	0.23
Trench	SIMTR1075	70	75		208,137	44,194	122.4	0.01
Trench	SIMTR1075	75	80	+	208,127	44,193	122.1	0.01
Trench	SIMTR1075	80	85		208,127	44,189	119.6	0.06

Table 4: Tatau Reverse Circulation Drilling Significant Intercepts – Tatau Island, Papua New Guinea.

	TIC	TIC		p:/	T.4.1		Dov	wn-hole	Mineralised	Intersection	
Hole No	TIG North	TIG East	RL	Dip/ Azimuth	Total Depth	Oxidation	From	То	Length	Gold Grade	
	North	Last		Azimutii	Deptii		m	m	m	(Au ppb)	
TTRC007	189,300	35,746	92.0	-60 / 045	60.0		No	Significa	nt Results		
TTRC008	189,297	35,746	92.0	-60 / 300	60.0		No	Significa	nt Results		
TTRC009	189,550	35,917	72.0	-60 / 045	60.0	No Significant Results					
TTRC010	189,562	35,914	72.0	-60 / 300	60.0	No Significant Results					
TTRC011	189,576	36,255	73.0	-60 / 045	60.0	No Significant Results					
TTRC012	189,423	36,312	152.0	-60 / 045	60.0	SU 29 43 14 529					
TTRC013	189,632	35,723	180.0	-60 / 180	60.0		No Significant Results				
TTRC014	189,632	35,723	180.0	-60 / 045	60.0	No Significant Results					
TTRC015	189,203	35,859	89.0	-60 / 045	60.0	OX	0.0	9.0	9.0	2,922	
including						OX	7.0	9.0	2.0	11,439	
including						OX	7.0	8.0	1.0	19,463	
TTRC016	189,200	35,853	88.0	-60 / 300	60.0		No	Significa	nt Results		
TTRC017	188,879	36,126	172.0	-60 / 206	60.0		No	Significa	nt Results		
TTRC018	188,858	36,375	211.0	-60 / 206	60.0		No	Significa	nt Results		
TTRC019	188,645	36,435	231.0	-60 / 300	60.0		No	Significa	nt Results		
TTRC020	188,698	36,212	197.0	-60 / 045	60.0		No	Significa	nt Results		
TTRC021	188,433	36,825	248.0	-60 / 236	60.0	No Significant Results					
TTRC022	188,433	36,841	251.0	-60 / 045	60.0		No	Significa	nt Results		
TTRC023	189,082	35,922	85.0	-60 / 310	60.0		No	Significa	nt Results		

OX: oxide, SU: sulphide, TR: transitional material

Table 5: Tatau Trench Significant Intercepts – Tatau Island, Papua New Guinea.

Tuanah	Sample	Number	Trench	Start	Start	Start	End	End	End	From	То	Interval	Gold
Trench No	Length	Of	Length	North	East	RL	North	East	RL	m	m	m	Grade
	m	Samples	m	m	m	m	m	m	m				Au ppb
TATTR289	2	14	28	187,100	39,561	3.9	187,111	39,587	6.5		No Sig	nificant Resul	ts
TATTR290	2	5	10	187,205	39,600	13.9	187,205	39,590	21.5		No Sig	nificant Resul	ts
TATTR291	2	46	92	189,269	35,281	5.6	189,283	35,362	8.7		No Sig	nificant Resul	ts
TATTR292	2	47	94	189,566	35,884	30.9	189,527	35,920	45.2		No Sig	nificant Resul	ts
TATTR293	2	42	193	189,390	35,356	8.3	189,399	35,175	1.6		No Sig	nificant Resul	ts
TATTR294	2	20	58	189,524	35,638	11.7	189,485	35,597	9.4	36	40	4	1,128
TATTR295	2	51	102	189,258	35,800	84.2	189,181	35,854	80.5	4	30	26	1,036
including										14	20	6	1,763
including										16	18	2	2,690
and										28	30	2	2,050
										78	94	16	2,031
including										82	90	8	3,220
including										88	90	2	5,520
TATTR296	2	66	132	188,858	36,215	154.4	188,786	36,302	184.8		No Sig	nificant Resul	ts
TATTR297	2	11	22	188,781	36,340	210.0	188,781	36,362	211.8		No Sig	nificant Resul	ts
TATTR298	2	24	48	188,845	36,360	195.9	188,845	36,380	193.6		No Sig	nificant Resul	ts
TATTR299	4	7	28	189,638	35,726	21.0	189,612	35,735	23.5		No Sig	nificant Resul	ts
TATTR300	3	11	33	189,620	35,730	21.6	189,589	35,725	13.2	27	33	6	816
TATTR301	4	25	100	189,604	35,740	26.0	189,607	35,833	33.9		No Sig	nificant Resul	ts
TATTR302	4	12	48	188,660	36,441	190.9	188,648	36,398	191.5	4	16	12	787
including										4	8	4	1,090
TATTR303	4	7	28	188,736	36,450	202.1	188,710	36,457	202.3		No Sig	nificant Resul	ts
TATTR304	4	6	24	188,777	36,405	201.0	188,763	36,424	202.6		No Sig	nificant Resul	ts
TATTR305	5	3	15	189,642	35,707	19.5	189,651	35,700	22.7		No Sig	nificant Resul	ts
TATTR306	5	26	155	189,496	36,110	91.7	189,496	36,255	103.6		No Sig	nificant Resul	ts
TATTR307	5	9	43	189,434	36,298	141.3	189,425	36,328	145.4	5	10	5	1,110
TATTR308	5	29	145	189,406	36,252	115.8	189,314	36,339	133.9	125	13	5	1,480
TATTR309	5	8	40	189,690	35,712	32.8	189,670	35,745	36.3		No Sig	nificant Resul	ts
TATTR310	5	9	45	189,606	35,988	71.5	189,591	36,030	74.1		No Sig	nificant Resul	ts

^{*} Site Lab Results

Table 6: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		From	То	Interval	North	East	RL	Gold Grade
Sample Type	Trench No	m	m	m	m	m	m	Au ppb
Collar	TATTR289		0	N/A	187,100	39,561	3.9	
Trench	TATTR289	0	2	2	187,101	39,563	4.6	19
Trench	TATTR289	2	4	2	187,101	39,565	4.6	27
Trench	TATTR289	4	6	2	187,102	39,567	4.2	8
Trench	TATTR289	6	8	2	187,103	39,569	4.8	18
Trench	TATTR289	8	10	2	187,104	39,570	4.4	17
Trench	TATTR289	10	12	2	187,104	39,572	5.1	21
Trench	TATTR289	12	14	2	187,105	39,574	5.1	15
Trench	TATTR289	14	16	2	187,106	39,576	6.5	12
Trench	TATTR289	16	18	2	187,107	39,578	6.1	31
Trench	TATTR289	18	20	2	187,108	39,579	5.5	23
Trench	TATTR289	20	22	2	187,108	39,581	7.3	15
Trench	TATTR289	22	24	2	187,109	39,583	6.8	3
Trench	TATTR289	24	26	2	187,110	39,585	8.1	39
Trench	TATTR289	26	28	2	187,111	39,587	6.5	14
Collar	TATTR289	20	0	N/A	187,205	39,600	13.9	14
Trench	TATTR290	0	2	2	187,205	39,598	16.3	31
Trench	TATTR290	2	4	2	187,203	39,596	17.0	7
Trench	TATTR290	4	6	2			19.0	13
					187,205	39,594		
Trench	TATTR290	6	8	2	187,206	39,592	18.7	24
Trench	TATTR290	8	10	2	187,205	39,590	21.5	3
Collar	TATTR291		0	N/A	189,269	35,281	5.6	
Trench	TATTR291	0	2	2	189,268	35,283	5.4	6
Trench	TATTR291	2	4	2	189,267	35,284	5.4	<1
Trench	TATTR291	4	6	2	189,266	35,286	4.9	<1
Trench	TATTR291	6	8	2	189,265	35,288	5.2	3
Trench	TATTR291	8	10	2	189,263	35,289	5.4	<1
Trench	TATTR291	10	12	2	189,262	35,291	5.9	2
Trench	TATTR291	12	14	2	189,261	35,293	5.5	2
Trench	TATTR291	14	16	2	189,260	35,294	6.0	10
Trench	TATTR291	16	18	2	189,259	35,296	5.2	3
Trench	TATTR291	18	20	2	189,258	35,298	4.9	14
Trench	TATTR291	20	22	2	189,258	35,300	5.8	7
Trench	TATTR291	22	24	2	189,257	35,302	6.4	6
Trench	TATTR291	24	26	2	189,257	35,304	6.6	3
Trench	TATTR291	26	28	2	189,257	35,305	6.9	3
Trench	TATTR291	28	30	2	189,256	35,307	7.2	4
Trench	TATTR291	30	32	2	189,256	35,309	6.7	1
Trench	TATTR291	32	34	2	189,256	35,311	7.5	1
Trench	TATTR291	34	36	2	189,257	35,313	7.6	8
Trench	TATTR291	36	38	2	189,257	35,315	7.6	6
Trench	TATTR291	38	40	2	189,258	35,317	7.5	3
Trench	TATTR291	40	42	2	189,258	35,319	7.7	3
Trench	TATTR291	42	44	2	189,259	35,321	7.4	2
Trench	TATTR291	44	46	2	189,259	35,323	7.2	2
Trench	TATTR291	46	48	2	189,260	35,325	8.0	4
Trench	TATTR291	48	50	2	189,261	35,326	7.9	3
Trench	TATTR291	50	52	2	189,262	35,328	9.8	2
Trench	TATTR291	52	54	2	189,263	35,330	9.8	3
Trench	TATTR291	54	56	2	189,264	35,332	11.7	3
Trench	TATTR291	56	58	2	189,265	35,333	10.9	3

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		From	То	Interval	North	East	RL	
Sample Type	Trench No	m	m	m	m	m	m m	Gold Grad Au ppb
		""	""			""		
Trench	TATTR291	58	60	2	189,267	35,335	11.7	3
Trench	TATTR291	60	62	2	189,268	35,337	9.2	3
Trench	TATTR291	62	64	2	189,269	35,338	9.2	2
Trench	TATTR291	64	66	2	189,270	35,340	7.5	3
Trench	TATTR291	66	68	2	189,271	35,342	9.1	2
Trench	TATTR291	68	70	2	189,272	35,344	8.2	3
Trench	TATTR291	70	72	2	189,273	35,345	9.0	2
Trench	TATTR291	72	74	2	189,274	35,347	8.3	11
Trench	TATTR291	74	76	2	189,275	35,349	8.4	3
Trench	TATTR291	76	78	2	189,276	35,350	7.4	4
Trench	TATTR291	78	80	2	189,277	35,352	7.6	2
Trench	TATTR291	80	82	2	189,278	35,354	7.6	3
Trench	TATTR291	82	84	2	189,279	35,356	8.0	6
Trench	TATTR291	84	86	2	189,280	35,357	7.3	3
Trench	TATTR291	86	88	2	189,281	35,359	8.1	3
Trench	TATTR291	88	90	2	189,281	35,361	7.7	4
Trench	TATTR291	90	90	2	189,282	35,361	8.7	5
Collar	TATTR291	90	0	N/A	189,566	35,884	30.9	3
Trench	TATTR292	0	2	2	<u> </u>		31.6	3
					189,567	35,886		_
Trench	TATTR292	2	4	2	189,568	35,888	32.4	5
Trench	TATTR292	4	6	2	189,569	35,889	32.3	5
Trench	TATTR292	6	8	2	189,569	35,891	33.1	3
Trench	TATTR292	8	10	2	189,570	35,893	33.0	4
Trench Trench	TATTR292 TATTR292	10 12	12 14	2 2	189,571 189,572	35,895	33.7 33.8	4
Trench	TATTR292	14	16	2	189,572	35,896 35,898	34.9	5
Trench	TATTR292	16	18	2	189,573	35,900	34.9	5
Trench	TATTR292	18	20	2	189,575	35,902	35.5	4
Trench	TATTR292	20	22	2	189,576	35,904	36.5	13
Trench	TATTR292	22	24	2	189,575	35,905	36.9	9
Trench	TATTR292	24	26	2	189,575	35,907	37.4	7
Trench	TATTR292	26	28	2	189,574	35,909	38.8	5
Trench	TATTR292	28	30	2	189,575	35,911	40.2	4
Trench	TATTR292	30	32	2	189,575	35,913	41.3	5
Trench	TATTR292	32	34	2	189,575	35,915	41.9	5
Trench	TATTR292	34	36	2	189,575	35,917	42.9	4
Trench	TATTR292	36	38	2	189,573	35,918	44.4	6
Trench	TATTR292	38	40	2	189,572	35,919	45.1	8
Trench	TATTR292	40	42	2	189,570	35,920	45.5	5
Trench	TATTR292	42	44	2	189,568	35,922	46.2	7
Trench	TATTR292	44	46	2	189,567	35,923	47.6	12
Trench	TATTR292	46	48	2	189,565	35,924	48.3	9
Trench	TATTR292	48	50	2	189,563	35,925	49.5	9
Trench	TATTR292	50	52	2	189,562	35,926	50.1	20
Trench	TATTR292	52 54	54 56	2	189,560	35,927	51.5	12 6
Trench Trench	TATTR292 TATTR292	54 56	56 58	2 2	189,558 189,556	35,928 35,929	51.5 52.6	10
Trench	TATTR292	58	60	2	189,555	35,929 35,929	52.6	13
Trench	TATTR292	60	62	2	189,553	35,929	53.6	16
Trench	TATTR292	62	64	2	189,551	35,930	53.4	16
Trench	TATTR292	64	66	2	189,549	35,932	53.4	27
Trench	TATTR292	66	68	2	189,548	35,933	52.7	16
Trench	TATTR292	68	70	2	189,546	35,934	51.8	22

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		From	То	Interval	North	East	RL	Gold Grade
Sample Type	Trench No	m	m	m	m	m	m	Au ppb
Trench	TATTR292	70	72	2	189,544	35,935	50.6	34
Trench	TATTR292	72	74	2	189,542	35,934	50.9	17
Trench	TATTR292	74	76	2	189,541	35,932	50.3	27
Trench	TATTR292	76	78	2	189,539	35,931	49.6	14
Trench	TATTR292	78	80	2	189,538	35,930	48.8	11
Trench	TATTR292	80	82	2	189,536	35,928	48.8	10
Trench	TATTR292	82	84	2	189,535	35,927	48.2	14
Trench	TATTR292	84	86	2	189,533	35,926	47.6	19
Trench	TATTR292	86	88	2	189,532	35,924	46.8	22
Trench	TATTR292	88	90	2	189,530	35,923	46.9	29
Trench	TATTR292	90	92	2	189,529	35,922	45.9	24
Trench	TATTR292	92	94	2	189,527	35,920	45.2	17
Collar	TATTR292	32	0	N/A	189,390	35,356	8.3	17
Trench	TATTR293	0	2	2	189,391	35,354	8.3	4
						-		
Trench	TATTR293	2	4	2	189,392	35,353	8.1	<1
Trench	TATTR293	4	6	2	189,394	35,351	8.6	3
Trench	TATTR293	6	8	2	189,394	35,349	6.9	2
Trench	TATTR293	8	10	2	189,395	35,347	6.2	3
Trench	TATTR293	10	12	2	189,395	35,345	6.1	37
Trench	TATTR293	12	14	2	189,395	35,343	5.9	24
Trench	TATTR293	14	16	2	189,395	35,341	5.5	2
Trench	TATTR293	16	18	2	189,394	35,339	5.2	1
Trench	TATTR293	18	20	2	189,394	35,338	5.8	<1
No sample	TATTR293	20	54	34	189,400	35,304	6.3	
No sample	TATTR293	54	91	37	189,415	35,270	5.7	
No sample	TATTR293	91	129	38	189,422	35,233	4.8	
Trench	TATTR293	129	131	2	189,422	35,231	5.1	6
Trench	TATTR293	131	133	2	189,422	35,229	5.0	3
Trench	TATTR293	133	135	2	189,422	35,227	5.4	5
Trench	TATTR293	135	137	2	189,422	35,225	5.3	3
Trench	TATTR293	137	139	2	189,422	35,223	5.0	5
Trench	TATTR293	139	141	2	189,421	35,221	4.7	2
Trench	TATTR293	141	143 145	2 2	189,421	35,219	4.3 3.9	1 <1
Trench Trench	TATTR293 TATTR293	143 145	145	2	189,421 189,420	35,217 35,215	3.9	<1
Trench	TATTR293	145	147	2	· ·		2.8	<1
Trench	TATTR293	149	151	2	189,420 189,419	35,213 35,211	2.6	4
Trench	TATTR293	151	153	2	189,419	35,211	2.4	1
Trench	TATTR293	153	155	2	189,418	35,207	2.4	1
Trench	TATTR293	155	157	2	189,417	35,205	2.4	<1
Trench	TATTR293	157	159	2	189,416	35,204	2.1	<1
Trench	TATTR293	159	161	2	189,416	35,202	2.4	1
Trench	TATTR293	161	163	2	189,415	35,200	2.2	<1
Trench	TATTR293	163	165	2	189,414	35,198	2.1	1
Trench	TATTR293	165	167	2	189,413	35,196	2.3	<1
Trench	TATTR293	167	169	2	189,413	35,194	2.1	<1
Trench	TATTR293	169	171	2	189,412	35,192	1.9	<1
Trench	TATTR293	171	173	2	189,412	35,190	1.8	<1
Trench	TATTR293	173	175	2	189,411	35,189	1.6	2
Trench	TATTR293	175	177	2	189,410	35,187	1.6	1
Trench	TATTR293	177	179	2	189,409	35,185	1.6	<1
Trench	TATTR293	179	181	2	189,408	35,183	1.6	3
Trench	TATTR293	181	183	2	189,407	35,181	1.6	3

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

	Tuench No.	From	То	Interval	North	East	RL	Gold Grade
Sample Type	Trench No	m	m	m	m	m	m	Au ppb
Trench	TATTR293	183	185	2	189,406	35,180	1.6	3
Trench	TATTR293	185	187	2	189,404	35,179	1.6	<1
Trench	TATTR293	187	189	2	189,403	35,178	1.6	1
Trench	TATTR293	189	191	2	189,401	35,177	1.6	<1
Trench	TATTR293	191	193	2	189,399	35,175	1.6	<1
Collar	TATTR294		0	N/A	189,524	35,638	11.7	
Trench	TATTR294	0	2	2	189,522	35,637	11.1	288
Trench	TATTR294	2	4	2	189,521	35,635	10.4	311
Trench	TATTR294	4	6	2	189,519	35,634	10.3	274
Trench	TATTR294	6	8	2	189,518	35,633	9.2	229
Trench	TATTR294	8	10	2	189,516	35,632	8.3	291
Trench	TATTR294	10	12	2	189,515	35,630	8.1	468
Trench	TATTR294	12	14	2	189,513	35,629	7.5	400
Trench	TATTR294	14	16	2	189,512	35,628	7.5	481
No sample	TATTR294	16	34	18	189,498	35,616	13.7	401
Trench	TATTR294	34	36	2	189,498	35,614	13.2	335
Trench	TATTR294	36	38	2	189,497	35,612	12.4	1,350
Trench	TATTR294	38	40	2	189,497	35,610	11.7	905
Trench	TATTR294	40	40	2	· '		10.9	127
					189,496	35,609		
Trench	TATTR294	42	44	2	189,495	35,607	10.7	262
Trench	TATTR294	44	46	2	189,494	35,605	11.0	389
Trench	TATTR294	46	48	2	189,492	35,604	10.2	64
Trench	TATTR294	48	50	2	189,491	35,602	10.9	36
Trench Trench	TATTR294 TATTR294	50 52	52 54	2	189,490 189,488	35,601 35,600	9.3	154 91
Trench	TATTR294	54	56	2	189,488	35,598	9.8	8
Trench	TATTR294	56	58	2	189,485	35,597	9.4	16
Collar	TATTR295	30	0	N/A	189,258	35,800	84.2	10
Trench	TATTR295	0	2	2	189,257	35,801	84.8	287
Trench	TATTR295	2	4	2	189,255	35,803	85.0	128
Trench	TATTR295	4	6	2	189,254	35,804	84.9	636
Trench	TATTR295	6	8	2	189,253	35,806	84.9	739
Trench	TATTR295	8	10	2	189,251	35,807	85.4	650
Trench	TATTR295	10	12	2	189,250	35,809	86.2	753
Trench	TATTR295	12	14	2	189,248	35,810	86.6	549
Trench	TATTR295	14	16	2	189,247	35,812	86.8	1,210
Trench	TATTR295	16	18	2	189,246	35,813	87.3	2,690
Trench	TATTR295	18	20	2	189,244	35,815	87.2	1,390
Trench	TATTR295	20	22	2	189,243	35,816	87.7	749
Trench	TATTR295	22	24	2	189,241	35,817	88.4	709
Trench	TATTR295	24	26	2	189,240	35,819	88.8	727
Trench	TATTR295	26	28	2	189,238	35,819	88.8	616
Trench	TATTR295	28	30	2	189,236	35,820	88.5	2,050
Trench	TATTR295	30	32	2	189,234	35,821	89.2	231
Trench Trench	TATTR295 TATTR295	32 34	34 36	2	189,232	35,821 35,822	90.1 91.0	311 231
Trench	TATTR295	36	38	2	189,231 189,229	35,822 35,823	92.2	197
Trench	TATTR295	38	40	2	189,229	35,824	92.7	223
Trench	TATTR295	40	42	2	189,226	35,824	93.5	196
Trench	TATTR295	42	44	2	189,224	35,826	92.8	163
Trench	TATTR295	44	46	2	189,222	35,827	93.2	84
Trench	TATTR295	46	48	2	189,220	35,828	93.8	111
Trench	TATTR295	48	50	2	189,218	35,828	93.8	65

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		_	_					Cald Coads
Sample Type	Trench No	From	То	Interval	North	East	RL	Gold Grad
.,,,,,		m	m	m	m	m	m	Au ppb
Trench	TATTR295	50	52	2	189,216	35,829	94.6	19
Trench	TATTR295	52	54	2	189,214	35,829	95.0	103
Trench	TATTR295	54	56	2	189,212	35,830	95.2	262
Trench	TATTR295	56	58	2	189,211	35,830	94.9	232
Trench	TATTR295	58	60	2	189,210	35,832	94.9	205
Trench	TATTR295	60	62	2	189,209	35,834	94.9	89
Trench	TATTR295	62	64	2	189,208	35,836	94.5	138
Trench	TATTR295	64	66	2	189,208	35,838	94.6	203
Trench	TATTR295	66	68	2	189,207	35,840	94.4	96
Trench	TATTR295	68	70	2	189,206	35,841	94.3	192
Trench	TATTR295	70	72	2	189,206	35,843	93.8	440
Trench	TATTR295	72	74	2	189,205	35,845	93.4	258
Trench	TATTR295	74	76	2	189,204	35,847	92.9	103
Trench	TATTR295	76	78	2	189,203	35,849	92.5	103
Trench	TATTR295	78	80	2	189,203	35,850	91.7	1,300
Trench	TATTR295	80	82	2	189,202	35,851	91.7	617
Trench	TATTR295	82	84	2	189,200	35,851	90.8	2,800
		84	86	2			90.8	
Trench Trench	TATTR295 TATTR295	86	88	2	189,197	35,853	90.4	2,340 2,220
					189,195	35,853		
Trench	TATTR295	88	90	2	189,193	35,853	89.6	5,520
Trench	TATTR295	90	92	2	189,191	35,853	88.9	949
Trench	TATTR295	92	94	2	189,189	35,853	87.4	505
Trench	TATTR295	94	96	2	189,187	35,853	85.5	228
Trench Trench	TATTR295 TATTR295	96 98	98 100	2 2	189,185 189,183	35,853 35,854	83.8 82.0	107 375
Trench	TATTR295	100	100	2	189,181	35,854	80.5	152
Collar	TATTR296	100	0	N/A	188,858	36,215	154.4	132
Trench	TATTR296	0	2	2	188,858	36,217	154.8	10
Trench	TATTR296	2	4	2	188,857	36,219	154.7	33
Trench	TATTR296	4	6	2	188,857	36,221	154.7	10
Trench	TATTR296	6	8	2	188,856	36,223	154.8	8
Trench	TATTR296	8	10	2	188,855	36,224	155.2	12
Trench	TATTR296	10	12	2	188,854	36,226	155.2	19
Trench	TATTR296	12	14	2	188,853	36,227	155.9	38
Trench	TATTR296	14	16	2	188,852	36,229	156.6	16
Trench	TATTR296	16	18	2	188,850	36,230	156.5	16
Trench	TATTR296	18	20	2	188,849	36,232	156.7	15
Trench	TATTR296	20	22	2	188,848	36,233	156.4	10
Trench	TATTR296	22	24	2	188,847	36,235	156.3	39
Trench	TATTR296	24	26	2	188,845	36,236	156.2	17
Trench	TATTR296	26	28	2	188,844	36,238	156.2	12
Trench	TATTR296	28	30	2	188,843	36,239	156.4	11
Trench	TATTR296	30	32	2	188,842	36,241	156.7	13
Trench	TATTR296	32	34	2	188,842	36,243	157.3	16
Trench	TATTR296	34	36	2 2	188,841	36,245	158.0	14 15
Trench Trench	TATTR296 TATTR296	36 38	38 40	2	188,841	36,247 36,248	158.8 159.5	15
Trench	TATTR296	40	40	2	188,840 188,840	36,248 36,250	160.3	25
Trench	TATTR296	40	44	2	188,839	36,250	161.1	19
Trench	TATTR296	44	46	2	188,839	36,254	161.6	14
Trench	TATTR296	46	48	2	188,838	36,256	161.6	21
Trench	TATTR296	48	50	2	188,838	36,258	162.4	12
Trench	TATTR296	50	52	2	188,837	36,260	162.9	15

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

	Tuonah No	From	То	Interval	North	East	RL	Gold Grade
Sample Type	Trench No	m	m	m	m	m	m	Au ppb
Trench	TATTR296	52	54	2	188,836	36,261	163.4	11
Trench	TATTR296	54	56	2	188,836	36,263	163.8	15
Trench	TATTR296	56	58	2	188,835	36,265	164.2	13
Trench	TATTR296	58	60	2	188,835	36,267	164.8	14
Trench	TATTR296	60	62	2	188,835	36,269	165.4	14
Trench	TATTR296	62	64	2	188,834	36,271	166.1	17
Trench	TATTR296	64	66	2	188,834	36,273	166.9	13
Trench	TATTR296	66	68	2	188,834	36,275	167.4	12
Trench	TATTR296	68	70	2	188,834	36,277	168.1	9
Trench	TATTR296	70	72	2	188,833	36,279	168.7	4
Trench	TATTR296	72	74	2	188,832	36,280	169.3	12
Trench	TATTR296	74	76	2	188,831	36,282	170.0	19
Trench	TATTR296	76	78	2	188,830	36,284	170.0	18
					-	-		
Trench	TATTR296	78	80	2	188,829	36,286	170.6	10
Trench	TATTR296	80	82	2	188,828	36,287	171.3	11
Trench	TATTR296	82	84	2	188,827	36,288	171.6	13
Trench	TATTR296	84	86	2	188,825	36,290	171.5	15
Trench	TATTR296	86	88	2	188,824	36,291	172.6	12
Trench	TATTR296	88	90	2	188,822	36,292	173.9	14
Trench	TATTR296	90	92	2	188,821	36,293	173.9	12
Trench	TATTR296	92	94	2	188,819	36,295	174.7	15
Trench	TATTR296	94	96	2	188,817	36,296	174.4	13
Trench	TATTR296	96	98	2	188,816	36,297	175.2	18
Trench	TATTR296	98	100	2	188,814	36,298	175.4	10
Trench	TATTR296	100	102	2	188,812	36,299	176.3	18
Trench	TATTR296	102	104	2	188,811	36,300	177.2	12
Trench	TATTR296	104	106	2	188,809	36,301	177.4	16
Trench	TATTR296	106	108	2	188,808	36,303	179.3	14
Trench	TATTR296	108	110	2	188,806	36,304	180.8	17
Trench	TATTR296	110	112	2	188,805	36,306	181.7	10
Trench	TATTR296	112	114	2	188,803	36,306	182.8	16
Trench	TATTR296	114	116	2	188,801	36,306	183.8	21
Trench	TATTR296	116	118	2	188,799	36,305	184.7	12
Trench	TATTR296	118	120	2	188,797	36,305	185.5	11
Trench	TATTR296	120	122	2	188,796	36,304	185.9	9
Trench	TATTR296	122	124	2	188,794	36,304	184.7	10
Trench	TATTR296	124	126	2	188,792	36,303	185.0	7
Trench	TATTR296	126	128	2	188,790	36,303	185.0	10
Trench	TATTR296	128	130	2	188,788	36,302	185.3	14
Trench	TATTR296	130	132	2	188,786	36,302	184.8	12
Collar	TATTR297		0	N/A	188,781	36,340	210.0	
Trench	TATTR297	0	2	2	188,781	36,342	210.1	13
Trench	TATTR297	2	4	2	188,781	36,344	210.3	11
Trench	TATTR297	4	6	2	188,781	36,346	210.4	10
Trench	TATTR297	6	8	2	188,781	36,348	210.6	10
Trench	TATTR297	8	10	2	188,781	36,350	210.7	22
Trench	TATTR297	10	12	2	188,781	36,352	210.8	12
Trench	TATTR297	12	14	2	188,781	36,354	211.0	11
Trench	TATTR297	14	16	2	188,781	36,356	211.2	12
Trench	TATTR297	16	18		188,781	36,358	211.4	15
Trench	TATTR297	18	20 22	2	188,781	36,360	211.6	12
Trench	TATTR297	20			188,781	36,362	211.8	17
Collar -s-	TATTR298		0	N/A	188,845	36,360	195.9	

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		From	То	Interval	North	East	RL	Gold Grad
Sample Type	Trench No	m	m	m	m	m	m	Au ppb
Trench	TATTR298	0	2	2	188,847	36,360	197.0	29
Trench	TATTR298	2	4	2	188,849	36,360	197.2	33
Trench	TATTR298	4	6	2	188,851	36,360	197.3	85
Trench	TATTR298	6	8	2	188,853	36,360	197.1	94
Trench	TATTR298	8	10	2	188,855	36,360	196.8	27
Trench	TATTR298	10	12	2	188,857	36,360	196.2	12
Trench	TATTR298	12	14	2	188,859	36,360	195.5	14
Trench	TATTR298	14	16	2	188,861	36,360	195.6	11
Trench	TATTR298	16	18	2	188,863	36,360	195.1	10
Trench	TATTR298	18	20	2	188,864	36,361	194.3	13
Trench	TATTR298	20	22	2	188,864	36,363	194.1	11
Trench	TATTR298	22	24	2	188,862	36,364	193.5	17
						·	193.5	
Trench	TATTR298	24	26	2	188,861	36,366		13
Trench	TATTR298	26	28	2	188,859	36,367	193.5	12
Trench	TATTR298	28	30	2	188,858	36,368	194.1	13
Trench	TATTR298	30	32	2	188,856	36,369	193.5	78
Trench	TATTR298	32	34	2	188,854	36,370	193.5	32
Trench	TATTR298	34	36	2	188,852	36,371	193.1	90
Trench	TATTR298	36	38	2	188,851	36,372	193.8	18
Trench	TATTR298	38	40	2	188,850	36,373	193.6	11
Trench	TATTR298	40	42	2	188,848	36,375	192.8	20
Trench	TATTR298	42	44	2	188,847	36,376	193.2	17
Trench	TATTR298	44	46	2	188,846	36,378	194.1	20
Trench	TATTR298	46	48	2	188,845	36,380	193.6	17
Collar	TATTR299		0	N/A	189,638	35,726	21.0	
Trench	TATTR299	0	4	4	189,635	35,728	20.9	80
Trench	TATTR299	4	8	4	189,631	35,730	21.2	77
Trench	TATTR299	8	12	4	189,628	35,733	22.5	63
Trench	TATTR299	12	16	4	189,624	35,733	23.1	169
Trench	TATTR299	16	20	4	189,620	35,734	23.0	156
Trench	TATTR299	20	24	4	189,616	35,735	24.0	26
Trench	TATTR299	24	28	4	189,612	35,735	23.5	40
Collar	TATTR300		0	N/A	189,620	35,730	21.6	
Trench	TATTR300	0	3	3	189,617	35,729	20.0	330
Trench	TATTR300	3	6	3	189,614	35,729	20.6	75
Trench	TATTR300	6	9	3	189,611	35,728	21.4	37
Trench	TATTR300	9	12	3	189,609	35,728	19.9	132
Trench	TATTR300	12	15	3	189,606	35,727	19.6	19
Trench	TATTR300	15	18	3	189,603	35,725	18.0	115
Trench	TATTR300	18	21	3	189,601	35,724	17.9	635
Trench	TATTR300	21	24	3	189,598	35,724	15.6	236
Trench	TATTR300	24	27	3	189,595	35,723	15.0	189
Trench	TATTR300	27	30	3	189,592	35,724	15.1	859
Trench	TATTR300	30	33	3	189,589	35,725	13.2	772
Collar	TATTR301	_	0	N/A	189,604	35,740	26.0	
Trench	TATTR301	0	4	4	189,604	35,744	26.1	20
Trench	TATTR301	4	8	4	189,605	35,748	26.3	28
Trench	TATTR301	8	12	4	189,605	35,752	26.1	35
Trench	TATTR301	12	16	4	189,606	35,756	25.9	13
Trench	TATTR301	16	20	4	189,604	35,759	26.8	46
Trench	TATTR301	20	24	4	189,602	35,763	27.3	75
Trench	TATTR301	24	28	4	189,600	35,766	28.1	388

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		From	То	Interval	North	East	RL	Gold Grad
Sample Type	Trench No	m	m	m	m	m	m	Au ppb
							•••	
Trench	TATTR301	32	36	4	189,597	35,773	28.8	193
Trench	TATTR301	36	40	4	189,597	35,777	29.1	219
Trench	TATTR301	40	44	4	189,597	35,781	29.4	212
Trench	TATTR301	44	48	4	189,597	35,785	29.9	104
Trench	TATTR301	48	52	4	189,597	35,789	30.2	38
Trench	TATTR301	52	56	4	189,597	35,793	30.7	31
Trench	TATTR301	56	60	4	189,600	35,796	32.2	47
Trench	TATTR301	60	64	4	189,602	35,800	34.3	205
Trench	TATTR301	64	68	4	189,605	35,803	34.4	261
Trench	TATTR301	68	72	4	189,607	35,806	34.8	36
Trench	TATTR301	72	76	4	189,608	35,810	35.8	2
Trench	TATTR301	76	80	4	189,609	35,814	34.2	5
Trench	TATTR301	80	84	4	189,609	35,818	33.0	34
Trench	TATTR301	84	88	4	189,610	35,822	33.0	13
Trench	TATTR301	88	92	4	189,609	35,826	33.0	20
Trench	TATTR301	92	96	4	189,608	35,830	33.4	30
Trench	TATTR301	96	100	4	189,607	35,833	33.9	10
Collar	TATTR302	30	0	N/A	188,660	36,441	190.9	10
Trench	TATTR302	0	4	4	188,658	36,437	190.6	62
Trench	TATTR302	4	8	4	188,656	36,434	191.4	1,090
Trench	TATTR302	8	12	4	188,655	36,430	191.5	389
Trench	TATTR302	12	16	4	188,653	36,427	191.4	881
		16	20		· · · · · ·	,	191.4	204
Trench Trench	TATTR302 TATTR302	20	24	4	188,651 188,653	36,423 36,420	191.7	60
Trench	TATTR302	24	28	4	188,654	36,416	190.3	120
Trench	TATTR302	28	32	4	188,653	36,412	191.3	75
Trench	TATTR302	32	36	4	188,653	36,408	191.5	58
Trench	TATTR302	36	40	4	188,652	36,404	191.6	41
Trench	TATTR302	40	44	4	188,651	36,400	191.2	5
Trench	TATTR302	44	48	4	188,648	36,398	191.5	22
Collar	TATTR303		0	N/A	188,736	36,450	202.1	
Trench	TATTR303	0	4	4	188,732	36,450	202.5	6
Trench	TATTR303	4	8	4	188,728	36,449	203.1	4
Trench	TATTR303	8	12	4	188,724	36,450	202.9	2
Trench	TATTR303	12	16	4	188,721	36,452	203.2	8
Trench	TATTR303	16	20	4	188,717	36,454	203.4	5
Trench	TATTR303	20	24	4	188,713	36,455	202.9	4
Trench	TATTR303	24	28	4	188,710	36,457	202.3	2
Collar	TATTR304		0	N/A	188,777	36,405	201.0	_
Trench	TATTR304	0	4	4	188,775	36,408	201.2	7
Trench	TATTR304	4	8	4	188,773	36,412	200.9	6
Trench	TATTR304	8 12	12 16	4	188,771	36,415	200.8	66 40
Trench Trench	TATTR304 TATTR304	16	20	4	188,768 188,766	36,418 36,421	201.4	51
Trench	TATTR304	20	24	4	188,763	36,421	201.5	42
Collar	TATTR304	20	0	N/A	189,642	35,707	19.5	44
Trench	TATTR305	0	5	5 5	189,643	35,707	19.3	20
Trench	TATTR305	5	10	5	189,646	35,699	20.9	10
Trench	TATTR305	10	15	5	189,651	35,700	22.7	3
Collar	TATTR306	1	0	N/A	189,496	36,110	91.7	<u> </u>
Trench	TATTR306	0	5	5	189,498	36,114	92.7	206
Trench	TATTR306	5	10	5	189,499	36,119	93.1	67
Trench	TATTR306	10	15	5	189,498	36,124	94.1	36

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

		_	_				DI	
Sample Type	Trench No	From	То	Interval	North	East	RL	Gold Grad
		m	m	m	m	m	m	Au ppb
Trench	TATTR306	15	20	5	189,498	36,129	94.5	74
Trench	TATTR306	20	25	5	189,498	36,134	97.5	9
Trench	TATTR306	25	30	5	189,498	36,139	98.3	370
No sample	TATTR306	30	55	25	189,501	36,164	98.5	
Trench	TATTR306	55	60	5	189,502	36,169	98.6	14
Trench	TATTR306	60	65	5	189,503	36,174	99.0	6
Trench	TATTR306	65	70	5	189,504	36,179	99.1	<1
Trench	TATTR306	70	75	5	189,506	36,183	98.1	4
Trench	TATTR306	75	80	5	189,507	36,188	97.6	3
Trench	TATTR306	80	85	5	189,509	36,193	97.0	<1
Trench	TATTR306	85	90	5	189,511	36,197	96.7	1
Trench	TATTR306	90	95	5	189,513	36,202	96.8	9
Trench	TATTR306	95	100	5	189,514	36,207	100.3	53
Trench	TATTR306	100	105	5	189,514	36,212	98.1	8
Trench	TATTR306	105	110	5	189,514	36,217	100.5	17
				5		,		14
Trench	TATTR306 TATTR306	110	115		189,515	36,222	100.7	
Trench		115	120	5	189,513	36,227	101.9	21
Trench	TATTR306	120	125	5	189,510	36,230	102.4	135
Trench	TATTR306	125	130	5	189,505	36,232	106.7	75
Trench	TATTR306	130	135	5	189,503	36,236	104.0	35
Trench	TATTR306	135	140	5	189,501	36,241	104.2	17
Trench	TATTR306	140	145	5	189,499	36,245	104.8	97
Trench	TATTR306	145	150	5	189,497	36,250	104.8	9
Trench	TATTR306	150	155	5	189,496	36,255	103.6	9
Collar	TATTR307		0	N/A	189,434	36,298	141.3	
Trench	TATTR307	0	5	5	189,431	36,302	143.1	278
Trench	TATTR307	5	10	5	189,426	36,303	144.2	1,480
Trench	TATTR307	10	15	5	189,421	36,304	146.2	128
Trench	TATTR307	15	20	5	189,417	36,308	146.9	36
Trench	TATTR307	20	25	5	189,417	36,313	148.3	19
Trench	TATTR307	25	30	5	189,419	36,317	148.2	7
Trench	TATTR307	30	35	5	189,421	36,321	147.6	8
Trench Trench	TATTR307 TATTR307	35 40	40	5 3	189,423 189,425	36,326	145.8 145.4	121 136
Collar	TATTR307	40	0	N/A	189,406	36,328	115.8	150
Trench	TATTR308	0	5	5 5	189,408	36,252 36,256	117.2	49
Trench	TATTR308	5	10	5	189,401	36,260	117.2	25
Trench	TATTR308	10	15	5	189,398	36,265	118.7	115
Trench	TATTR308	15	20	5	189,395	36,269	117.3	62
Trench	TATTR308	20	25	5	189,393	36,273	118.1	142
Trench	TATTR308	25	30	5	189,390	36,277	119.3	44
Trench	TATTR308	30	35	5	189,386	36,280	120.6	63
Trench	TATTR308	35	40	5	189,382	36,283	119.7	60
Trench	TATTR308	40	45	5	189,379	36,287	120.0	156
Trench	TATTR308	45	50	5	189,378	36,292	122.5	118
Trench	TATTR308	50	55	5	189,376	36,297	123.7	72
Trench	TATTR308	55	60	5	189,375	36,302	123.2	67
Trench	TATTR308	60	65	5	189,374	36,307	124.0	51
Trench	TATTR308	65	70	5	189,372	36,311	124.3	28
Trench	TATTR308	70	75	5	189,371	36,316	124.0	31
Trench	TATTR308	75	80	5	189,369	36,321	123.8	9
Trench	TATTR308	80	85	5	189,367	36,326	124.3	6
Trench	TATTR308	85	90	5	189,363	36,328	125.8	11

Table 6 Cont: Simberi Trench Assay Results – Simberi Island, Papua New Guinea.

Sample Type	Trench No	From	То	Interval	North	East	RL	Gold Grade
Sumple Type		m	m	m	m	m	m	Au ppb
Trench	TATTR308	90	95	5	189,358	36,327	125.0	24
Trench	TATTR308	95	100	5	189,353	36,327	125.0	290
Trench	TATTR308	100	105	5	189,349	36,329	125.2	94
Trench	TATTR308	105	110	5	189,345	36,332	124.4	123
Trench	TATTR308	110	115	5	189,341	36,335	125.3	172
Trench	TATTR308	115	120	5	189,337	36,338	125.0	247
Trench	TATTR308	120	125	5	189,333	36,341	126.9	369
Trench	TATTR308	125	130	5	189,328	36,343	130.3	1,110
Trench	TATTR308	130	135	5	189,323	36,341	128.4	28
Trench	TATTR308	135	140	5	189,318	36,340	131.5	84
Trench	TATTR308	140	145	5	189,314	36,339	133.9	111
Collar	TATTR309		0	N/A	189,690	35,712	32.8	
Trench	TATTR309	0	5	5	189,686	35,715	33.1	316
Trench	TATTR309	5	10	5	189,683	35,719	33.8	456
Trench	TATTR309	10	15	5	189,680	35,723	34.7	375
Trench	TATTR309	15	20	5	189,678	35,727	34.9	7
Trench	TATTR309	20	25	5	189,676	35,732	35.0	11
Trench	TATTR309	25	30	5	189,674	35,736	34.7	52
Trench	TATTR309	30	35	5	189,672	35,741	35.1	11
Trench	TATTR309	35	40	5	189,670	35,745	36.3	11
Collar	TATTR310		0	N/A	189,606	35,988	71.5	
Trench	TATTR310	0	5	5	189,605	35,993	73.0	26
Trench	TATTR310	5	10	5	189,604	35,998	74.1	28
Trench	TATTR310	10	15	5	189,603	36,003	74.8	30
Trench	TATTR310	15	20	5	189,602	36,007	75.0	58
Trench	TATTR310	20	25	5	189,601	36,012	75.4	104
Trench	TATTR310	25	30	5	189,598	36,017	75.1	41
Trench	TATTR310	30	35	5	189,596	36,021	74.9	60
Trench	TATTR310	35	40	5	189,594	36,025	74.4	74
Trench	TATTR310	40	45	5	189,591	36,030	74.1	159

JORC Table 1 Checklist of Assessment and Reporting Criteria

Drilling: Section 1	I Sampling Techniques and Data – Simberi ML136
Criteria	Commentary
Sampling techniques	 Diamond Drilling comprised PQ3 (83 mm) and HQ3 (61.1 mm) sized core collected using standard triple tubes. Half core was sampled on nominal 1 metre intervals with the lower or left half (looking downhole) of the core submitted for sample preparation and analysis. Competent core is half cored using an Almonte automated core saw whereas broken or highly weathered core is manually half cored with a masonry chisel. Prior to 31 March 2025, half core samples were fully prepared at the company's on-site sample preparation facility on Simberi Island with 150 g to 200 g pulps sent to ALS Laboratory in Townsville for further analysis. Pulp residues are stored in Townsville for six months following assay before disposal. Since 1 April 2025, including for this ASX Release, half core samples were fully barged to the Intertek Laboratory in Lae (PNG) for sample preparation. A 250 g pulp sample is sub split into a geochem packet for analysis in Lae and a 35g sample is sub split, packaged, and air freighted for multi element analysis to Intertek's Perth Laboratory. Coarse and pulp residues are returned to Simberi for storage.
Drilling techniques	 Diamond drilling comprised PQ3 (83 mm) and HQ3 (61.1 mm) core recovered using a 1.5 m barrel. Drilling was completed by Quest Exploration Drilling (QED). When ground conditions permit, an ACT Digital Core Orientation Instrument was used by the contractor to orientate the HQ3 core.
Drill sample recovery	Diamond drilling recovery percentages were measured by comparing actual metres recovered per drill run versus metres recorded on the core blocks. Recoveries averaged >98 % with increased core loss present in fault zones and zones of strong weathering/alteration.
Logging	 Diamond holes are qualitatively geologically logged for lithology, structure and alteration and qualitatively and quantitatively logged for veining and sulphide mineralogy. Diamond holes are geotechnically logged with the following attributes qualitatively recorded - strength, infill material, weathering, and shape. Whole core and half core photography is completed on wet core.

Sub-sampling techniques and sample preparation All diamond drill core was half cored with the lower or left half (looking downhole) submitted for sample preparation and analysis.

All holes are logged in their entirety and data recorded in templated excel workbook prior to being uploaded to the

Prior to 31 March 2025:

company's secure SQL database.

- All drill samples were prepared at the company's on-site sample preparation facility. After oven drying for a minimum 8 hours, sample material undergoes initial crushing in a Terminator Jaw Crusher to achieve particle size <2 mm. For samples weighing in excess of 1 kg, a 0.8 kg to 1.2 kg sample split is taken using a riffle splitter. Crushed samples of ~ 1 kg standardised weight are then completely pulverised in an Essa LM2 Pulveriser (90% passing 75 microns). Approximately 200 g of pulverised material is retained for assaying using a metal scoop to transfer material into analytical envelopes (pulp packets) before being sent to the ALS lab in Townsville.
- For internal reference, a second pulverised sub- sample (~100 grams) is analysed at the site lab using same QAQC reference materials as those sent to ALS lab.
- Quality control of sample material prepared on site consists of insertion of two (non-certified) blank control samples at the start of each hole, and between each sample, any pulverised residue in the LM2 is discarded and the bowl vacuumed and wiped clean.
- 150 g to 200 g pulp samples are then sent to ALS Laboratory in Townsville for assay via air freight. Pulp residues are stored in Townsville for six months following assay for re-assay if required.
- Since 1 April 2025, including for this ASX Release:
 - All drill samples were prepared at the at the Intertek laboratory in Lae, PNG.
 - The entire half core underwent drying at <105°C in an electric oven. Samples then pass through a 2-stage crushing process, firstly crushed to ~85% passing 10mm, followed by crushing in a fine crusher to 85% passing 2mm. 2 kg of the crushed material is rotary sub split and then pulverised in a LM5 pulveriser to 90% passing 75um (Method PB04)
 - For internal reference, St Barbara inserted two in house blanks at the start of the batch and then inserted OREAS standard certified reference material (1:20).
 - A 250 g pulp sample is sub split into a geochem packet for analysis in Lae and a 35g sample is sub split, packaged, and air freighted for multi element analysis to Intertek's Perth Laboratory.
 - Coarse and pulp residues are returned to Simberi for storage for re-assay if required.

Criteria

Commentary

Quality of assay data and laboratory tests

- Prior to 31 March 2025:
 - Preliminary assays are received from pulps analysed for Au at the Simberi Lab using Aqua Regia digestion with a 15 g charge and analysis by Atomic Absorption Spectrometry.
 - Final assays are received for pulps analysed for Au at ALS Townsville via 50 g Fire Assay Atomic Absorption Spectroscopy (AAS) finish (Au-AA26 method) and multi-element (Ag, As, S, Fe, Cu, Pb, Zn, Mo and Sb) by Aqua Regia digest followed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument read (ME-ICP41S method).
 - Analyses at both the Site Lab and ALS comprised QC including insertion of certified reference material (1:20); insertion of in-house blank control material (2 at the start of each job); and the insertion of lab duplicates (1:20 split from the initial jaw crushed material prepared by the site lab. QAQC results were assessed as each laboratory batch was received and again at resource estimation cycles. Results indicate that pulveriser bowls were adequately cleaned between samples. ALS Townsville insert certified standards, replicates, lab repeats and complete sizing checks (1:40) or higher as part of their internal QAQC protocols.
- Since 1 April 2025, including for this ASX Release:
 - Assays are received for pulps analysed for Au via 50 g Fire Assay / AAS Finish (Method FA50 / AA) at Intertek's Lae Laboratory. Multi-element analysis was completed via 1 g Aqua Regia Digest and OES and MS finish for 9 elements Ag, As, Cu, Fe, Mo, Pb, S, Sb, Zn (Method AR1 / MS) at Intertek's Perth Laboratory.
 - St Barbara QAQC included the insertion of two in house blanks at the start of the batch and the insertion of OREAS standard certified reference material (1:20). St Barbara inserted OREAS standards (238b, 607c, 61h and 245) as matched to material type and grade approximation.
 - Intertek Laboratory QAQC involved the insertion of Reagent Blanks and Certified Reference Materials (1:25) and analytical pulp duplicates were assayed (1:25).
 - The Fire Assay gold analysis technique is considered a complete extraction method. The Aqua Regia digestion is considered a partial digestion technique that effectively dissolves metals not tightly bound within silicate structures.

Verification of sampling and assaying

Location of data

points

- Sampling data is recorded electronically which ensures only valid non-overlapping data can be recorded. Assay and downhole survey data are subsequently merged electronically. All drill data is stored in a SQL database on secure

No adjustments to assay data have been made. All drill collars were surveyed by company appointed surveyors using a DGPS in Tabar Island Grid (TIG) which is

based on WGS84 ellipsoid and is GPS compatible. All diamond drill holes were downhole surveyed using a Reflex EZ track single shot camera with the first reading at 9, 12 or 18 m and one at 30 m and then approximately every 30 m increments to the bottom-of-the hole where an end of hole survey is also taken.

Data spacing and distribution

- Resource definition drilling to define Indicated Mineral Resources is completed on a nominal 30m x 40m pattern. This spacing is adequate to establish both geological and grade continuity for the Mineral Resource and Ore
- Sampling is typically based on one-metre intervals with no compositing applied.

Orientation of data in relation to geological structure

- Drilling is orientated perpendicular to the major structures controlling the distribution of gold mineralisation. The orientation of the drilling ensures unbiased sampling of structures. Exceptions occur when topography restricts access and prevents mineralisation being tested from an optimal orientation.
- In the Sorowar-Pigiput Southeast Trend area broad mineralisation is interpreted to strike northwest-southeast and dip moderately to shallowly to the southwest. In this area the optimum drill orientation is to drill to the northeast. Locally, several northeast striking, steeply dipping high-grade zones are being recognised in recent drilling and outcrop. In this area the optimum drill orientation is to drill to the northeast.
- In the Pigiput-Sorowar Northeast Trend area an internal zone of higher-grade mineralisation associated with quartzcarbonate veining and crackle breccia is interpreted to strike northeast-southwest and dip sub-vertical to steeply to the southeast. In this area the optimum drill orientation is to drill to the northwest.
- In the Pigibo North area, due to the lower density drilling, the orientation to mineralisation is less well understood. In plan view, broad scale mineralisation is interpreted to be arcuate in geometry. In the central area it is interpreted to strike north-south and dip moderately to the east. In this area the optimum drill orientation is to drill to the west or sub vertically. In the southern area it is interpreted to strike northwest and dip moderately to the northeast. In this area the optimum drill orientation is to drill to the southwest.
- In the Pigicow-Botlu area mineralisation is interpreted to strike northwest-southeast and dip sub-vertically. In this area the optimum drill orientation is to drill to the northeast or southwest.
- In the Samat area broad mineralisation is interpreted to strike northeast-southwest and dip moderately to the northwest. In this area the optimum drill orientation is to drill to the southeast.

Sample security

- Only company personnel or approved contractors are allowed on drill sites; drill core is only removed from drill site to secure core logging/processing facility within the gated exploration core yard; core is promptly logged, cut, and prepped on site. The samples sent to ALS are stored in locked and guarded storage facilities until receipted at the Laboratory.
- Since 1 April 2025, including for this ASX Release:
 - Only company personnel or approved contractors are allowed on drill sites; drill core is only removed from drill site to secure core logging/processing facility within the gated exploration core yard; core is promptly logged, cut, and packaged on site. The samples sent to Intertek Lae are stored in locked and guarded storage facilities until receipted at the Laboratory.

Audits or reviews

No audits or reviews of sampling protocols have been completed.

Page 47 of 52

Drilling: Section 2 Reporting of Exploration Results – Simberi ML136

Criteria	Commentary
Mineral tenement and land tenure status	SBM has 100 % ownership of the three tenements over the Simberi Islands; ML136 on Simberi Island, EL609 which covers the remaining area of Simberi Island, as well as Tatau Island and Big Tabar Island and 4 sub-block EL2462 which covers part of Tatau and Mapua Islands.
Exploration done by other parties	 CRA, BHP, Tabar JV (Kennecott, Nord Australex and Niugini Mining), Nord Pacific, Barrick and Allied Gold have all previously worked in this area. Nord Pacific followed by Allied Gold was instrumental in the discovery and delineation of the 5 main oxide and sulphide deposits at Simberi. St Barbara has undertaken exploration on the tenements since acquisition from Allied Gold in September 2012. St Barbara (through its wholly owned PNG subsidiary Nord Australex Nominees (PNG) Ltd) had an Option and Farm-In Agreement with Newcrest PNG Exploration Limited (a wholly owned subsidiary of Newcrest Mining Limited) between 2016 and 2019. During this time, exploration was conducted for Cu-Au porphyry deposits on tenements EL609 and EL2462 covering Tatau and Big Tabar Islands.
Geology	 The Tabar group of islands is located in the New Ireland Province, Papua New Guinea. The Tabar-Feni Island chain comprises a series of Pliocene to Recent volcanoes that occupy a fore-arc position in the New Ireland Basin, part of the Bismarck archipelago. Volcanism in the area began about 3.7 Ma ago, coeval with the initiation of back-arc spreading in the Manus basin. Volcanism in the Bismarck archipelago is dominantly calc-alkaline to high K calcalkaline generated as a result of stalled subduction and partial melting of the Pacific plate beneath the Indo-Australian plate along the Manus-Kilinailau trench. The Simberi gold deposits are low sulphidation, intrusion related adularia-sericite epithermal gold deposits. The dominant host rocks for mineralisation are andesites, volcaniclastics and lesser porphyries. Gold mineralisation is generally associated with sulphides or iron oxides occurring within a variety of fractures, such as simple fracture infills, single vein coatings and crackle brecciation in the more competent andesite units, along andesite/polymictic breccia contact margins as well as sulphide disseminations. Several holes in the area between Sorowar and Pigiput intersected zones of between 20 m and 100 m of semi continuous carbonate ± quartz base metal / Au veining, similar in style to mineralisation occurring on Tatau and Big Tabar islands to the south, which are also prospective for Porphyry Cu/Au deposits.
Drill hole Information	 Drill hole information is included in intercept table outlining collar position obtained by DGPS pickup, hole dip and azimuth acquired from a downhole surveying camera as discussed in Section 1, composited mineralised intercepts lengths and depth as well as hole depth.
Relationship between mineralisation widths and intercept lengths	 All results have been reported. No top-cutting has been applied. No assumptions on metal equivalents have been made. Intercepts from the ALS (Townsville) and Intertek (Lae / Perth) laboratories for gold only epithermal mineralisation, comprise broad down hole intercepts reported as length weighted averages using a cut-off of 0.6 g/t Au, minimum width of 2 m, and a minimum grade*length of 2.5 gmpt (gram metre per tonne). Such intercepts may include material below cut-off but no more than 5 sequential metres of such material and except where the average drops below the cut-off. Supplementary cut-offs, of 1.0 g/t, 2.5 g/t, 5.0 g/t and 10.0 g/t Au may be used to highlight higher grade zones and spikes within the broader aggregated interval. Single assays intervals are reported only where ≥2.5 g/t Au and ≥1 m down hole. Core loss is assigned the same grade as the sample grade; no high-grade cut is applied; grades are reported to one decimal figure for g/t results. Down hole length was reported for all holes. Simberi lodes display high variability in orientation and complex geometries because of the interplay of veining, brecciation intensity, host lithology and oxidation fronts. At the Pigiput-Sorowar Northeast Trend area, four holes (SDH667, SDH669, SDH672 and SDH701) are drilled towards the northwest (between azimuth 310° and 316°) and at angles between 55° and 60° from horizontal roughly perpendicular to an interpreted potential northeast strike to higher-grade mineralisation.
	 Two Pigibo North sterilisation holes SDH608 and SDH617 were drilled towards the southwest (azimuth 229°) and at an angle between 60° and 71° from horizontal and one hole (SDH607) was drilled towards the west (azimuth 275°) at an angle of 60° from horizontal. The holes were considered to be drilled in an optimal orientation relative to the current interpreted geometry to mineralisation. Nine resource definition drill holes at Samat (SDH623, SDH625, SDH628, SDH630, SDH631, SDH656, SDH658, SDH660 and SDH662) were drilled vertically and one hole (SDH665) was drilled toward the southeast (azimuth 139°) at an angle of 71° from horizontal. In the Samat area broad mineralisation is not as well understood but currently interpreted to strike northeast-southwest and dip moderately to the northwest. As a result, the holes were not drilled in an optimum drill orientation, although the geometry of mineralisation is poorly constrained and the amount of exaggeration is hard to define. The drill holes infill a gap in and extend below the current grade control drilling. Two of the exploration drill holes at Pigicow-Botlu (SDH609 and SDH610) were drilled to the northeast (azimuth 045°) roughly, perpendicular to the interpreted northwest strike to mineralisation in the area at angles between 60° and 61° from horizontal. Five sterilisation drill holes at the Darum Waste Rock Dump area include three vertical holes (SDH670, SDH671 and SDH 685) one hole drilled towards the north (azimuth 001°) at an angle of 60° from horizontal. The drilling density in this area is low and as a result the detailed orientation to mineralisation is less well understood.
Diagrams	Included in the body of the report.
Balanced reporting	 Details of all holes material to Exploration Results are reported in intercept tables. This report covers seventeen new holes (SDH607-SDH610, SDH617, SDH623, SDH625, SDH628, SDH630, SDH631, SDH656, SDH658, SDH660, SDH662, SDH665, SDH667 and SDH669) from the sixty-one hole, 10,463.5 metre FY25 resource definition, exploration and sterilisation diamond drilling program. Assay results from ten Samat resource definition / exploration holes, three Pigibo North exploration / sterilisation holes, two Pigicow-Botlu exploration holes and two Pigiput-Sorowar Northeast Trend resource definition holes are
	reported in Table 1. In addition, the first five Darum Waste Rock dump drill holes (SDH666, SDH668, SDH670, SDH671 and SDH685) from a thirteen hole, 1,417.5 metre sterilisation drill program for the sulphide project are reported in intercept tables.

Criteria	Commentary
Other substantive exploration data	Included in the body of the report.
Further work	 Included in the body of the report. Assay results are pending for 3 remaining holes from the FY25 resource definition, exploration and sterilisation diamond drilling program. This includes one hole from Pigiput-Sorowar Northeast Trend (SDH672) and two from West Pigibo (SDH676 and SDH677). Assay results for 8 remaining holes from Darum Waste Rock Dump drilling (SDH679, SDH681, SDH683, SDH684, SDH686 to SDH688 and SDH690) are pending. Further diamond drilling will be designed and conducted once all the assay results have been returned from the programs described above. Currently additional drilling is underway at Samat and Pigiput-Sorowar Northeast Trend. Additional sterilisation drilling is planned at the proposed Darum Waste Rock Dump location to follow up the significant drill intercept in SDH685. Sterilisation drilling completed for the sulphide expansion proposed Middle and Darum waste rock dump locations intersected zones of gold mineralisation of potential economic significance. The results are considered encouraging; however, there has been insufficient exploration to estimate a Mineral Resource. It is uncertain if further exploration will result in the estimation of a Mineral Resource or if the mineralisation will prove to be economically mineable

Criteria	Commentary
Sampling techniques	 Sampling of trenches was done over measured intervals of 2, 3, 4 or 5 metres dependent on geology. A geo-pic was used to collect a continuous channel sample from the trench faces across the designated interval with th samples collected in calico bags. For trenches SIMTR1061 and SIMTR1062, samples (3 to 5 kg) were prepped on-site (jaw crushed, disk mi pulverised and then split) to produce a 200 g pulp sample. A 25 g charge was then extracted from the pulp for A analyses by Aqua Regia digestion followed by an Atomic Absorption Spectroscopy (AAS) instrument finish. For trenches SIMTR1063 – SIMTR1075 and TATTR289 – TATTR310, samples (3 to 5 kg) were placed in calic bags, then larger polyweave bags and palletised for dispatch to the Intertek laboratory in Lae, PNG.
Trenching	 Mechanised trenches were dug by an excavator or dozer exposing up to 5 meters of trench wall.
techniques	 Hand dug trenches are cut using shovels and picks approximately along contours exposing up to 1.5 m of trenc wall.
Drill sample recovery	 No RC or diamond drilling was undertaken and as a result no drilling is being reported. Trench sampling techniques have been described above.
Logging / Mapping	All trenches were qualitatively geologically mapped for lithology, weathering, structure and alteration.
Sub-sampling techniques and sample preparation	 For trenches SIMTR1061 and SIMTR1062, samples (3 to 5 kg) are routinely submitted for total pulverisation (85 % passing <75 µm) at the company onsite sample preparation facility on Simberi Island. This involved drying at <105 % in an electric oven, then on-site sample preparation (jaw crushed, disk mill pulverised and then split) to produce 200 g pulp sample. A 15 g charge was then extracted from the pulp for Au analyses at St Barbara's Simbe Laboratory.
	 For trenches SIMTR1063 – SIMTR1075 and TATTR289 – TATTR310, samples underwent drying at <105°C in a electric oven. Samples then pass through a 2-stage crushing process, firstly crushed to ~85% passing 10mm followed by crushing in a fine crusher to 85% passing 2mm. 2 kg of the crushed material is rotary sub split and the pulverised in a LM5 pulveriser to 90% passing 75µm (Method PB04). A 250 g pulp sample is sub split into a geocher packet for analysis in Lae and a 35g sample is sub split, packaged, and air freighted for multi element analysis t Intertek's Perth Laboratory.
Quality of assay data and laboratory tests	 For trenches SIMTR1061 and SIMTR1062, samples were analysed for gold at the Simberi Lab using Aqua Reging digestion with a 15 g charge and analysis by Atomic Absorption Spectrometry. For trenches SIMTR1063 – SIMTR1075, samples were analysed for gold via 50 g Fire Assay / AAS Finish (Methor FA50 / AA) at Intertek's Lae Laboratory. Multi-element analysis was completed via 1 g Aqua Regia Digest and OE
	 and MS finish for 9 elements Ag, As, Cu, Fe, Mo, Pb, S, Sb, Zn (Method AR1 / MS) at Intertek's Perth Laboratory. QC included the insertion of two in-house blanks at the start of each batch of trench samples, the insertion of certifie gold standards (1:20) and crush duplicates collected during sample preparation (1:20). Over the duration of the quarter St Barbara inserted OREAS standard 252b as matched to material type and grad

- Over the duration of the quarter St Barbara inserted OREAS standard 252b as matched to material type and grade approximation.
- For trenches TATTR289 to TATTR310, gold analysis was completed via 50 g Fire Assay / AAS Finish (Method FA50 / AA) at Intertek's Lae Laboratory. Multi-element analysis was completed via 1 g Aqua Regia Digest and OES and MS finish for 9 elements Ag, As, Cu, Fe, Mo, Pb, S, Sb, Zn (Method AR1 / MS) at Intertek's Perth Laboratory. In addition, ASD analysis was completed via TerraSpec 4 Hi Res scan (Method NIR) followed by TSG Post processing mineralogy report (Method NIR01).
- For trenches TATTR289 to TATTR310, QAQC included the insertion of two in-house blanks at the start of the batch, the insertion of certified gold standards (1:100) and crush duplicates collected during sample preparation (1:100). St Barbara inserted OREAS standard 252b as matched to material type and grade approximation.
- Intertek Laboratory QAQC involved the insertion of Reagent Blanks and Certified Reference Materials (1:25) and analytical pulp duplicates were assayed (1:25).
- The Fire Assay gold analysis technique is considered a complete extraction method. The Aqua Regia digestion is considered a partial digestion technique that effectively dissolves metals not tightly bound within silicate structures

Verification of sampling and assaying

Sampling data is recorded electronically which ensures only valid non-overlapping data can be recorded. Assay and
trench survey data are subsequently merged electronically. All data is stored in a SQL database on secure company
server.

Criteria	Commentary
Location of data points	 All Simberi Island and Tatau Island trenches were initially surveyed by a handheld GPS to capture the trench start point. The GPS used the Tabar Island Grid (TIG) which is based on WGS84 ellipsoid. The path of the trench from the initial start point to the end was surveyed by Tape & Compass method. Trench interval coordinates were then generated using basic trigonometry.
Data spacing and distribution	Trench data spacing is irregular and broad spaced.
Orientation of data in relation to geological structure	Where preceding surface mapping and sampling of trenches have contributed to the understanding of outcropping geological structures, trenching and sampling has been undertaken to extend the strike length of the mapped structure. However, in many of the areas the lode orientation is poorly understood.
Sample security	Only trained company personnel were allowed to collect the samples. All samples were held within a secure company building before dispatch. Trench samples from SIMTR1061 and SIMTR1062 were prepared on site at the sample preparation facility. Trench samples from SIMTR1063 to SIMTR1075 and TATTR289 to TATTR310 were prepared at the Intertek laboratory preparation facility in Lae.
Audits or reviews	No audits or reviews of sampling protocols have been completed.

Trenching: Section 2 Reporting of Exploration Results – Simberi ML136 and Tatau Island EL609

Criteria	Commentary
Mineral tenement and land tenure status	SBM has 100 % ownership of the three tenements over the Simberi Islands; ML136 on Simberi Island, EL609 which covers the remaining area of Simberi Island, as well as Tatau Island and Big Tabar Island and 4 sub-block EL2462 which covers part of Tatau and Mapua Islands.
Exploration done by other parties	 CRA, BHP, Tabar JV (Kennecott, Nord Australex and Niugini Mining), Nord Pacific, Barrick and Allied Gold have all previously worked in this area. Nord Pacific followed by Allied Gold was instrumental in the discovery and delineation of the 5 main oxide and sulphide deposits at Simberi.
Geology	• The Simberi gold deposits are low sulphidation, intrusion related adularia-sericite epithermal gold deposits. The dominant host rocks for mineralisation are andesites, volcaniclastics and lesser porphyries. Gold mineralisation is generally associated with sulphides or iron oxides occurring within a variety of fractures, such as simple fracture in-fills, single vein coatings and crackle brecciation in the more competent andesite units, along andesite/polymictic breccia contact margins as well as sulphide disseminations. On Tatau and Big Tabar Islands, located immediately south of Simberi, potential also exists for porphyry Cu-Au, epithermal quartz Au-Ag and carbonate-base metal Au mineralisation.
Trench Information	Included in the report text and annotated on diagrams.
Relationship between mineralisation	 For Simberi trenches, broad trench intercepts are reported as length weighted averages using a cut-off of 0.6 g/t Au and a minimum grade*length of 2.5 gmpt. Such intercepts may include material below cut-off but no more than 5 sequential meters of such material and except where the average drops below the cut-off. For Simberi trenches, using the same criteria for included sub-grade, supplementary cut-offs, of 1.0 g/t Au, 2.5 g/t Au, 5.0 g/t Au and 10 g/t Au, may be used to highlight higher grade zones and spikes within the broader aggregated interval. Single assays intervals are reported only where ≥1.0 g/t and ≥5 m trench length is intercepted. Grades are reported to 1 decimal figure & no high-grade cut is applied. For Tatau trenches, broad trench intercepts are reported as length weighted averages using a cut-off of 500 ppb Au and a minimum grade*length of 2.5 gmpt. Such intercepts may include material below cut-off but no more than 5 sequential meters of such material and except where the average drops below the cut-off. For Tatau trenches, using the same criteria for included sub-grade, supplementary cut-offs, of 1,000 ppb Au, 2,500 ppb Au and 10,000 ppb Au, may be used to highlight higher grade zones and spikes within the broader aggregated interval. Single assays intervals are reported only where ≥1,000 ppb Au and ≥5 m trench length is intercepted. Grades are reported to one decimal figure for g/t results, zero decimals for ppb results and no metal equivalent values are used for reporting exploration results. Trench intercepts are sampled along the length of the trench and are reported for all trenches; true width is not reported.
widths and intercept lengths Diagrams	Included in the body of the report. All trenches except for TATTR289 and TATTR290 plot within the figure
Dalamand namenting or	boundaries.
Balanced reporting	Figures when included show all sample sites material and immaterial to Exploration Results.
Other substantive exploration data	Included in the body of the report.
Further work	 Included in the body of the report. Sterilisation trenching completed for the sulphide expansion proposed waste rock dump locations intersected zones of gold mineralisation of potential economic significance. The results are considered encouraging; however, there has been insufficient exploration to estimate a Mineral Resource. It is uncertain if further exploration will result in the estimation of a Mineral Resource or if the mineralisation will prove to be economically mineable.

JORC Table 1 Checklist of Assessment and Reporting Criteria Reverse Circulation Drilling: Section 1 Sampling Techniques and Data – Tatau Island EL609

Criteria	Commentary
Sampling techniques	 One metre Reverse Circulation samples were collected from a rig-mounted cyclone via large green plastic bags and a split in a calico bag. Large plastics were then placed on the ground in neat rows of twenty. One metre Reverse Circulation samples (3 to 5 kg) in calico bags were placed in large polywoven bags, palletised and then barged to the Intertek Laboratory in Lae (PNG) for sample preparation. A 250 g pulp sample is sub split into a geochem packet for analysis in Lae and a 35g sample is sub split, packaged, and air freighted for multi
Drilling techniques	 element analysis to Intertek's Perth Laboratory. Coarse and pulp residues are returned to Simberi for storage. Reverse Circulation drilling was carried out using a 104mm (4 & 1/10 inch) drop centre drill bit and 3 m long 76 mm (3 inch) diameter drill rods. All holes were drilled to 60 m which was generally well into fresh rock. Drilling was carried out by Quest Exploration Drilling (QED) and utilised a track mounted UDR-KL 150 with onboard compressor 250 PSI x 600 CFM.
Drill sample recovery	 Reverse Circulation drilling sample recoveries were not recorded. The Reverse Circulation drill cyclone was cleaned regularly, in particular after wet ground was encountered. The cyclone was also cleaned several times during the course of each hole, and after the completion of each hole.
Logging	 Reverse Circulation holes are qualitatively geologically logged for lithology, weathering and alteration and qualitatively and quantitatively logged for veining and sulphide mineralogy. Representative drill chips are stored in plastic core trays and photographed for future reference. All holes are logged in their entirety and data recorded in templated excel workbook prior to being uploaded to the company's secure SQL database.
Sub-sampling techniques and sample preparation	 Reverse Circulation samples were collected as both dry and wet samples. Reverse Circulation samples between 3 to 5 kg were collected at 1 m intervals All drill samples were prepared at the at the Intertek laboratory in Lae, PNG. The Reverse Circulation drill chip core underwent drying at <105°C in an electric oven. Samples then pass through a 2-stage crushing process, firstly crushed to ~85% passing 10mm, followed by crushing in a fine crusher to 85% passing 2mm. 2 kg of the crushed material is rotary sub split and then pulverised in a LM5 pulveriser to 90% passing
	 75µm (Method PB04). For internal reference, St Barbara inserted two in house blanks at the start of the batch and then inserted OREAS standard certified reference material (1:20). A 250 g pulp sample is sub split into a geochem packet for analysis in Lae and a 35g sample is sub split, packaged, and air freighted for multi element analysis to Intertek's Perth Laboratory. Coarse and pulp residues are returned to Simberi for storage for re-assay if required.
Quality of assay data and laboratory tests	 Assays are received for pulps analysed for Au via 50 g Fire Assay / AAS Finish (Method FA50 / AA) at Intertek's Lae Laboratory. Multi-element analysis was completed via 1 g Aqua Regia Digest and OES and MS finish for 9 elements Ag, As, Cu, Fe, Mo, Pb, S, Sb, Zn (Method AR1 / MA) at Intertek's Perth Laboratory. St Barbara QAQC included the insertion of two in house blanks at the start of the batch and the insertion of OREAS standard certified reference material (1:20). St Barbara inserted OREAS standards (252b and 254b) as matched to material type and grade approximation. Intertek Laboratory QAQC involved the insertion of Reagent Blanks and Certified Reference Materials (1:25) and analytical pulp duplicates were assayed (1:25). The Fire Assay gold analysis technique is considered a complete extraction method. The Aqua Regia digestion is considered a partial digestion technique that effectively dissolves metals not tightly bound within silicate structures.
Verification of sampling and assaying	 Sampling data is recorded electronically which ensures only valid non-overlapping data can be recorded. Assay and downhole survey data are subsequently merged electronically. All drill data is stored in a SQL database on secure company server.
Location of data points	 No adjustments to assay data have been made. Prior to drilling, all holes were marked out using a handheld GPS with ±2 m accuracy for easting, northings and ±10m elevation. Upon completion of the program all holes were resurveyed using the same handheld GPS to determine the final collar positions. All drill collars were surveyed in Tabar Island Grid (TIG) which is based on WGS84 ellipsoid and is GPS compatible. Measurements of final azimuth and dip of the hole at surface was recorded by measuring rig alignment and mast / drill rod orientation respectively by the supervising geologist using a Suunto optical compass and clinometre. No downhole surveys were conducted on the Reverse Circulation drill holes.
Data spacing and distribution	 Reconnaissance Reverse Circulation drilling was completed on an irregular distribution over a 1,050 m by 550 m area at the Mt Siro – Seraror target. The drilling tested previous historical anomalous gold in soil samples, rock chip samples, trenching and previous drilling as well as mineralisation exposed in newly cleared excavator access tracks. Sampling is typically based on one-metre intervals with no compositing applied.
Orientation of data in relation to geological structure	 Reconnaissance Reverse Circulation drilling was mainly drilled towards the northeast or southwest testing for northwest striking mineralisation or towards the northwest testing for northeast striking mineralisation. Where preceding surface mapping and sampling of trenches have contributed to the understanding of outcropping geological structures, drilling has been undertaken to optimally test the mapped structure. However, due to limited outcrop, generally restricted to trenches and locally within creeks, in many of the areas the lode orientation is poorly understood.
Sample security	 Only company personnel or approved contractors are allowed on drill sites. Reverse Circulation drill samples are only removed from drill site to secure core logging/processing facility within the gated exploration core yard. Reverse Circulation samples are promptly logged and packaged on site. The samples sent to Intertek Lae are stored in locked and guarded storage facilities until receipted at the Laboratory.
Audits or reviews	 No audits or reviews of sampling protocols have been completed.

Reverse Circulation Drilling: Section 2 Reporting of Exploration Results – Tatau Island EL609

Criteria	Commentary
Mineral tenement and land tenure status	SBM has 100 % ownership of the three tenements over the Simberi Islands; ML136 on Simberi Island, EL609 which covers the remaining area of Simberi Island, as well as Tatau Island and Big Tabar Island and 4 sub-block EL2462 which covers part of Tatau and Mapua Islands.
Exploration done by other parties	 CRA, BHP, Tabar JV (Kennecott, Nord Australex and Niugini Mining), Nord Pacific, Barrick and Allied Gold have all previously worked in this area. Nord Pacific followed by Allied Gold was instrumental in the discovery and delineation of the 5 main oxide and sulphide deposits at Simberi. St Barbara has undertaken exploration on the tenements since acquisition from Allied Gold in September 2012. St Barbara (through its wholly owned PNG subsidiary Nord Australex Nominees (PNG) Ltd) had an Option and Farm-In Agreement with Newcrest PNG Exploration Limited (a wholly owned subsidiary of Newcrest Mining Limited) between 2016 and 2019. During this time, exploration was conducted for Cu-Au porphyry deposits on tenements EL609 and EL2462 covering Tatau and Big Tabar Islands.
Geology	 The Tabar group of islands is located in the New Ireland Province, Papua New Guinea. The Tabar-Feni Island chain comprises a series of Pliocene to Recent volcanoes that occupy a fore-arc position in the New Ireland Basin, part of the Bismarck archipelago. Volcanism in the area began about 3.7 Ma ago, coeval with the initiation of back-arc spreading in the Manus basin. Volcanism in the Bismarck archipelago is dominantly calc-alkaline to high K calcalkaline generated as a result of stalled subduction and partial melting of the Pacific plate beneath the Indo-Australian plate along the Manus-Kilinailau trench. The Simberi gold deposits are low sulphidation, intrusion related adularia-sericite epithermal gold deposits. The dominant host rocks for mineralisation are andesites, volcaniclastics and lesser porphyries. Gold mineralisation is generally associated with sulphides or iron oxides occurring within a variety of fractures, such as simple fracture infills, single vein coatings and crackle brecciation in the more competent andesite units, along andesite/polymictic breccia contact margins as well as sulphide disseminations. Several holes in the area between Sorowar and Pigiput intersected zones of between 20 m and 100 m of semi continuous carbonate ± quartz base metal / Au veining, similar in style to mineralisation occurring on Tatau and Big Tabar islands to the south, which are also prospective for Porphyry Cu/Au deposits.
Drill hole Information	Drill hole information is included in intercept table outlining collar position obtained by GPS pickup, hole dip and azimuth at surface acquired by the supervising geologist using a Suunto optical compass and clinometre as discussed in Section 1, composited mineralised intercepts lengths and depth as well as hole depth.
Data aggregation methods	 All results have been reported. No top-cutting has been applied. No assumptions on metal equivalents have been made. Intercepts from the Intertek (Lae / Perth) laboratories for gold only epithermal mineralisation at Tatau RC drilling, comprise broad down hole intercepts reported as length weighted averages using a cut-off of 500 ppb Au, minimum width of 2 m, and a minimum grade*length of 2.5 gmpt (gram metre per tonne). Such intercepts may include material below cut-off but no more than 5 sequential metres of such material and except where the average drops below the cut-off. Supplementary cut-offs, of 1,000 ppb, 2,500 ppb, 5,000 ppb and 10,000 ppb Au may be used to highlight higher grade zones and spikes within the broader aggregated interval. Single assays intervals are reported only where ≥2,500 ppb Au and ≥1 m down hole. Core loss is assigned the same grade as the sample grade; no high-grade cut is applied; grades are reported to one decimal figure for g/t results and zero decimals for ppb results.
Relationship between mineralisation widths and intercept lengths	 Down hole length was reported for all holes. Mineralisation at Mt Siro-Seraror target displays high variability in orientation and complex geometries because of the interplay of veining, brecciation intensity, host lithology and oxidation fronts. Eleven Reconnaissance Reverse Circulation drill holes were drilled towards the northeast or southwest testing for northwest striking mineralisation. Five Reconnaissance Reverse Circulation drill holes were drilled towards the northwest testing for northeast striking mineralisation. A single Reconnaissance Reverse Circulation drill hole was drilled towards the south testing for east - west striking mineralisation.
Diagrams	Included in the body of the report. All Reverse Circulation drill holes except for TTRC021 and TTRC022 plot within the figure boundaries.
Balanced reporting	 Details of all holes material to Exploration Results are reported in intercept tables. This report covers seventeen Reverse Circulation holes (TTRC007 to TTRC023) from a drilling program completed at Mt Siro – Seraror target at Southwest Tatau Island. Assay results are reported in Table 1.
Other substantive exploration data	Included in the body of the report.
Further work	 Included in the body of the report. Further hand auger soil sampling, trenching and Reverse Circulation drilling will be conducted once all the assay results have been returned from the program described above.