

Boa Vista Gold Project¹ – Excellent First Assays Confirm Strong, Broad Gold Mineralisation

Australian Mines Limited (ASX: AUZ) ("Australian Mines" or "the Company") is pleased to report assay results for the first three (3) diamond drill holes from its 11-hole 2025 drilling campaign at the Boa Vista Gold Project in Brazil.

The results confirm broad, continuous gold mineralisation within the interpreted mineralised envelope and support the Company's objective of defining the geometry and continuity of the mineralised system.

Highlights

- **VGADD0002** returned **160.8 gram-metres²**, the second-highest gram-metre result reported at Boa Vista to date.
- **VGADD0002: 120m @ 1.34 g/t Au from 117m**, including **16m @ 3.53 g/t Au from 117m**
- **VGADD0001: 54m @ 1.15 g/t Au from 141m** and **4m @ 4.28 g/t Au from 106m** within a broader zone of **144m @ 0.62 g/t Au from 106m**.
- **VGADD0003: 82.93m @ 0.96 g/t Au from 74m**, including **27.93m @ 1.76 g/t Au from 129m** and **2m @ 6.11 g/t Au from 74m**

AUZ's CEO, Andrew Nesbitt, commented: "We're very pleased with the first assay results, which confirm broad zones of gold mineralisation with higher-grade internal intervals. The standout result is VGADD0002, returning 120 metres at 1.34 g/t gold, including 16 metres at 3.53 g/t — an excellent intercept and the second-best result reported at Boa Vista to date. With nine holes still pending, we look forward to updating shareholders as additional assays are received, and to using the full dataset to assess continuity and prioritise the next phase of drilling."

Drilling Program Status

Assays have been received for 3 of 11 holes drilled. The remaining 8 holes are pending and will be released as results become available. Reported intercepts are downhole lengths; true widths are not yet known.

¹The Boa Vista Gold Project is subject to an Earn-in Option Agreement as per ASX Announcement, 4 July 2025

² Gram-metres (g·m) are calculated by multiplying the gold grade (grams per tonne, g/t Au) by the down-hole intercept width (metres). Gram-metres provide a simple measure of the intensity of gold mineralisation within a drill intercept and are used as a comparative exploration metric only; they do not represent true width or economic viability.

CONTINUED

The first results from the 2025 drilling program demonstrate that **gold mineralisation is present over broad downhole intervals** and includes **higher-grade internal zones**, consistent with the Company's exploration model for Boa Vista.

The intercepts reported from **VGADD0001-0003** occur within the interpreted mineralised envelope and reinforce the potential for a **continuous mineralised system** along strike and down dip. VGADD0002 returned **160.8 gram-metres**, the second-highest gram-metre result reported at Boa Vista to date, comparable to **VGD-011-12** (a historical intercept of **166.2 gram-metres**).

The Company will incorporate these results into its ongoing geological interpretation and targeting, alongside remaining assays pending from the program.

Table 1: Composite Assays (*Intervals are downhole lengths (not true widths). Au assays uncapped.*)

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Notes
VGADD0001	106	250	144	0.62	broad mineralised zone
	106	110	4	4.28	included interval
	141	195	54	1.15	included interval
	248	250	2	0.78	included interval
VGADD0002	117	237	120	1.34	broad mineralised zone
	117	133	16	3.53	included interval
	164	237	73	1.38	included interval
VGADD0003	74	156.93	82.93	0.96	broad mineralised zone
	74	76	2	6.11	included interval
	103	122	19	0.61	included interval
	129	156.93	27.93	1.76	included interval

Table 2: Collar positions, Datum - SIRGAS2000, UTM Zone - 21S

	Collar Position			Azimuth (°)	Dip (°)	Length (m)
	Eastng (mE)	Northing (mN)	RL (m)			
VGADD0001	531988	9129465	263	320	-65	253.49
VGADD0002	531987	9129464	263	15	-75	259.67
VGADD0003	532058	9129455	260	20	-55	156.93

The Company's **2025 diamond drilling program comprises 11 holes** designed to test mineralisation continuity and extensions within the interpreted mineralised envelope.

The Company expects to release further results progressively as assays are returned from the laboratory.

Next Steps

Following receipt of remaining assays, the Company intends to:

- complete integrated interpretation of all 2025 drilling results
- update mineralisation wireframes and targeting model
- assess follow-up drilling priorities to test strike and down-dip continuity
- refine the exploration strategy for resource definition potential

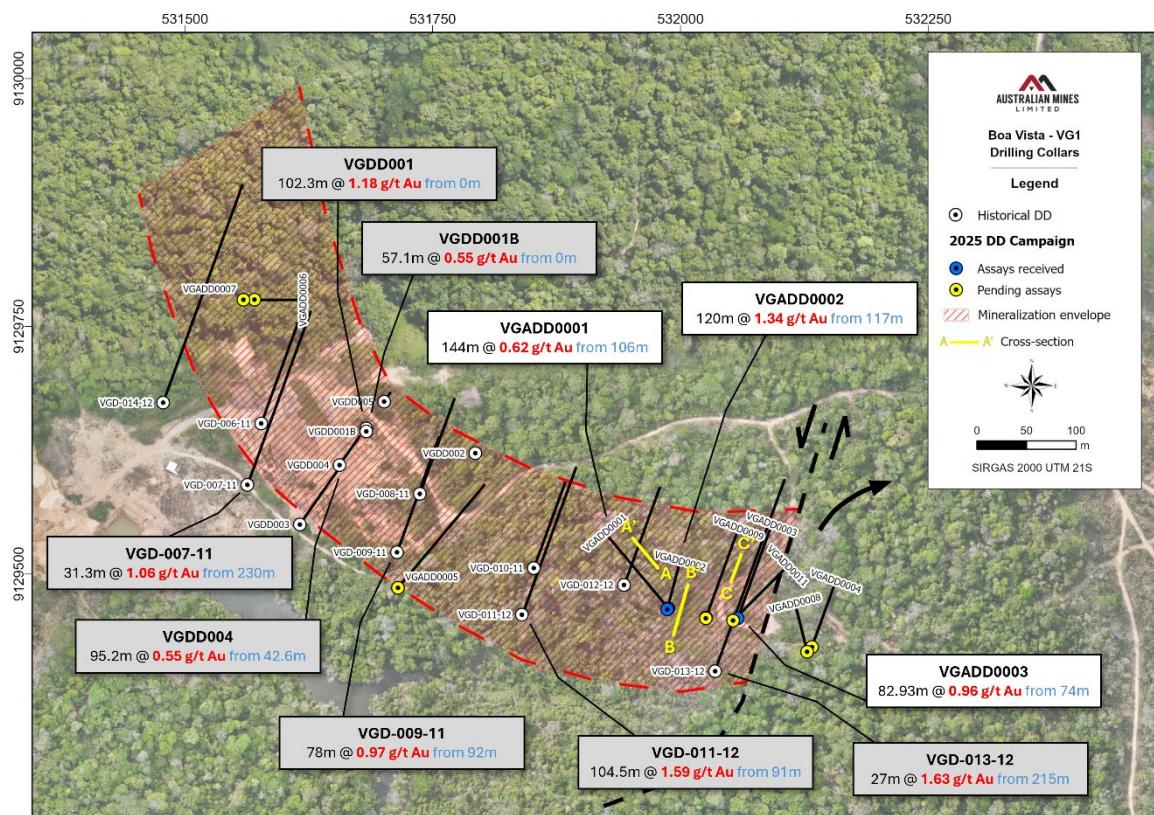


Figure 1: Plan view showing drilling collars and mineralisation envelope

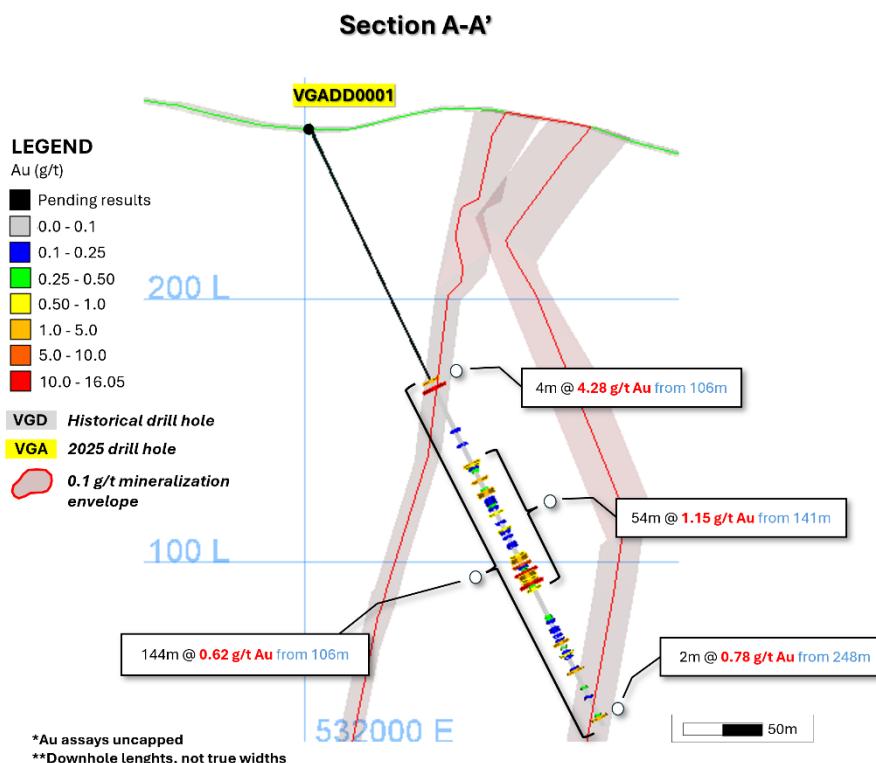


Figure 2: Cross-section A-A' showing VGADD0001 drill trace, 1m assay and composite assay results

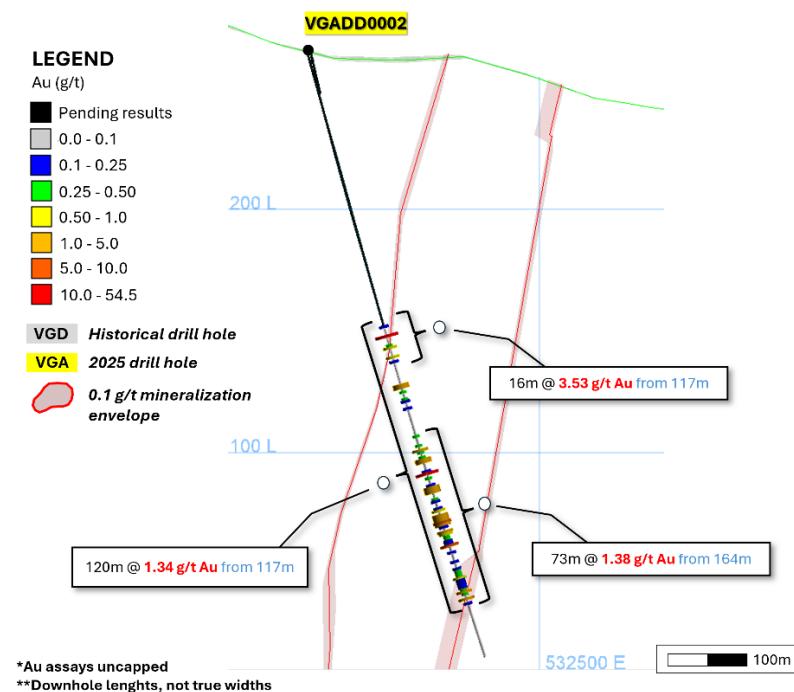

Section B-B'

Figure 3: Cross-section B-B' showing VGADD0002 drill trace, 1m assay and composite assay results

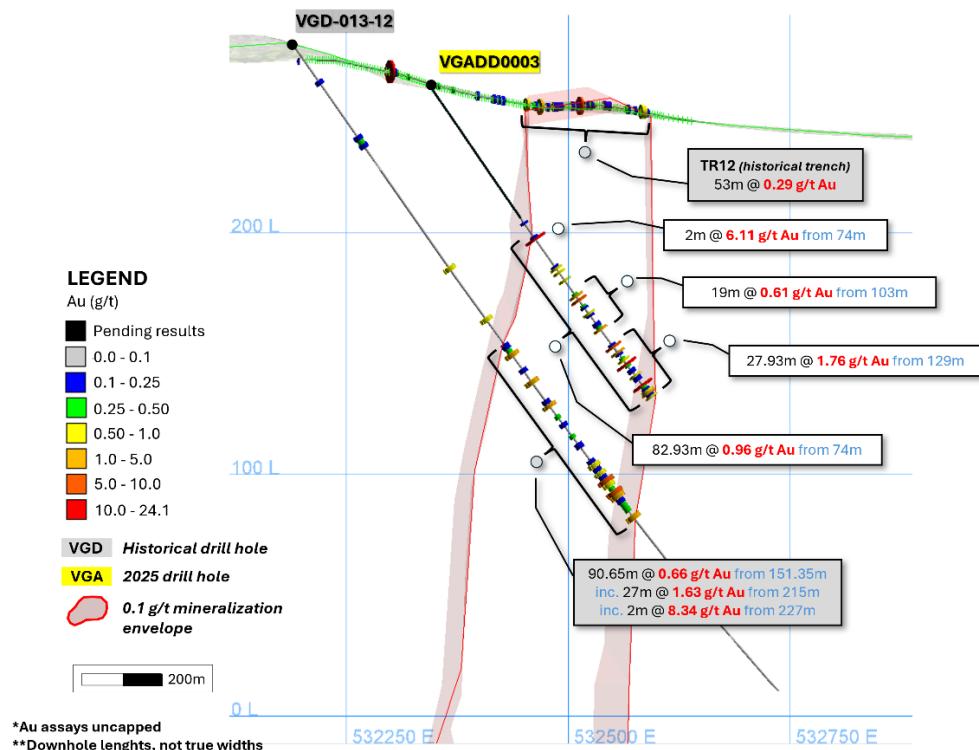

Section C-C'

Figure 4: Cross-section C-C' showing VGADD0003 drill trace, 1m assay and composite assay results

Previous Exploration:

At Boa Vista, the VG1 prospect hosts a **historic inferred resource** of **8.47 Mt @ 1.23 g/t Au for ~336,000 oz³** (NI 43-101 standard) and lies within a gold-in-soil anomaly trending to the west-northwest over 2 kilometres in length and up to 350 metres in width. The VG1 prospect remains **open along strike (~600 m)** and at **depth (~120 m tested)**, with widths up to **85 m**. Historical drilling has returned multiple high-grade intercepts well above a 20 gram-metre threshold, including:

- **104.5m @ 1.59 g/t Au** (incl. 23.5m @ 4.51 g/t Au) – 166 gram-metres
- **102.3m @ 1.18 g/t Au** (incl. 6.4m @ 6.96 g/t Au) – 121 gram-metres
- **78.0m @ 0.97 g/t Au** (incl. 20.0m @ 2.36 g/t Au) – 76 gram-metres

Subject to further exploration and appropriate studies, Boa Vista may have the potential to support a low-cost, long-life open-pit gold operation. Gram-metre drilling results provide a useful comparative indication of mineralisation strength across drill intercepts at Boa Vista. In gold exploration, intercepts above 20 gram-metres, a threshold commonly used in gold exploration, is an indicator of prospective mineralisation intensity. Values exceeding 100 gram-metres are generally considered strong indicators of robust mineralisation. At VG1, Boa Vista's most advanced prospect, only 15 holes have been drilled to date, yet multiple intercepts exceed the 20-gram metre threshold, with a peak value over 160 gram-metres and numerous intersections reporting visible gold⁴ (see Table 3).

Table 3: Significant Drill Results greater than 20-gram metres

Hole	Vertical depth to top of intersection (m)	From	Interval along drill hole (m)	Au (g/t)	Gram (Au) x metres
VGDD001	0.0	0.0	102.3	1.18	120.7
	<i>Including</i>		72.0	1.53	110.2
			6.4	6.96	44.5
			7.8	4.34	33.9
VGDD001B	0.0	0.0	57.1	0.55	31.4
VGDD004	37	42.6	95.2	0.55	52.4
<i>Including</i>		5.4		3.69	20.0
VGD-007-11	175	230.0	31.3	1.06	33.2
<i>Including</i>		13.5		1.53	20.7
VGD-009-11	75	92.0	78.0	0.97	75.7
<i>Including</i>		20		2.36	47.2
VGD-011-12	74	91.0	104.5	1.59	166.2
<i>Including</i>		23.5		4.51	106.0
VGD-013-12	176	215.0	27.0	1.63	44.0

³ Refer to BOA VISTA GOLD PROJECT (HISTORICAL RESOURCE CAUTIONARY STATEMENTS) on page 10 of this announcement.

⁴ ASX Announcement 27 October 2025

CONTINUED

COMPETENT PERSONS STATEMENT

The information in this announcement that relates to exploration activities is based on, and fairly represents, information compiled by **Jonathan Victor Hill**, who is an advisor to Australian Mines Limited. Mr Hill is a Fellow of the Australasian Institute of Mining and Metallurgy and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the *Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves* (JORC Code). Mr Hill consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

For more information, please contact:

Andrew Nesbitt

Chief Executive Officer

Australian Mines Limited

+61 8 9481 5811

investorrelations@australianmines.com.au

Authorised for release by the Board of Directors of Australian Mines Limited

Australian Mines Limited supports the vision of a world where the mining industry respects the human rights and aspirations of affected communities, provides safe, healthy, and supportive workplaces, minimises harm to the environment, and leaves positive legacies.

CONTINUED

Appendix 1: JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i><i>Aspects of the determination of mineralization that are Material to the Public Report.</i><i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i>	<ul style="list-style-type: none">Nature and quality of sampling: Diamond drill core was sampled for gold assay over selected intervals determined by geological logging and interpretation of mineralised zones.Sample intervals: Sampling intervals and boundaries were determined according to geological contacts and/or mineralisation characteristics.Sample representation: Core samples are considered representative of the sampled intervals.Sample compositing: Reporting includes both broad mineralised intervals and internal higher-grade sub-intervals (included intervals). No grade capping has been applied ("uncapped assays").Commentary: Assay results reported in this announcement are for 3 of 12 drill holes completed in the 2025 drilling campaign.
Drilling techniques	<ul style="list-style-type: none"><i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i>	<ul style="list-style-type: none">Drill type: Diamond drilling (DD).Core size: NQ / HQDrilling contractor: LAYNE do Brasil Sondagens S/A, Rua General Bruce 364, São Cristóvão, Rio de Janeiro RJ, Brasil Cep: 20930 – 380Drill method suitability: Diamond drilling is considered appropriate for geological and structural logging and collection of high-quality samples for assay.
Drill sample recovery	<ul style="list-style-type: none"><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i>	<ul style="list-style-type: none">Core recovery: Core recovery was monitored and recorded by Australian Mines' geologists during drilling and logging. 98.41% total recovery, with minor losses in the initial saprolite intervals of the drill holes and those distant from the mineralized zones.Recovery assessment: Recovery is considered acceptable for the purposes of reporting Exploration Results.Bias: No material sample bias due to recovery issues has been identified at the time of reporting.
Logging	<ul style="list-style-type: none"><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i><i>Whether logging is qualitative or quantitative in nature. Core (or costean,</i>	<ul style="list-style-type: none">Logging completeness: Drill core was geologically logged for lithology, alteration, mineralisation, veining, and structural features to a standard appropriate for Exploration Results reporting.Logging method: Logging was completed on-

CONTINUED

Criteria	JORC Code explanation	Commentary																																								
	<p>channel, etc) photography.</p> <ul style="list-style-type: none"> The total length and percentage of the relevant intersections logged. 	<p>site by qualified personnel and recorded into a digital database.</p> <ul style="list-style-type: none"> Photography: Core trays were photographed prior to sampling where applicable. Geotechnical logging: Preliminary geotechnical logging has been initiated. 																																								
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the <i>in situ</i> material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> Core cutting: Core was cut using a diamond saw. Sampling method: half-core was sampled throughout the core and submitted for analysis; the remaining core was retained for reference. Sample preparation: Samples were prepared at ALS Laboratory – Cuiaba, Mata Grosso state using industry standard crushing and pulverising protocols. Field duplicates: field duplicates not applicable. Quality of preparation: Sample preparation is considered appropriate for gold analysis. 																																								
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	<ul style="list-style-type: none"> Assay method: High-quality samples with results above 10 ppm Au (the upper detection limit of the ALS laboratory method Au-AA24) were reanalyzed using Au-AA26, which has an upper limit of 100 ppm Au and is suitable for band-overlap determinations. For samples with grades exceeding 100 ppm Au, gravimetric determination (Au-GRA22) was required, offering an upper limit of 10,000 ppm Au. Detection limits: <table border="1" data-bbox="901 1291 1405 1493"> <thead> <tr> <th></th> <th colspan="3">ALS CODES</th> </tr> <tr> <th></th> <th>Au-AA24</th> <th>Au-AA26</th> <th>Au-GRA22</th> </tr> </thead> <tbody> <tr> <td>Analyte</td> <td>Au</td> <td>Au</td> <td>Au</td> </tr> <tr> <td>Unit</td> <td>ppm</td> <td>ppm</td> <td>ppm</td> </tr> <tr> <td>Lower limit</td> <td>0.005</td> <td>0.01</td> <td>0.05</td> </tr> <tr> <td>Upper limit</td> <td>10</td> <td>100</td> <td>10,000</td> </tr> <tr> <td>Extraction</td> <td>Au by Fire Assay</td> <td>Au by Fire Assay</td> <td>Au by Fire Assay</td> </tr> <tr> <td>Analysis</td> <td>AAS</td> <td>AAS.</td> <td>Gravimetric determination</td> </tr> <tr> <td>Weight (g)</td> <td>50g</td> <td>50g</td> <td>50g</td> </tr> <tr> <td></td> <td colspan="3">AAS = Atomic Absorption Spectrophotometer</td></tr> </tbody> </table> QA/QC: A QA/QC program including Certified Reference Materials (standards), blanks, and duplicates was implemented at an industry-standard frequency 1:10. (10%) 4% of blank samples and 6% of CRM (certified reference material) from Rock Labs were inserted, distributed across three grade ranges: OxG70 (1.007 ppm Au), SJ39 (2.641 ppm Au), and SN26 (8.543 ppm Au). Performance: Quality control results are being reviewed and will be released in subsequent updates, if necessary. 		ALS CODES				Au-AA24	Au-AA26	Au-GRA22	Analyte	Au	Au	Au	Unit	ppm	ppm	ppm	Lower limit	0.005	0.01	0.05	Upper limit	10	100	10,000	Extraction	Au by Fire Assay	Au by Fire Assay	Au by Fire Assay	Analysis	AAS	AAS.	Gravimetric determination	Weight (g)	50g	50g	50g		AAS = Atomic Absorption Spectrophotometer		
	ALS CODES																																									
	Au-AA24	Au-AA26	Au-GRA22																																							
Analyte	Au	Au	Au																																							
Unit	ppm	ppm	ppm																																							
Lower limit	0.005	0.01	0.05																																							
Upper limit	10	100	10,000																																							
Extraction	Au by Fire Assay	Au by Fire Assay	Au by Fire Assay																																							
Analysis	AAS	AAS.	Gravimetric determination																																							
Weight (g)	50g	50g	50g																																							
	AAS = Atomic Absorption Spectrophotometer																																									
Verification of sampling and assaying	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data 	<ul style="list-style-type: none"> Data verification: Sampling intervals were verified against core logs and sample submission records. Independent review: No independent review has been performed at this stage. 																																								

CONTINUED

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none">storage (physical and electronic) protocols.Discuss any adjustment to assay data.	<ul style="list-style-type: none">Twinned holes: No twinned holes have been drilled in the program to dateAudit: No internal or external audit has been completed to date.
Location of data points	<ul style="list-style-type: none">Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.Specification of the grid system used.Quality and adequacy of topographic control.	<ul style="list-style-type: none">Collar survey: RTK OPERATOR: RONALDO DE SOUZA SANTOS. Brazilian, Technician in Land Surveying. TOP GEO SURVEYS - Providing services in surveying and geoprocessing. Field surveying: Between December 8th and 11th, 2025Coordinate system: SIRGAS 2000 / UTM Zone 21S (as per project maps).Topographic control: AVANT uses high-quality equipment, with a system currently composed of a DJI Matrice 350 RTK drone with a DJI Zenmuse L2 camera, a LiDAR sensor with an auxiliary RGB camera (Figure 2-1) that communicates with the DJI RTK systems, ensuring high precision and positioning of the camera coordinates, enabling complete processing without the need for ground control points over the area, which are used to verify planimetric and altimetric positional accuracy. <p>The project area surveyed is approximately 2,700 hectares and was investigated using magnetometry with drones. The photogrammetry project generated orthophotos with 10 cm and 20 cm resolution and a DSM – Digital Surface Model, products used for flight planning.</p> <p>In addition, an airborne LiDAR survey was carried out, from which the Digital Terrain Model (DTM) and contour lines were generated, with high point density and planimetric accuracy compatible with the project requirements.</p> <p>The magnetometry project was carried out with production lines oriented in the North-South direction and tie lines oriented in the East-West direction. 437.57 linear km were executed with production lines spaced 50 meters apart and control lines spaced 500 meters apart, with an average sensor height of 35 meters from the ground.</p> <ul style="list-style-type: none">Downhole surveys: Downhole orientation surveys were collected using DeviGyro RG40 STANDARD – GYROSCOPIC, Rental from IMDEX, 3 X 3 meter spacing
Data spacing and distribution	<ul style="list-style-type: none">Data spacing for reporting of Exploration Results.Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.Whether sample compositing has been	<ul style="list-style-type: none">Drill spacing: The 2025 program was designed to test continuity of mineralisation within the interpreted mineralised envelope and along strike/down dip of the system.Spacing suitability: Data spacing is considered appropriate for reporting Exploration Results and for guiding follow-up exploration.

CONTINUED

Criteria	JORC Code explanation	Commentary
	<i>applied.</i>	<ul style="list-style-type: none"> Resource estimation: Resource estimation: Current spacing and coverage are not considered to be fully sufficient to support Mineral Resource estimation at this stage.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> Drill orientation: Holes were oriented to intersect the interpreted mineralised zone as close to perpendicular as practicable based on access and geometry constraints. Potential bias: Some orientation bias may occur where drilling is sub-parallel to structural trends; this is managed through multi-hole targeting and section interpretation. True widths: Reported intercepts are downhole lengths. True widths are not yet known due to uncertainty in local geometry and drill orientation relative to mineralisation.
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Chain of custody: Samples were bagged, sealed, and transported from site to the laboratory using secure procedures. Security protocols: Sample dispatch was documented with submission forms and tracking. Storage: Remaining core and rejects are stored in a secure facility at the core storage facility at the Boa Vista Camp.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> Review status: Routine internal review of sampling protocols and QAQC results is undertaken. Further work: Ongoing QA/QC review will continue as additional assay batches are received.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<pre> graph TD A[Cabral Resources Limited (British Virgin Islands)] -- 84.06% --> B[Boa Vista Gold Inc. (British Virgin Islands)] C[Mineração Regent Brasil Ltda., (Brazil)] -- 0.01% --> B D[Majestic D&M Holdings, LLC] -- 15.94% --> B B -- 99.99% --> E[Golden Tapajós Mineração Ltda. (Brazil)] E --> F([Boa Vista Gold Project]) </pre> <ul style="list-style-type: none"> The Boa Vista Gold project consists of 3 exploration licenses (ANM Processes n. 850353/2010, 850643/2006 and 850759/2006), All tenements listed above have approved PAE's (plano de aproveitamento econômico- or Economic Utilization Plan) and are under the mining licenses application process. All tenements in Brazil are subject to Statutory

CONTINUED

Criteria	JORC Code explanation	Commentary
		<p>Government royalties (known as CFEM) which are variable; currently 1.5% for gold, 1% for Silver and 2% for copper. Land-owner royalties are payable to the landowner at 50% of the CFEM payable rate.</p> <ul style="list-style-type: none">• In addition to payable legislative royalties, the Boa Vista Gold Project is subject to a 1.5% NSR payable to D'Gold and should AUZ earn a 51% interest in the Boa Vista Gold Project, an additional 1.5% NSR is expected to be payable to Majestic D&M Holdings.• The agreements between AUZ, Cabral Resources Limited and Majestic D&M Holdings LLC, allows AUZ to earn up to an 80% interest in the Boa Vista Gold Project. Please refer to ASX Announcement 4 July 2025 <p>There are Artisanal Mining Permit (PLG) applications within the Project area; however, these PLGs do not overlap with zones considered material to the development of the historical resource or with the key exploration targets identified for further advancement. PLGs permit small-scale mining of surficial, unconsolidated materials—such as alluvial and colluvial deposits—within the defined boundaries of each permit.</p> <ul style="list-style-type: none">• AUZ believes the tenements are in good standing and no known impediments exist for further exploration or eventual mining, apart from normal statutory reporting, local access agreements and state and federal approvals.
Exploration done by other parties	<ul style="list-style-type: none">• Acknowledgment and appraisal of exploration by other parties.	<ul style="list-style-type: none">• Previous exploration is of an acceptable industry standard for the stage of Boa Vista Gold Project development.• Geophysical and drilling datasets represent good base data.• Soil geochemistry has provided broad vectors for further work
Geology	<ul style="list-style-type: none">• Deposit type, geological setting and style of mineralisation.	<ul style="list-style-type: none">• The Boa Vista Gold Project is located in the Tapajos Mineral Province in a large Archean to Proterozoic shield that extends from western Bolivia through Brazil into Guyana and Venezuela. The Tapajos Mineral province is one of 6 terranes which comprise the Brazilian Precambrian shield. The basement rocks of the Tapajos are a series of granites, gneisses and amphibolites of the Cuiú Cuiú complex (2.0 -2.4 Ga) and volcano-sedimentary rock of the Jacareacanga Metamorphic Suite (>2.1 Ga). The monzodiorite of the Parauari intrusive complex intruded these basement rocks around 1.89 to 2.0 Ga.• Orogenic, shear-zone-hosted gold. Host rocks: porphyritic granodiorite (coarse), fine felsic volcanics/volcaniclastics, mafic diorite (intercalated with granodiorite), mafic dykes, tonalitic aplite. Ore-zone alteration: pyrite + silica + sericite + hematite; waste: propylitic chlorite + epidote, local K-feldspar overprint.

CONTINUED

Criteria	JORC Code explanation	Commentary
		Discrete oblique en-echelon tension-shear zones cross-cut the main mineralised shear and locally focus higher grades, commonly at flexures/jogs and along the granodiorite-felsic volcanic contact.
Drill hole information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> A summary of drill hole intercepts is provided in the main body of this announcement. Full collar coordinates, azimuth, dip, hole depth, and survey details for all drill holes will be reported in supporting appendices and maintained in the Company's database.
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> Reporting basis: Reported intervals are length-weighted downhole averages above a nominal 0.1 g/t Au cut-off or constrained by geological boundaries. Intervals may include up to 5 m of internal waste (dilution) grading <0.1 g/t Au. True widths are unknown at this stage. Top-cuts: No top-cut has been applied; "Au assays uncapped" as noted on figures. Metal equivalents: Not applicable. Minimum interval length: "no minimum interval applied".
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> Mineralisation is interpreted to have variable geometry; therefore, intercept lengths reported are downhole and should not be interpreted as true widths. True widths will be estimated once sufficient drilling and modelling constrain the orientation of mineralisation relative to drilling.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Appropriate plan and cross-section diagrams showing drill collar locations, mineralised envelope interpretation, and significant intercepts are included in the announcement.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> The announcement presents both broad mineralised intervals and included higher-grade intervals to provide a balanced representation of results returned to date. Only 3 holes have been received so far, and results from the remaining 9 holes may materially influence the interpretation.
Other substantive	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including</i> 	<ul style="list-style-type: none"> No metallurgical testing, density data, or geotechnical/hydrogeological results are

CONTINUED

Criteria	JORC Code explanation	Commentary
exploration data	<i>(but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i>	<p>reported in this release.</p> <ul style="list-style-type: none">• No Mineral Resource or Mineral Reserve is being reported.• Extend drilling along strike and dip;• Metallurgical sampling (gravity + CIL/CIP) on core.
Further work	<ul style="list-style-type: none">• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	<p>Further work will focus on:</p> <ul style="list-style-type: none">• Receipt and interpretation of pending assays from the remaining holes.• Refinement of mineralisation wireframes and continuity assessment.• Follow-up drilling prioritisation for strike/down dip extensions.• Integration into broader project evaluation workstreams.

CONTINUED

Appendix 2: Assay Results

Table 4: VGADD0001 Au assay results

Sample_id	Hole id	FROM	TO	Sample type	Au (g/t)
	VGADD0001	0	106	Not Assayed	
DD0000119	VGADD0001	106.00	107.00	Drill	3.76
DD0000120	VGADD0001			Blank	0.0025
DD0000121	VGADD0001	107.00	108.00	Drill	0.04
DD0000122	VGADD0001	108.00	109.00	Drill	0.016
DD0000123	VGADD0001	109.00	110.00	Drill	13.3
DD0000124	VGADD0001	110.00	111.00	Drill	0.015
DD0000125	VGADD0001	111.00	112.00	Drill	0.009
DD0000126	VGADD0001	112.00	113.00	Drill	0.016
DD0000127	VGADD0001	113.00	114.00	Drill	0.032
DD0000128	VGADD0001	114.00	115.00	Drill	0.012
DD0000129	VGADD0001	115.00	116.00	Drill	0.072
DD0000130	VGADD0001			OxG70	1.075
DD0000131	VGADD0001	116.00	117.00	Drill	0.047
DD0000132	VGADD0001	117.00	118.00	Drill	0.0025
DD0000133	VGADD0001	118.00	119.00	Drill	0.007
DD0000134	VGADD0001	119.00	120.00	Drill	0.006
DD0000135	VGADD0001	120.00	121.00	Drill	0.037
DD0000136	VGADD0001	121.00	122.00	Drill	0.013
DD0000137	VGADD0001	122.00	123.00	Drill	0.016
DD0000138	VGADD0001	123.00	124.00	Drill	0.018
DD0000139	VGADD0001	124.00	125.00	Drill	0.02
DD0000140	VGADD0001			SN26	8.9
DD0000141	VGADD0001	125.00	126.00	Drill	0.027
DD0000142	VGADD0001	126.00	127.00	Drill	0.034
DD0000143	VGADD0001	127.00	128.00	Drill	0.161
DD0000144	VGADD0001	128.00	129.00	Drill	0.034
DD0000145	VGADD0001	129.00	130.00	Drill	0.068
DD0000146	VGADD0001	130.00	131.00	Drill	0.018
DD0000147	VGADD0001	131.00	132.00	Drill	0.034
DD0000148	VGADD0001	132.00	133.00	Drill	0.041
DD0000149	VGADD0001	133.00	134.00	Drill	0.157
DD0000150	VGADD0001			Blank	0.0025
DD0000151	VGADD0001	134.00	135.00	Drill	0.056
DD0000152	VGADD0001	135.00	136.00	Drill	0.097
DD0000153	VGADD0001	136.00	137.00	Drill	0.056
DD0000154	VGADD0001	137.00	138.00	Drill	0.005
DD0000155	VGADD0001	138.00	139.00	Drill	0.0025
DD0000156	VGADD0001	139.00	140.00	Drill	0.0025
DD0000157	VGADD0001	140.00	141.00	Drill	0.0025
DD0000158	VGADD0001	141.00	142.00	Drill	2.47
DD0000159	VGADD0001	142.00	143.00	Drill	0.906
DD0000160	VGADD0001			Blank	0.0025
DD0000161	VGADD0001	143.00	144.00	Drill	0.195
DD0000162	VGADD0001	144.00	145.00	Drill	0.303
DD0000163	VGADD0001	145.00	146.00	Drill	0.023
DD0000164	VGADD0001	146.00	147.00	Drill	0.022
DD0000165	VGADD0001	147.00	148.00	Drill	0.007
DD0000166	VGADD0001	148.00	149.00	Drill	1.8
DD0000167	VGADD0001	149.00	150.00	Drill	0.0025
DD0000168	VGADD0001	150.00	151.00	Drill	0.085
DD0000169	VGADD0001	151.00	152.00	Drill	0.088
DD0000170	VGADD0001			OxG70	1.075
DD0000171	VGADD0001	152.00	153.00	Drill	0.295
DD0000172	VGADD0001	153.00	154.00	Drill	3.26
DD0000173	VGADD0001	154.00	155.00	Drill	2.05
DD0000174	VGADD0001	155.00	156.00	Drill	0.031
DD0000175	VGADD0001	156.00	157.00	Drill	0.121
DD0000176	VGADD0001	157.00	158.00	Drill	0.21
DD0000177	VGADD0001	158.00	159.00	Drill	0.246
DD0000178	VGADD0001	159.00	160.00	Drill	0.293
DD0000179	VGADD0001	160.00	161.00	Drill	0.233

CONTINUED

Sample_id	Hole id	FROM	TO	Sample type	Au (g/t)
DD000180	VGADD0001			SJ39	2.64
DD000181	VGADD0001	161.00	162.00	Drill	0.044
DD000182	VGADD0001	162.00	163.00	Drill	0.734
DD000183	VGADD0001	163.00	164.00	Drill	0.007
DD000184	VGADD0001	164.00	165.00	Drill	0.016
DD000185	VGADD0001	165.00	166.00	Drill	0.011
DD000186	VGADD0001	166.00	167.00	Drill	0.211
DD000187	VGADD0001	167.00	168.00	Drill	0.072
DD000188	VGADD0001	168.00	169.00	Drill	0.038
DD000189	VGADD0001	169.00	170.00	Drill	0.546
DD000190	VGADD0001			SN26	8.41
DD000191	VGADD0001	170.00	171.00	Drill	0.115
DD000192	VGADD0001	171.00	172.00	Drill	0.08
DD000193	VGADD0001	172.00	173.00	Drill	0.118
DD000194	VGADD0001	173.00	174.00	Drill	0.036
DD000195	VGADD0001	174.00	175.00	Drill	0.036
DD000196	VGADD0001	175.00	176.00	Drill	0.175
DD000197	VGADD0001	176.00	177.00	Drill	0.244
DD000198	VGADD0001	177.00	178.00	Drill	0.091
DD000199	VGADD0001	178.00	179.00	Drill	0.099
DD000200	VGADD0001			Blank	0.0025
DD000201	VGADD0001	179.00	180.00	Drill	0.031
DD000202	VGADD0001	180.00	181.00	Drill	0.619
DD000203	VGADD0001	181.00	182.00	Drill	3.6
DD000204	VGADD0001	182.00	183.00	Drill	2.14
DD000205	VGADD0001	183.00	184.00	Drill	0.014
DD000206	VGADD0001	184.00	185.00	Drill	5.5
DD000207	VGADD0001	185.00	186.00	Drill	0.125
DD000208	VGADD0001	186.00	187.00	Drill	0.304
DD000209	VGADD0001	187.00	188.00	Drill	10.7
DD000210	VGADD0001			Blank	0.01
DD000211	VGADD0001	188.00	189.00	Drill	4.2
DD000212	VGADD0001	189.00	190.00	Drill	1.09
DD000213	VGADD0001	190.00	191.00	Drill	0.706
DD000214	VGADD0001	191.00	192.00	Drill	2.54
DD000215	VGADD0001	192.00	193.00	Drill	13.9
DD000216	VGADD0001	193.00	194.00	Drill	0.371
DD000217	VGADD0001	194.00	195.00	Drill	0.702
DD000218	VGADD0001	195.00	196.00	Drill	0.032
DD000219	VGADD0001	196.00	197.00	Drill	0.04
DD000220	VGADD0001			OxG70	0.986
DD000221	VGADD0001	197.00	198.00	Drill	0.022
DD000222	VGADD0001	198.00	199.00	Drill	0.012
DD000223	VGADD0001	199.00	200.00	Drill	0.008
DD000224	VGADD0001	200.00	201.00	Drill	0.068
DD000225	VGADD0001	201.00	202.00	Drill	0.086
DD000226	VGADD0001	202.00	203.00	Drill	0.034
DD000227	VGADD0001	203.00	204.00	Drill	0.005
DD000228	VGADD0001	204.00	205.00	Drill	0.006
DD000229	VGADD0001	205.00	206.00	Drill	0.005
DD000230	VGADD0001			SN26	8.33
DD000231	VGADD0001	206.00	207.00	Drill	0.3
DD000232	VGADD0001	207.00	208.00	Drill	0.229
DD000233	VGADD0001	208.00	209.00	Drill	0.101
DD000234	VGADD0001	209.00	210.00	Drill	0.042
DD000235	VGADD0001	210.00	211.00	Drill	0.028
DD000236	VGADD0001	211.00	212.00	Drill	0.156
DD000237	VGADD0001	212.00	213.00	Drill	0.119
DD000238	VGADD0001	213.00	214.00	Drill	0.027
DD000239	VGADD0001	214.00	215.00	Drill	0.1
DD000240	VGADD0001			SJ39	2.74
DD000241	VGADD0001	215.00	216.00	Drill	0.03
DD000242	VGADD0001	216.00	217.00	Drill	0.147
DD000243	VGADD0001	217.00	218.00	Drill	1.195
DD000244	VGADD0001	218.00	219.00	Drill	0.043
DD000245	VGADD0001	219.00	220.00	Drill	0.254

CONTINUED

Sample_id	Hole id	FROM	TO	Sample type	Au (g/t)
DD000246	VGADD0001	220.00	221.00	Drill	0.069
DD000247	VGADD0001	221.00	222.00	Drill	0.192
DD000248	VGADD0001	222.00	223.00	Drill	0.619
DD000249	VGADD0001	223.00	224.00	Drill	0.206
DD000250	VGADD0001			Blank	0.0025
DD000251	VGADD0001	224.00	225.00	Drill	0.015
DD000252	VGADD0001	225.00	226.00	Drill	0.044
DD000253	VGADD0001	226.00	227.00	Drill	0.027
DD000254	VGADD0001	227.00	228.00	Drill	0.024
DD000255	VGADD0001	228.00	229.00	Drill	0.182
DD000256	VGADD0001	229.00	230.00	Drill	2.48
DD000257	VGADD0001	230.00	231.00	Drill	0.043
DD000258	VGADD0001	231.00	232.00	Drill	0.075
DD000259	VGADD0001	232.00	233.00	Drill	0.032
DD000260	VGADD0001			Blank	0.0025
DD000261	VGADD0001	233.00	234.00	Drill	0.038
DD000262	VGADD0001	234.00	235.00	Drill	0.018
DD000263	VGADD0001	235.00	236.00	Drill	0.02
DD000264	VGADD0001	236.00	237.00	Drill	0.308
DD000265	VGADD0001	237.00	238.00	Drill	0.071
DD000266	VGADD0001	238.00	239.00	Drill	0.017
DD000267	VGADD0001	239.00	240.00	Drill	0.022
DD000268	VGADD0001	240.00	241.00	Drill	0.122
DD000269	VGADD0001	241.00	242.00	Drill	0.093
DD000270	VGADD0001			SJ39	2.68
DD000271	VGADD0001	242.00	243.00	Drill	0.057
DD000272	VGADD0001	243.00	244.00	Drill	0.043
DD000273	VGADD0001	244.00	245.00	Drill	0.041
DD000274	VGADD0001	245.00	246.00	Drill	0.018
DD000275	VGADD0001	246.00	247.00	Drill	0.0025
DD000276	VGADD0001	247.00	248.00	Drill	0.015
DD000277	VGADD0001	248.00	249.00	Drill	0.267
DD000278	VGADD0001	249.00	250.00	Drill	1.285
DD000279	VGADD0001	250.00	251.00	Drill	0.065
DD000280	VGADD0001			OxG70	0.999
DD000281	VGADD0001	251.00	252.00	Drill	0.06
DD000282	VGADD0001	252.00	253.49	Drill	0.052

Table 5: VGADD0002 Au assay results

Sample_id	Hole id	FROM	TO	Sample type	Au (g/t)
	VGADD0002	0	117.0	Not Assayed	
DD000413	VGADD0002	117.00	118.00	Drill	0.20
DD000414	VGADD0002	118.00	119.00	Drill	0.01
DD000415	VGADD0002	119.00	120.00	Drill	0.01
DD000416	VGADD0002	120.00	121.00	Drill	0.06
DD000417	VGADD0002	121.00	122.00	Drill	54.50
DD000418	VGADD0002	122.00	123.00	Drill	0.04
DD000419	VGADD0002	123.00	124.00	Drill	0.01
DD000420	VGADD0002			Blank	0.04
DD000421	VGADD0002	124.00	125.00	Drill	0.02
DD000422	VGADD0002	125.00	126.00	Drill	0.28
DD000423	VGADD0002	126.00	127.00	Drill	0.62
DD000424	VGADD0002	127.00	128.00	Drill	0.09
DD000425	VGADD0002	128.00	129.00	Drill	0.02
DD000426	VGADD0002	129.00	130.00	Drill	0.01
DD000427	VGADD0002	130.00	131.00	Drill	0.54
DD000428	VGADD0002	131.00	132.00	Drill	0.02
DD000429	VGADD0002	132.00	133.00	Drill	0.10
DD000430	VGADD0002			Blank	<0.005
DD000431	VGADD0002	133.00	134.00	Drill	<0.005
DD000432	VGADD0002	134.00	135.00	Drill	0.09
DD000433	VGADD0002	135.00	136.00	Drill	0.02
DD000434	VGADD0002	136.00	137.00	Drill	<0.005
DD000435	VGADD0002	137.00	138.00	Drill	<0.005
DD000436	VGADD0002	138.00	139.00	Drill	0.01
DD000437	VGADD0002	139.00	140.00	Drill	0.01

CONTINUED

Sample_id	Hole id	FROM	TO	Sample type	Au (g/t)
DD000438	VGADD0002	140.00	141.00	Drill	<0.005
DD000439	VGADD0002	141.00	142.00	Drill	<0.005
DD000440	VGADD0002			OxG70	1.01
DD000441	VGADD0002	142.00	143.00	Drill	1.18
DD000442	VGADD0002	143.00	144.00	Drill	1.11
DD000443	VGADD0002	144.00	145.00	Drill	0.01
DD000444	VGADD0002	145.00	146.00	Drill	0.49
DD000445	VGADD0002	146.00	147.00	Drill	0.05
DD000446	VGADD0002	147.00	148.00	Drill	0.06
DD000447	VGADD0002	148.00	149.00	Drill	0.46
DD000448	VGADD0002	149.00	150.00	Drill	0.10
DD000449	VGADD0002	150.00	151.00	Drill	0.03
DD000450	VGADD0002			SJ39	2.55
DD000451	VGADD0002	151.00	152.00	Drill	0.02
DD000452	VGADD0002	152.00	153.00	Drill	0.10
DD000453	VGADD0002	153.00	154.00	Drill	0.02
DD000454	VGADD0002	154.00	155.00	Drill	0.01
DD000455	VGADD0002	155.00	156.00	Drill	0.01
DD000456	VGADD0002	156.00	157.00	Drill	0.02
DD000457	VGADD0002	157.00	158.00	Drill	0.02
DD000458	VGADD0002	158.00	159.00	Drill	0.01
DD000459	VGADD0002	159.00	160.00	Drill	0.01
DD000460	VGADD0002			SN26	8.35
DD000461	VGADD0002	160.00	161.00	Drill	0.02
DD000462	VGADD0002	161.00	162.00	Drill	0.02
DD000463	VGADD0002	162.00	163.00	Drill	0.07
DD000464	VGADD0002	163.00	164.00	Drill	0.07
DD000465	VGADD0002	164.00	165.00	Drill	0.25
DD000466	VGADD0002	165.00	166.00	Drill	0.04
DD000467	VGADD0002	166.00	167.00	Drill	0.05
DD000468	VGADD0002	167.00	168.00	Drill	0.04
DD000469	VGADD0002	168.00	169.00	Drill	0.32
DD000470	VGADD0002			Blank	<0.005
DD000471	VGADD0002	169.00	170.00	Drill	0.02
DD000472	VGADD0002	170.00	171.00	Drill	2.64
DD000473	VGADD0002	171.00	172.00	Drill	0.30
DD000474	VGADD0002	172.00	173.00	Drill	0.01
DD000475	VGADD0002	173.00	174.00	Drill	0.46
DD000476	VGADD0002	174.00	175.00	Drill	1.57
DD000477	VGADD0002	175.00	176.00	Drill	2.52
DD000478	VGADD0002	176.00	177.00	Drill	0.05
DD000479	VGADD0002	177.00	178.00	Drill	0.06
DD000480	VGADD0002			Blank	<0.005
DD000481	VGADD0002	178.00	179.00	Drill	0.09
DD000482	VGADD0002	179.00	180.00	Drill	0.15
DD000483	VGADD0002	180.00	181.00	Drill	52.70
DD000484	VGADD0002	181.00	182.00	Drill	0.04
DD000485	VGADD0002	182.00	183.00	Drill	0.40
DD000486	VGADD0002	183.00	184.00	Drill	0.03
DD000487	VGADD0002	184.00	185.00	Drill	0.03
DD000488	VGADD0002	185.00	186.00	Drill	0.16
DD000489	VGADD0002	186.00	187.00	Drill	2.42
DD000490	VGADD0002			SN26	8.24
DD000491	VGADD0002	187.00	188.00	Drill	1.21
DD000492	VGADD0002	188.00	189.00	Drill	3.26
DD000493	VGADD0002	189.00	190.00	Drill	0.07
DD000494	VGADD0002	190.00	191.00	Drill	0.04
DD000495	VGADD0002	191.00	192.00	Drill	0.33
DD000496	VGADD0002	192.00	193.00	Drill	0.11
DD000497	VGADD0002	193.00	194.00	Drill	0.06
DD000498	VGADD0002	194.00	195.00	Drill	0.06
DD000499	VGADD0002	195.00	196.00	Drill	0.20
DD000500	VGADD0002			OxG70	0.99
DD000501	VGADD0002	196.00	197.00	Drill	0.892
DD000502	VGADD0002	197.00	198.00	Drill	0.039
DD000503	VGADD0002	198.00	199.00	Drill	1.275

CONTINUED

Sample_id	Hole id	FROM	TO	Sample type	Au (g/t)
DD0000504	VGADD0002	199.00	200.00	Drill	2.23
DD0000505	VGADD0002	200.00	201.00	Drill	1.705
DD0000506	VGADD0002	201.00	202.00	Drill	5.1
DD0000507	VGADD0002	202.00	203.00	Drill	1.175
DD0000508	VGADD0002	203.00	204.00	Drill	0.239
DD0000509	VGADD0002	204.00	205.00	Drill	0.042
DD0000510	VGADD0002			SJ39	2.65
DD0000511	VGADD0002	205.00	206.00	Drill	2.81
DD0000512	VGADD0002	206.00	207.00	Drill	0.711
DD0000513	VGADD0002	207.00	208.00	Drill	0.282
DD0000514	VGADD0002	208.00	209.00	Drill	0.476
DD0000515	VGADD0002	209.00	210.00	Drill	0.207
DD0000516	VGADD0002	210.00	211.00	Drill	0.136
DD0000517	VGADD0002	211.00	212.00	Drill	5.47
DD0000518	VGADD0002	212.00	213.00	Drill	0.038
DD0000519	VGADD0002	213.00	214.00	Drill	0.071
DD0000520	VGADD0002			Blank	<0.005
DD0000521	VGADD0002	214.00	215.00	Drill	0.246
DD0000522	VGADD0002	215.00	216.00	Drill	0.071
DD0000523	VGADD0002	216.00	217.00	Drill	0.016
DD0000524	VGADD0002	217.00	218.00	Drill	0.014
DD0000525	VGADD0002	218.00	219.00	Drill	0.134
DD0000526	VGADD0002	219.00	220.00	Drill	0.023
DD0000527	VGADD0002	220.00	221.00	Drill	0.018
DD0000528	VGADD0002	221.00	222.00	Drill	0.226
DD0000529	VGADD0002	222.00	223.00	Drill	0.305
DD0000530	VGADD0002			Blank	<0.005
DD0000531	VGADD0002	223.00	224.00	Drill	0.288
DD0000532	VGADD0002	224.00	225.00	Drill	0.485
DD0000533	VGADD0002	225.00	226.00	Drill	0.566
DD0000534	VGADD0002	226.00	227.00	Drill	0.219
DD0000535	VGADD0002	227.00	228.00	Drill	0.124
DD0000536	VGADD0002	228.00	229.00	Drill	0.114
DD0000537	VGADD0002	229.00	230.00	Drill	0.136
DD0000538	VGADD0002	230.00	231.00	Drill	0.316
DD0000539	VGADD0002	231.00	232.00	Drill	2.43
DD0000540	VGADD0002			SJ39	2.68
DD0000541	VGADD0002	232.00	233.00	Drill	0.325
DD0000542	VGADD0002	233.00	234.00	Drill	0.095
DD0000543	VGADD0002	234.00	235.00	Drill	1.525
DD0000544	VGADD0002	235.00	236.00	Drill	0.082
DD0000545	VGADD0002	236.00	237.00	Drill	0.15
DD0000546	VGADD0002	237.00	238.00	Drill	0.006
DD0000547	VGADD0002	238.00	239.00	Drill	<0.005
DD0000548	VGADD0002	239.00	240.00	Drill	0.005
DD0000549	VGADD0002	240.00	241.00	Drill	<0.005
DD0000550	VGADD0002			SN26	8.59
DD0000551	VGADD0002	241.00	242.00	Drill	<0.005
DD0000552	VGADD0002	242.00	243.00	Drill	0.022
DD0000553	VGADD0002	243.00	244.00	Drill	<0.005
DD0000554	VGADD0002	244.00	245.00	Drill	<0.005
DD0000555	VGADD0002	245.00	246.00	Drill	<0.005
DD0000556	VGADD0002	246.00	247.00	Drill	<0.005
DD0000557	VGADD0002	247.00	248.00	Drill	<0.005
DD0000558	VGADD0002	248.00	249.00	Drill	<0.005
DD0000559	VGADD0002	249.00	250.00	Drill	0.006
DD0000560	VGADD0002			OxG70	1.005
DD0000561	VGADD0002	250.00	251.00	Drill	0.005
DD0000562	VGADD0002	251.00	252.00	Drill	<0.005
DD0000563	VGADD0002	252.00	253.00	Drill	<0.005
DD0000564	VGADD0002	253.00	254.00	Drill	<0.005
DD0000565	VGADD0002	254.00	255.00	Drill	0.031
DD0000566	VGADD0002	255.00	256.00	Drill	0.007
DD0000567	VGADD0002	256.00	257.00	Drill	0.005
DD0000568	VGADD0002	257.00	258.00	Drill	0.007
DD0000569	VGADD0002	258.00	259.67	Drill	0.012

CONTINUED

Table 6: VGADD0003 Au assay results

Sample_id	Hole id	FROM	TO	Sample type	Au (g/t)
	VGADD0003	0	65	Not assayed	
DD000642	VGADD0003			Blank	<0.005
DD000643	VGADD0003	65.00	66.00	Drill	0.03
DD000644	VGADD0003	66.00	67.00	Drill	0.04
DD000645	VGADD0003	67.00	68.00	Drill	0.12
DD000646	VGADD0003	68.00	69.00	Drill	0.03
DD000647	VGADD0003	69.00	70.00	Drill	0.04
DD000648	VGADD0003	70.00	71.00	Drill	0.02
DD000649	VGADD0003	71.00	72.00	Drill	0.02
DD000650	VGADD0003			OxG70	1.01
DD000651	VGADD0003	72.00	73.00	Drill	0.02
DD000652	VGADD0003	73.00	74.00	Drill	0.01
DD000653	VGADD0003	74.00	75.00	Drill	0.17
DD000654	VGADD0003	75.00	76.00	Drill	12.05
DD000655	VGADD0003	76.00	77.00	Drill	0.04
DD000656	VGADD0003	77.00	78.00	Drill	0.03
DD000657	VGADD0003	78.00	79.00	Drill	0.07
DD000658	VGADD0003	79.00	80.00	Drill	0.01
DD000659	VGADD0003	80.00	81.00	Drill	0.05
DD000660	VGADD0003			SJ39	2.60
DD000661	VGADD0003	81.00	82.00	Drill	0.01
DD000662	VGADD0003	82.00	83.00	Drill	0.01
DD000663	VGADD0003	83.00	84.00	Drill	0.04
DD000664	VGADD0003	84.00	85.00	Drill	0.02
DD000665	VGADD0003	85.00	86.00	Drill	0.02
DD000666	VGADD0003	86.00	87.00	Drill	0.03
DD000667	VGADD0003	87.00	88.00	Drill	0.02
DD000668	VGADD0003	88.00	89.00	Drill	0.04
DD000669	VGADD0003	89.00	90.00	Drill	0.11
DD000670	VGADD0003			Blank	<0.005
DD000671	VGADD0003	90.00	91.00	Drill	0.73
DD000672	VGADD0003	91.00	92.00	Drill	0.04
DD000673	VGADD0003	92.00	93.00	Drill	0.54
DD000674	VGADD0003	93.00	94.00	Drill	0.09
DD000675	VGADD0003	94.00	95.00	Drill	0.01
DD000676	VGADD0003	95.00	96.00	Drill	0.01
DD000677	VGADD0003	96.00	97.00	Drill	0.88
DD000678	VGADD0003	97.00	98.00	Drill	0.08
DD000679	VGADD0003	98.00	99.00	Drill	0.03
DD000680	VGADD0003			Blank	<0.005
DD000681	VGADD0003	99.00	100.00	Drill	0.01
DD000682	VGADD0003	100.00	101.00	Drill	<0.005
DD000683	VGADD0003	101.00	102.00	Drill	<0.005
DD000684	VGADD0003	102.00	103.00	Drill	0.04
DD000685	VGADD0003	103.00	104.00	Drill	0.41
DD000686	VGADD0003	104.00	105.00	Drill	2.13
DD000687	VGADD0003	105.00	106.00	Drill	0.01
DD000688	VGADD0003	106.00	107.00	Drill	5.67
DD000689	VGADD0003	107.00	108.00	Drill	0.06
DD000690	VGADD0003			OxG70	1.01
DD000691	VGADD0003	108.00	109.00	Drill	<0.005
DD000692	VGADD0003	109.00	110.00	Drill	0.40
DD000693	VGADD0003	110.00	111.00	Drill	0.11
DD000694	VGADD0003	111.00	112.00	Drill	0.01
DD000695	VGADD0003	112.00	113.00	Drill	0.01
DD000696	VGADD0003	113.00	114.00	Drill	0.54
DD000697	VGADD0003	114.00	115.00	Drill	0.23
DD000698	VGADD0003	115.00	116.00	Drill	<0.005
DD000699	VGADD0003	116.00	117.00	Drill	0.01
DD000700	VGADD0003			SJ39	2.67
DD000701	VGADD0003	117.00	118.00	Drill	0.08
DD000702	VGADD0003	118.00	119.00	Drill	0.14

CONTINUED

Sample_id	Hole id	FROM	TO	Sample type	Au (g/t)
DD000703	VGADD0003	119.00	120.00	Drill	0.18
DD000704	VGADD0003	120.00	121.00	Drill	0.47
DD000705	VGADD0003	121.00	122.00	Drill	1.15
DD000706	VGADD0003	122.00	123.00	Drill	0.01
DD000707	VGADD0003	123.00	124.00	Drill	0.01
DD000708	VGADD0003	124.00	125.00	Drill	0.01
DD000709	VGADD0003	125.00	126.00	Drill	0.01
DD000710	VGADD0003			SN26	8.56
DD000711	VGADD0003	126.00	127.00	Drill	0.03
DD000712	VGADD0003	127.00	128.00	Drill	0.09
DD000713	VGADD0003	128.00	129.00	Drill	0.01
DD000714	VGADD0003	129.00	130.00	Drill	0.16
DD000715	VGADD0003	130.00	131.00	Drill	5.33
DD000716	VGADD0003	131.00	132.00	Drill	0.01
DD000717	VGADD0003	132.00	133.00	Drill	0.09
DD000718	VGADD0003	133.00	134.00	Drill	3.44
DD000719	VGADD0003	134.00	135.00	Drill	0.22
DD000720	VGADD0003			Blank	<0.005
DD000721	VGADD0003	135.00	136.00	Drill	0.07
DD000722	VGADD0003	136.00	137.00	Drill	0.26
DD000723	VGADD0003	137.00	138.00	Drill	0.50
DD000724	VGADD0003	138.00	139.00	Drill	0.07
DD000725	VGADD0003	139.00	140.00	Drill	13.40
DD000726	VGADD0003	140.00	141.00	Drill	0.34
DD000727	VGADD0003	141.00	142.00	Drill	0.04
DD000728	VGADD0003	142.00	143.00	Drill	0.19
DD000729	VGADD0003	143.00	144.00	Drill	0.24
DD000730	VGADD0003			Blank	<0.005
DD000731	VGADD0003	144.00	145.00	Drill	0.04
DD000732	VGADD0003	145.00	146.00	Drill	0.53
DD000733	VGADD0003	146.00	147.00	Drill	0.24
DD000734	VGADD0003	147.00	148.00	Drill	0.23
DD000735	VGADD0003	148.00	149.00	Drill	0.05
DD000736	VGADD0003	149.00	150.00	Drill	0.03
DD000737	VGADD0003	150.00	151.00	Drill	24.1
DD000738	VGADD0003	151.00	152.00	Drill	0.30
DD000739	VGADD0003	152.00	153.00	Drill	0.14
DD000740	VGADD0003			OxG70	0.97
DD000741	VGADD0003	153.00	154.00	Drill	0.67
DD000742	VGADD0003	154.00	155.00	Drill	1.29
DD000743	VGADD0003	155.00	156.00	Drill	0.16
DD000744	VGADD0003	156.00	156.93	Drill	0.77

³BOA VISTA GOLD PROJECT (HISTORICAL RESOURCE CAUTIONARY STATEMENTS)

Details regarding the foreign resource estimate, project details and associated exploration results are set out in the Company's ASX announcement dated 4 July 2025, titled 'AUSTRALIAN MINES SECURES EARN-IN RIGHTS TO THE ADVANCED BOA VISTA GOLD PROJECT, BRAZIL' (the "Boa Vista Announcement").

The Company confirms that it is not aware of any new information or data that materially affects the information included in the Boa Vista Announcement.

The Company confirms that all material assumptions and technical parameters underpinning the foreign resource estimate and exploration results in this original ASX announcement continue to apply and have not materially changed.

The estimates of the quantity and grade of mineralisation for the Boa Vista Gold Project referred to in this document and set out in the Boa Vista Announcement are "foreign estimates" within the meaning of the ASX listing rules and are not reported in accordance with the JORC Code 2012. A competent person has not undertaken

CONTINUED

sufficient work to classify the foreign estimates as mineral resources in accordance with the JORC Code 2012. It is uncertain that following evaluation and further exploration work that the foreign estimates will be able to be reported as mineral resources in accordance with the JORC Code.

VG1 Inferred Foreign Resource Estimate

Au Cut-off (g/t)	Tonnes > Cut-off (tonnes)	Grade > Cut-off Au (g/t)	Contained Metal Au (oz.)
0.10	14,240,000	0.87	399,000
0.15	14,020,000	0.88	398,000
0.20	13,740,000	0.90	397,000
0.25	13,010,000	0.94	392,000
0.30	12,130,000	0.98	383,000
0.40	10,410,000	1.09	364,000
0.50	8,470,000	1.23	336,000
0.60	6,980,000	1.38	310,000
0.70	5,930,000	1.51	288,000
0.80	5,090,000	1.64	268,000
0.90	4,580,000	1.73	254,000
1.00	4,150,000	1.81	241,000

Notes from 2013 NI 43-101 Technical Report, Schmulian, M., Giroux, G., & Cuttle, J. (2013):

1. Canadian Institute of Mining, Metallurgy and Petroleum (CIM) definitions have been followed for classification of Mineral Resources.
2. The Qualified Person for this Mineral Resource estimate is G.H. Giroux
3. Mineral Resources are estimated at a cut-off grade of 0.5 g/t Au.
4. Based on 15 drill holes and 14 surface trenches. A three-dimensional solid constraining the mineralized zone was created using GEMSTM software. Of the supplied information 6 trenches and 12 drill holes were used for the resource estimate.
5. Includes oxide and sulphide portions.
6. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability.
7. Totals may not add correctly due to rounding.

The foreign estimates of mineralisation stated above are taken from the report Schmulian, M., Giroux, G., & Cuttle, J. (2013). Technical Report, Boa Vista Gold Project and Resource Estimate on the VG1 Prospect, Tapajós Area, Pará State, Northern Brazil. Prepared for Brazil Resources Inc. Effective Date: November 22, 2013. using categories of mineralisation equivalent to mineral resources in accordance with the NI 43-101 Code. The estimate is treated as a "foreign estimate" under the ASX listing rules.

The VG1 resource is reported as a foreign estimate; see ASX release 4 July 2025 for full details.